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Abstract—We consider a wireless sensor network (WSN) where
each sensor node samples a random signal, places the digitized
data in a buffer, and transmits the data to an access point (AP)
through a wireless packet erasure communication link. The AP
communicates the data to a processing center (PC) located in
the cloud. Our objective is to maximize the delivery of raw
data to the cloud for post-processing given the buffer space and
communication bandwidth limitations of each sensor. For this
system model, we propose an algorithm that is executed at the
sensor and summarizes the miminum subset of the incoming
data based on the available buffer space and rate of the end-
to-end communication link. The PC located in the cloud uses
a sequential minimum mean square error (MMSE) estimation
algorithm that fuses the summarized and raw data to estimate
the random signal. Our algorithm offers a building block for
sensing applications that desire the collection of data in raw
form.

Index Terms—Estimation, random signal, sensor data, Big
Data, Internet-of-Things, machine-to-machine communication,
wireless sensor networks, queueing system.

I. INTRODUCTION

We live in a world gradually hyper-connected where every
device will eventually be connected to the Internet. The
volume of data that are generated are tremendous, hence the
name Big Data. According to recent reports, nearly 30% of the
Internet traffic is expected to be machine-to-machine (M2M)
data by 2019 [1]. One of the requirements of several M2M
and Internet of Things (IoT) applications, is the storage and
post-processing of the collected data. This is true for a class
of applications that generate data that have value even if the
processing does not occur in real-time. Un-processed data
in their raw form are needed for running machine learning
or signal processing algorithms that fuse data from several
information sources. Consider for example the wireless sensor
network (WSN) illustrated in Fig. 1 that is used for an IoT
application. Also assume that we desire to execute analytics
algorithms that fuse the data from the two WSNs at the
processing center (PC) located in the cloud. However, this is
possible only if we have raw data measurements from all the
information sources.

A first problem in the previous scenario is that the deploy-
ment of a large number of sensors and the transmission of
their data to the cloud-located PC will result in significant
costs for the network operator (e.g., cost of wireless and
backhaul communication). Thus, the network operator has also
a strong motivation to reduce the communicated data as much
as possible. The second problem in this scenario is that when
the device that is used for monitoring a random physical signal

Internet

Processing Center: 

Cloud storage and 

post-processing 

AP

S

AP

S

μW p/s

μB p/s

Fig. 1. System model for cloud-based applications that collect data from
independent sensors/devices and process at a central processing center. The
available bandwidth for each sensor in the wireless and wireline links is µW ,
and µB packets/second respectively.

is a sensor that has resource limitations, then it might not
be possible to transfer all the data to a PC leading to loss
of valuable information. Resources that might be limited at
the sensor and prevent the previous action include energy,
processing power, and memory. Even with powerful sensing
devices like smartphones and tablets that have ample storage
resources, wireless bandwidth usually comes at a premium
(especially cellular) and is a limited resource in this scenario.

There is a well-known solution to the bandwidth problem
and this is to perform local in-network data compression (sum-
marization) to minimize the costly and resource-demanding
communication. Since we are typically interested in collecting
data from a random signal, a type of summarization is through
its estimation [2]. Estimating a random signal by collecting
data from a lossy network has been investigated thoroughly
in the literature both from a practical and from a theoretical
point of view. A number works investigated the problem of
estimation in sensor systems that have communication rate or
energy limitations [3]–[7]. Modern massive IEEE 802.11ah-
based WSNs were studied in [8]. These estimation algorithms
offer excellent performance by using only low-complexity
linear processing. The objectives of the aforementioned repre-
sentative works are either to improve the estimation accuracy,
typically measured in terms of the mean square error (MSE),
or to reduce energy consumption. Hence, they are not con-
cerned with maximizing the delivery of un-processed data.

In this paper we investigate a scenario where we desire
to deliver the largest possible set of data samples to the PC
that is located in the cloud by considering bandwidth and
memory constraints. We propose an algorithm that uses the
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Fig. 2. The sensor node adopts local processing for a subset of the collected
samples from the random signal x, when the memory of the sensor and the
rate of the communication link do not allow the transmission of each sample.

minimum subset of the collected data for locally compress-
ing/summarizing them, when the sampling rate of the data
exceeds the rate of the communication link and the ability
of the buffer to store data. After this processing, the data are
communicated and estimated at the PC with an on-demand
sequential linear minimum mean square error (MMSE) estima-
tion algorithm. Thus, the maximum possible subset of the data
is transmitted in raw form. We also study the performance of
the algorithm in terms of MSE relative to the available buffer
space at the sensor.

II. SYSTEM MODEL

The system model we describe next, is illustrated in Fig. 1.
Multiple sensors are connected in a star topology with the
AP and this represents a fairly typical WSN topology [9].
We focus our subsequent discussion and analysis on a single
sensor. Each sensor samples a random signal x with an
average rate of λ samples/second (Fig. 2). The samples of
the signal are corrupted with additive white Gaussian noise
(AWGN). If y(i)∈R is the i-th observation at the sensor and
n(i)∼N (0, σ2

n) is the i-th AWGN sample, the observation
data model is y(i) = x(i) + n(i). Subsequently, the signal is
quantized (compressed) by using R bits. The resulting digital
signal of R bits is:

yd(i) = Q(x(i) + n(i)) = x(i) + n(i) + q(i) (1)

The variance of the quantization noise (or the distortion), under
the use of a uniform probabilistic quantizer captured as the
function Q(·) is:

σ2
q =

x2max

(2R − 1)2
(2)

where 2xmax is the range of the sensed signal. Note that in
this paper we only consider the optimization of the sampling
rate and not that of the quantization that can be optimized by
selecting properly the value of R. Because the sampling and
quantization noise are uncorrelated, we have that for the noise
variance at sensor i:

σ2
w = σ2

n + σ2
q (3)

After sampling and quantization, the sensor node creates a
packet for each sample and stores it in a FIFO buffer of B
packets. Then, the transmitter (TX) communicates the col-
lected data to the AP through a wireless communication link.
The wireless communication link transmits on average µw

packets/second/sensor and this is a parameter that depends on
the number of sensor nodes that share the wireless channel [8].

The wireless channel also generates packet erasures with
probability pe under a two-state Markov chain model. A more
realistic model of the wireless channel is out of the scope of
this paper but it can be easily supported. All the sensors share
the communication channel but each one has an independent
packet erasure probability. Thus, samples are lost if the buffer
in the sensor is full when a new sample arrives, and when there
is a packet erasure. The data that are received at the AP are
forwarded through a wireline backhaul link of µb packets/sec
to the cloud for the estimation of the random signal.

A. Linear Estimation

A classic approach for linear estimation of data that arrive
progressively, is to estimate the random signal sequentially at
the PC. Let us first describe the sequential MMSE estimation
process at the PC. The recursive MMSE estimation formula
is written as [2]:

x̂(i) = x̂(i− 1) + ki

(
y(i)− x̂(i− 1)

)
(4)

In the above it is
ki =

ai−1

ai−1 + σ2
w

. (5)

The parameter α is the Bayesian MSE (BMSE) that is:

ai =
ai−1σ

2
W

ai−1 + σ2
W

(6)

III. LINEAR ESTIMATION AND BUFFER MANAGEMENT
ALGORITHM

For our system model, the problem we desire to address
is the following: We want to increase the sampling rate
of the random signal beyond the rate of the wireless and
wireline communication links. The end-to-end communication
link does not allow for the transmission of more than

µ = min(µw, µb) packets/sec. (7)

We want to identify what is the optimal course of action at
the sensor, so that it transmits as many data as possible, but at
the same time satisfies the limitations of communication rate
µ and buffer space B. The choices are the following: 1) The
reduction of the sampling rate to match the rate of the end-
to-end communication link µ. 2) To allow λ > µ but if a new
data sample arrives at the sensor, while the buffer is full with
data waiting to be transmitted, part of the old data are replaced
with the new [10]. This approach can only allow the cloud PC
to estimate more accurately the recent value of the random
signal x. 3) We propose to allow over-sampling with λ > µ
but avoid discarding data by compressing the minimum subset
of the data locally. At the same time the system complies with
the resource limitations.

A. Decomposed Sequential Linear Estimation

The estimation algorithm is now adapted for our system
model. Our algorithm is based on decomposing the estimation
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Fig. 3. Contents of the sensor buffer before and after the proposed algorithm
is executed.

algorithm across the two network nodes, namely the sensor
and the PC. The recursive formula in (4) is re-written as

x̂(n) = x̂(−1) +
n∑

i=0

aiy(i) = x̂(−1) +
k∑

i=0

aiy(i)

+

n∑
i=k+1

aiy(i) = x̂(k) +

n∑
i=k+1

aiy(i). (8)

The previous expression is used for initiating the description
of our algorithm with the help of the example in Fig 3. Let
us assume that the PC has estimated data sample with id 0
as x̂(0). Assume also that the sensor starts generating data
samples at rate λ > µ. In our example the sensor buffer con-
tains samples y(1) until y(5) and before they are transmitted,
sample y(6) arrives. The sensor exits the transmission mode
and enters estimation mode as follows. It replaces the last two
entered data samples in the buffer with a scaled value of the
two existing samples namely y(5) and y(6) and the result is

ỹ5,6 =

6∑
i=5

aiy(i).

This sample is stored in a digital packet and it is marked with
an id that indicates that it contains two scaled data samples.
Thus, the stream of transmitted packets multiplexes both raw
data and scaled/compressed samples. The sensor essentially
calculates the second term in (8) which means that it does not
calculate an actual estimate of y. However, the sensor does
not need to store locally the recent estimate x̂(k) but only
to account for the impact on the final estimate of the new
data samples that cannot be transmitted. In other words the
algorithm monitors the tail of the buffer and processes data
only when the buffer is full. This is to ensure that no packet
is lost and as many as possible data samples are transmitted
in a raw form. Note that if a new sample arrives in the system
above, say y(7), and no packet has been transmitted, this is
combined with ỹ5,6 to create the new scaled data ỹ5,7.

The sensor processing can be simplified by exploiting the
recursive structure of the BMSE in (6). With a little algebra

ai(al) =
al(σ

2
W )i

ial + (σ2
W )i

, i ≥ l, (9)

where al is the last calculated value for the BMSE. Thus, the
sensor system can nearly instantaneously derive ai for any
sample with id i > l. The final formula for the scaling at the
sensor is relative to the last value of the BMSE al:

ỹk+1,n(al) =

n∑
i=k+1

al(σ
2
w)

i−l

(i− l)al + (σ2
w)

i−l
y(i) (10)
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Fig. 4. M/M/1/B queuing model for the buffer of the sensor.

Next, the sensor stores the most recent calculated value an as
the new last value to allow easier calculations for future batch
processing, i.e., l← n and al ← an. At the PC, after data are
received the estimation is executed as

x̂pc(n) = x̂pc(k) + ỹk+1,n.

The algorithm tries to keep the buffer full and avoid discarding
samples. Therefore, ensures that there is always one empty
buffer spot in the buffer to accommodate for a new arrival.

IV. PERFORMANCE ANALYSIS OF BUFFERING

The previous algorithm can be easily implemented in prac-
tice. However, for the adopted buffer model we can derive
closed-form expressions for the number of packets that are
transmitted in un-processed or summarized form as a function
of the buffer size. To model the impact of the buffer size
on specific performance metrics of the algorithm we design
a simple stochastic model. This model does not account for
packet erasures since they occur after the transmission. We
adopt an M/M/1/B queueing system and Fig. 4 depicts the
state diagram of the queue. The queueing system is assumed
to have an overwrite-buffer with space for B packets; when a
new packet bearing more recent data arrives to the system, and
the buffer is full, the last buffered packet, if any, is scaled with
the new packet and are stored in the buffer. The parameters
of the model include λ and µ that indicate the arrival rate
and the service rate. In this figure the transition probabilities
are pa = λ/(λ + µ), pb = µ/(λ + µ). For this model, the
probability that the buffer is in state i (i packets exist in the
buffer) is given by [11]:

πi =
1− λ/µ

1− (λ/µ)B+1
(λ/µ)i i = 0, ..., B (11)

A data packet will be transmitted raw if a new sample arrival
takes place and at the same time the buffer is in any of the
states from 1, ..., B−1. In the cases above, the algorithm will
not be initiated. Thus, the rate of un-processed samples is

λraw = λ

B−1∑
i=1

πi. (12)

On the other hand, a sample will be scaled if a packet arrival
occurs and the sensor is in state B, which means that the buffer
does not have any space left. This is because our algorithm
is activated when the buffer is full. In any other case the
sensor will transmit the raw data. The rate of scaled samples
is λsc = λπB . We can also see that the scaling procedure is
executed on average for λsc packets/sec. From this description



we can deduce now further details about the system behavior.
When λ < µ then λraw = λ and all packets are transmitted
un-processed. However, when λ > µ the average number of
transmitted samples will be equal to the rate of both the raw
plus the scaled data:

µ = λraw + λsc (13)

In this case our algorithm adjusts λsc so that the rate of the
raw data matches the rate of the communication link.

V. SIMULATION AND NUMERICAL RESULTS

In this section, we provide simulation results to verify the
behavior of the proposed algorithm. In our simulation we
include four sensors where each sensor samples the corre-
sponding random signal, and places the data in the buffer.
Since the sample arrival rate is λ, samples are generated
periodically with constant inter-arrival period of 1/λ. The
algorithm is executed every time a new sample arrival occurs.
We set µ = 1 and we vary λ according to our experiment.
The random signals across the four sensors are independent.
The MSE results are averaged over all the sensors.

A. MSE vs. Correlation of Sampled Data

In Fig. 5(a) we present simulation results for the aver-
age MSE when the proposed algorithm tracks signal that
is a correlated Gaussian process with zero mean and unit
variance, while there are no packet erasures. The process
is generated according to x(i) = ρx(i − 1) + (1 − ρ)z(i),
where z(i) provides uncorrelated samples from Gaussian or
Uniform distribution depending on the experiment. Hence, it
is a first order auto-regressive AR(1) process. The correlation
coefficient ρ captures the dependency between current sample
and the previous one. The proposed algorithm is compared
against a buffer replacing policy where the most recently
obtained sample replaces that last sample when the buffer is
full. The results are very encouraging since we can observe
significant MSE reduction. The Replace policy has the same
performance regardless of the difference λ − µ because the
sensor sends raw data at a constant rate equal to µ. However,
the proposed algorithm utilizes to the fullest extra samples and
reduces the MSE further as more data arrive. Performance
gains are higher for lower correlation coefficient, i.e., when
the generated data are more random, our scheme is even more
valuable. Performance is even better for the sampling of a
random process that is uniform in [0, 1]. The results are shown
in Fig. 5(b) and are very good even for higher correlation
between the data samples.

B. Sample Rate vs. Buffer Size

Numerical results are presented only for the buffer model
analyzed in Section IV and for no packet erasures. Results
in terms of λraw and the size of the buffer can be seen in
Fig. 6(a). As the fraction λ/µ remains close to 1, where the
sampling rate is equal or lower to the transmission rate, the
sensor system experiences performance benefits in terms of the
delivery rate of raw data when the buffer space is increased.
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Fig. 5. MSE results for the proposed algorithm, a buffer replace policy, and
two different types of AR(1) random processes.

Thus, the important conclusion is that even for lower data
rates, the system must provision for buffer space in order to
increase the delivery of raw sampled data. The same behavior
is not true for λ > µ where we observe that as the ratio λ/µ
is increased, the significance of an increased buffer size is
diminished. This is because our algorithm executes a higher
number of data scaling operations that increase significantly
λsc. On the other hand, λraw is decreased significantly but it
is still proportional to the rate of oversampling λ− µ. In this
case, even this simple model can provide hints regarding the
optimal buffer size which is in this example is approximately
3 packets. A buffer beyond this point is unnecessary.

C. MSE vs. Buffer Size and Packet Erasure Rate

MSE results for a correlation coefficient of ρ=0.5 and
different buffer sizes can be seen in Fig. 6(b). For pe=0%
a buffer size increase beyond three packets does not help both



1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Buffer size (packets)

P
ac

ke
t r

at
e 

(n
or

m
al

iz
ed

 p
er

 s
ec

co
nd

)

 

 
λ

raw
 − λ/µ: 1.0

λ
scaled

 − λ/µ: 1.0

λ
raw

 − λ/µ: 2.0

λ
scaled

 − λ/µ: 2.0

(a) Rate of scaled and raw data vs. buffer size.

1 2 3 4 5 6 7 8 9 10
3.6

3.8

4

4.2

4.4

4.6

4.8

5
x 10

−4

Buffer size (packets)

A
ve

ra
ge

 M
S

E

Sampling of a Correlated Gaussian Random Process X(t), σ
X
2=1, µ

X
=0

 

 
Replace λ/µ=1 − p

e
: 0%

Proposed λ/µ=1.5− p
e
: 0%

Proposed λ/µ=2− p
e
: 0%

Replace λ/µ=1 − p
e
: 10%

Proposed λ/µ=1.5− p
e
: 10%

Proposed λ/µ=2− p
e
: 10%

(b) MSE vs. buffer size.

Fig. 6. MSE and packetrate results vs. the buffer size.

the typical Replace policy and the proposed scheme. For a
ratio λ/µ less than one it is known that a buffer can increase
the throughput of the queuing system [11] and that is why
we could obtain benefits with the Replace policy. However,
the lower sampling rate again would increase the MSE due
to the reduction in the volume of data. As expected, for the
proposed scheme where oversampling occurs, a higher λ/µ is
not related to the buffer size since the algorithm is activated
when the buffer is full and no sample is lost.

For pe=10% the results are shown in the same figure. All the
sensor-AP links are assumed to have the same average pe. The
results show that the proposed algorithm is more susceptible to
the packet erasures because when a scaled sample is lost then
a higher percentage of useful information for estimation is lost
leading to worse MSE. As the ratio λ/µ is increased, this leads
to an even more significant information loss from a single
packet erasure. Even hough a significant MSE reduction with
the proposed scheme still exists, it is nonetheless reduced. On

the other hand, a packet erasure for the Replace system results
in the loss of a single data sample. Despite the above, the
MSE is still lower with the proposed scheme since the scaled
samples that are successfully transmitted contain compressed
information. A practical solution could include an unequal
error protection (UEP) mechanism for the most important
packets. One final comment is related to the minor MSE
reduction that is observed for the proposed scheme and for
larger buffer size. This is because with a larger buffer size,
a slightly smaller number of samples are scaled in a single
packet which means that a packet loss has reduced impact.

VI. CONCLUSIONS

In this paper, we presented a decentralized algorithm for
sequential linear MMSE estimation that is suitable for sensor
systems that have limitations in terms of memory and com-
munication rate resources, but at the same time they want to
communicate their raw data to the cloud. The algorithm selects
the smallest number of data samples that must be summarized
in order to avoid discarding them. At the same time, it ensures
the maximum possible raw data rate to the PC by exploiting to
the fullest the available buffer space. The proposed algorithm
can be extremely useful in sensing applications where offline
data processing is critical but the information is extracted from
sensors with certain resource limitations.
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