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Abstract—The rapid developments of advanced wireless com-
munication technologies and mobile devices are boosting the
uplink multimedia applications. In this paper, a transmit power
aware cross-layer optimization scheme is proposed to achieve a
good trade-off between the transmit power and the perceived
video quality for Long Term Evolution uplink video streaming.
Specifically, the video coding quantization parameter and encoding
mode at the application layer, and the uplink transmit power as
well as modulation and coding scheme at the physical layer are
jointly adjusted in the cross-layer optimization. To further improve
the perceptual video experience for the end user with limited
transmission resources, unequal quality control is performed by
enhancing the video quality of region of interest. Additionally,
the structural similarity is adopted as the video quality mea-
surement metric to make the optimized video properly preserve
the structural information during the cross-layer optimization
process. Experimental results show that significant performance
improvements in terms of the transmit power reduction and the
perceptual video quality are achieved for the proposed transmit
power aware cross-layer optimization scheme.

Index Terms—Cross-layer design, transmit power aware, LTE
uplink, perceptual video quality

I. INTRODUCTION

Wireless mobile devices today like smartphones, tablets, and
laptops are becoming even more powerful computationally.
They are capable of receiving, rendering and also capturing and
transmitting high quality videos. These recent advances have
actually resulted in a reality that wants wireless video to be
everywhere around us. An emerging particular class of uplink
wireless video applications, such as video conferencing, video
surveillance, video sharing for social web platforms, and so on,
involve real-time capturing, encoding and transmission. Even
though the transmission capacity of the Long Term Evolution
(LTE) system has been improved significantly, for the afore-
mentioned uplink applications it is still very challenging to not
only get the optimal but even maintain a satisfactory visual
experience for the end user. Why the above is the case can
be mainly attributed to three reasons.
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Firstly, the transmission resources allocated to the uplink
physical layer are less than those of the downlink physical
layer for both the Frequency Division Duplex (FDD) and
Time Division Duplex (TDD) modes in LTE network. The
throughput provided by the uplink physical layer can usually
not afford the bandwidth demand of the high quality real-time
uplink video streaming. Additionally, the battery-powered User
Equipment (UE) is always energy-limited for long-term uplink
video streaming. Too much transmit power not only results
in the quick energy consumption but also makes people feel
uncomfortable due to the radiation. Lastly, the wireless channel
is usually characterized by the well-known impairments such as
fading, path loss, and shadowing that contribute to bit errors and
eventually lead to packet losses. Even worse, the loss of a single
video packet may result in the drifting decoding distortion (error
propagation) of the subsequent video data which refers to the
previous incorrectly decoded video due to the high dependencies
of the compressed video data.

Taking advantage of low Peak-to-Average Power Ratio (PA-
PR) property, Signal Carrier FDMA (SC-FDMA) rather than
Orthogonal FDMA (OFDMA) is adopted in LTE uplink physical
layer because it allows a lower power consumption for UE.
Meanwhile, to balance the need for maintaining the link quality
corresponding to the required Quality of Service (QoS) against
the need to maximize UE’s battery life, the uplink transmit
Power Control (PC) is performed. The transmit power should
be dynamically adapted to the characteristics of the radio
propagation channel, such as path loss, penetration degradation,
shadowing, fast fading, and so on. Specifically, the Fractional
Power Control (FPC) [1] is adopted by 3GPP for LTE uplink
transmission. The performance evaluation of FPC has been well
investigated in the literatures [2]–[4]. However, these works only
analyze the LTE networking performances including the cell
edge and the overall throughput, but rarely consider the required
user experience quality for the specific application during the
power control process.

Actually, there have been a lot of works focusing on im-
proving the end-to-end video quality for video streaming over
LTE network. The cross-layer design [5]–[8] which jointly
allocates the resources over each communication protocol layer
has been recognized as an efficient way to achieve this purpose.



2

In [5], the system throughput, application quality of service
constraint and scheduling fairness were jointly considered by
the designed cross-layer optimization framework for the video
delivery over LTE. In [6], a cross-layer optimization scheme
which dynamically adjusted the overall throughput to meet the
actual available bandwidth was proposed to improve the video
quality for the m-Health SVC video streaming over LTE uplink.
To further improve the perceptual video experience for the end
user in LTE video streaming, the Quality of Experience (QoE)
was introduced into the cross-layer optimization scheme [7], [8].

Though the previous works can improve the LTE video
streaming quality at some degree, there are still several problems
to be studied for the LTE uplink video streaming. Firstly, the
long-term video data transmission usually costs too much energy
for the battery-powered UE. How to achieve a good trade-off
between the required video experience for the video streaming
and the battery life is rarely investigated in the previous work-
s. Secondly, the previous distortion metrics, including Mean
Squared Error (MSE) and Sum of Squared Error (SSE), have
been shown to be not always suitable to quantify the visual
distortion for both the image and video [9]. Even though the
QoE can properly describe the perceived video quality, it is
very difficult and time-consuming to be modeled.

In this paper, a transmit power aware cross-layer optimization
scheme is proposed to improve the perceptual video quality
for the LTE uplink video streaming. The LTE uplink adaption
including the selection of Modulation and Coding Scheme
(MCS) and the uplink transmit power control, and the video data
adjustment at the application layer including the compressed
video data rate and the encoding mode for each encoding
unit (MacroBlock, MB), are jointly performed by the proposed
cross-layer optimization scheme according to the time-varying
channel states. The contributions of this paper are twofold.
Firstly, the transmit energy consumption is well considered
during the uplink video streaming process. By achieving the
minimal perceptual video distortion under the constraint of
transmit power budget, the proposed cross-layer optimization
can achieve the purpose that balances the need for maintain-
ing the required end-to-end video quality against the need to
maximize the battery life. Secondly, the video quality of RoI is
enhanced by allocating more bits to the RoI area. The adopted
RoI-based distortion metric in which the Structural SIMilarity
(SSIM) [10] is involved can make the transmitted video properly
preserve structural information. Correspondingly, the perceptual
experience of perceived video for the end user is improved.

II. TRANSMIT POWER AWARE CROSS-LAYER OPTIMIZATION

A. The proposed cross-layer optimization framework

For the real-time LTE uplink video streaming, the data trans-
mission from UE to Evolved Node B (eNodeB) has been known
to be the communication bottleneck due to the limited capability
of the mobile UE and the unequal resource assignment between
the uplink and downlink channel. Thus, in this work we mainly
focus on improving the quality of video streaming over LTE
uplink channel from UE to eNodeB. As shown in Fig. 1,
the transmission link adaption and the compressed video data

adjustment are jointly considered to achieve a good trade-off be-
tween the decoding video quality and the uplink transmit power.
The link adaption including the adjustment of MCS mode and
transmit power at the uplink physical layer are performed to
adapt to the time-varying channel states. Accordingly, the video
bit rate is dynamically tuned to match the channel bandwidth by
regulating the video coding quantization parameter. In addition,
the optimal error-resilient encoding mode for each MB is
selected to suppress the video quality degradation caused by
the propagated error.
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Fig. 1. Transmit power aware cross-layer optimization framework for LTE
uplink video streaming.

1) Link adaption: The wireless transmission channel is char-
acterized with time-varying signal degradations and noises. Dif-
ferent MCS modes can result in different levels of transmission
payload and reliability. For the LTE uplink transmission, 15
MCS modes in Table I are configured to perform the link adap-
tion process. In practice, the MCS for specific UE is selected
by the eNodeB with the help of channel sounding, for example
the Sounding Reference Signals (SRS). It has been known that
the available spectrum is divided into some individual Resource
Blocks (RBs) based on the time and frequency domains at the
LTE physical layer. Each RB occupies the duration of one slot
(0.5ms) in the time domain and 12 subcarriers (180kHz) in the
frequency domain. Usually, the MCS mode is determined by
maintaining the Block Error Rate (BLER) of each RB smaller
than 10% for the traditional LTE uplink channel adaption.

It has been verified that the BLER BLER(SINR(m)) for
the RB with the MCS mode m can be predicted as [11]

BLER(SINR(m) =
1

2
erfc(

SINR(m)− b(m)√
2 · c(m)

), (1)

where erfc(·) is the complementary error function, SINR(m)
is the Signal Interference Noise Ratio (SINR) of the channel,
b(m) and c(m) are the “transition center” and “transition
width”, respectively. The values of b(m) and c(m) can be
obtained by fitting (1) to the exact BLER in the specific
communication system. In this work, the AWGN LTE uplink
channel is simulated using the LTE link-level simulator [12].
Fig. 2 shows the BLER-SINR curves for the 15 MCS modes
at the LTE uplink physical layer. The correspondingly modeled
parameters b(m) and c(m) are shown in Table I.

For the LTE uplink video streaming, one video packet usually
occupies several RBs that share the common video packet
synchronization mark. Thus, the loss for any RB belonging to
the video packet may lead to the loss of the whole video packet.
The video Packet Loss Probability (PLP) ρn,i(m) for the slice
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Fig. 2. BLER-SINR curves for all 15 MCS modes (MCS 1 (leftmost) to MCS
15 (rightmost)).

TABLE I
THE CANDIDATE LTE UPLINK MCS MODES

MCS
mode (m)

Modulation
order

Rate (bit-
s/symbol)

b(m) c(m)

1 QPSK 0.1523 -8.074 0.7534
2 QPSK 0.2344 -5.981 0.6018
3 QPSK 0.3770 -3.812 0.4832
4 QPSK 0.6010 -1.823 0.4258
5 QPSK 0.8770 0.4875 0.3163
6 QPSK 1.1758 2.265 0.2826
7 16QAM 1.4766 4.503 0.2082
8 16QAM 1.9141 6.207 0.2134
9 16QAM 2.4063 8.103 0.2211

10 64QAM 2.7305 10.05 0.1941
11 64QAM 3.3223 12.22 0.1865
12 64QAM 3.9023 14.03 0.1833
13 64QAM 4.5234 15.66 0.1907
14 64QAM 5.1152 17.70 0.1751
15 64QAM 5.5547 19.35 0.1676

sn,i carried by the MCS mode m is related to the BLERs for
all the RBs that the video packet contains as

ρn,i(m) = 1−
Bnum∏

k=1

(1−BLERk(SINR(m))), (2)

where Bnum is the RB number that the video packet contains,
and BLERk(SINR(m)) is the BLER for the kth RB in the
video packet corresponding to the slice sn,i. Thus, the MCS
mode should be selected by well considering the effect of BLER
on the video PLP for the wireless video streaming.

At the condition of the same level of transmission signal
degradation and noise, higher transmit power can result in
higher SINR. Thus, the uplink transmit power control serves
as an important role in the mobile communication system
because it can balance the need for sufficient transmit energy
to provide the required SINR against the need to maximize
the battery life. In LTE uplink, the adopted power control
scheme is based on a combination of open-loop and closed-
loop control. Specifically, the FPC is adopted as the open-loop
control scheme, and it can properly adjust the transmit power
to compensate the long-term signal degradations including the
path loss and shadowing. Faster link adaption for short-term
inference and noise is performed with the help of closed-loop
power control.

The overall UE transmit power Pm (measured in dBm) for

the MCS mode m is set as

Pm = min{Pmax, P0 +α ·L+Δm + f(Δi) + 10 · lgM}, (3)

where Pmax is the maximum transmit power; P0+α·L indicates
the open-loop power control, and P0 is a semi-static power level
comprising a nominal power level that is common for all UEs
in the cell and a UE-specific offset, α is a fractional path-
loss compensation factor, L is the estimated downlink path-
loss; Δm + f(Δi) is the dynamic offset for the closed-loop
power control, Δm is the MCS-dependent power offset, f(Δi)
is the UE-specific Transmitter Power Control (TPC) command
with relative or absolute increase depending on f(·) function;
10 · lgM is the bandwidth factor, and M is the number of
allocated RBs for the UE. Knowing the transmit power Pm, the
experienced SINR(m) (measured in dB) is defined as

SINR(m) =Pm − L− IoT − TN

=P0 + 10 · lgM + (α− 1) · L (4)
+Δm + f(Δi)− IoT − TN,

where IoT refers to the Interference over Thermal (IoT), and
TN is the thermal noise. To maintain the required link SINR,
the transmit power should be adaptively regulated according to
the time-varying inferences and noises.

2) Video data adjustment: The throughput of LTE uplink
channel changes with the selected MCS mode, which is de-
termined in terms of the SINR. Thus, the video bit rate should
be accordingly adjusted to fully utilize the bandwidth for LTE
uplink channel. As we all know, the video data compression is
a kind of lossy compression. Different Quantization Parameters
(QPs) can result in the encoded video streams with different bit
rates and qualities. Larger QP can produce the video stream with
larger quantization-induced distortion and lower bit rate than the
video stream that smaller QP produces. In the proposed scheme,
to decrease the quantization-induced encoding distortion and
the effect of transmission delay on the perceived quality of the
real-time video application, the QP for each video packet is
adaptively regulated.

In addition, the compressed video data is always with high
dependencies in both the spacial and temporal domains. The
loss of one video packet may result in incorrectly decoding
of the subsequent video data which refers to the previous
lost video packet. To restrain the effect of error propagation
on the video quality degradation, the insertion of intra-coded
MBs has been shown to be an effective technique since the
decoding of the intra-coded MB does not need any reference
information from the previous frames. However, the increasing
numbers of intra-coded MB may lead to large amounts of
encoding bits and decrease the coding efficiency. In the proposed
cross-layer optimization scheme, the SSIM-based error-resilient
Rate-Distortion Optimization (RDO) [13] is introduced into the
encoding process for each MB to select the optimal encoding
mode which can suppress the effect of error propagation on the
video quality degradation.

B. Cross-layer optimization problem formulation
In the LTE uplink video streaming, each video slice is

packed to be a video packet for transmitting. To proceed with
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a concrete formulation of the cross-layer problem, let us denote
sn,i the ith slice in the nth frame fn. The expected end-to-
end video distortion E{Dn,i} for the slice sn,i is minimized
at the condition that the transmit power Pn,i is not larger than
the transmit power budget P b

n,i. Mathematically, the cross-layer
optimization problem for slice sn,i is modeled as

min{E{Dn,i}} s.t. Pn,i ≤ P
b
n,i. (5)

The transmit power Pn,i, the link MCS mode MCSn,i at the
physical layer, and the encoding quantization parameter QPn,i

at the application layer for the slice sn,i are jointly regulated to
achieve the optimal optimization result. Inherently, to restrain
the effect of error propagation on the video quality degradation,
the encoding mode for each MB inside the slice sn,i is selected
by the SSIM-based error-resilient RDO. Let us denote mbn,i,j
the jth MB in the slice sn,i. For the MB mbn,i,j , the optimal
error-resilient encoding mode EMn,i,j is selected by achieving a
good trade-off between the expected SSIM-based MB decoding
distortion E{DSSIMn,i,j} and the number of encoding bits
Rn,i,j as

min
{EMn,i,j}

{Jn,i,j},Jn,i,j=E{DSSIMn,i,j}+λep
ssim(n,i,j) ·Rn,i,j ,

(6)
where Jn,i,j and λep

ssim(n,i,j) are the Lagrange cost for each
candidate encoding mode and the SSIM-based Lagrange multi-
plier in the error-prone transmission environment, respectively.
The SSIM-based Lagrange multiplier λep

ssim(n,i,j) is used to
balance the expected decoding distortion E{DSSIMn,i,j} and
the number of encoded bits Rn,i,j for the MB mbn,i,j , and it
is obtained in terms of the Lagrange parameter derivation [13].

III. THE SOLUTION: LAGRANGE RELAXATION METHOD

For the slice sn,i, the expected decoding distortion E{Dn,i}
is minimized under the constraint of the transmit power budget
as (5). In practice, the constraint optimization problem defined
in (5) can be solved via the Lagrangian relaxation as

min{Jn,i}, Jn,i = E{Dn,i}+ λn,i · Pn,i, (7)

where Jn,i is the Lagrange cost, λn,i is the Lagrange multiplier
to balance the transmit power Pn,i and expected end-to-end
video distortion E{Dn,i}. In the following, the expected end-
to-end video distortion E{Dn,i} estimation and the dynamic
programming solution for (7) are presented.

A. End-to-end distortion estimation

The SSIM-based distortion (DSSIM) DSSIM(x, y) for two
MBs x and y is defined as

DSSIM(x,y) = 1−SSIM(x,y)

= 1− (2μxμy + C1)(2σxy + C2)

(μ2
x + μ2

y + C1)(σ2
x + σ2

y + C2)
, (8)

where SSIM(x, y) is the SSIM index between the MBs x and
y, μx, σx and σxy are the mean, standard deviation and cross
correlation between the two image MBs, respectively. C1 and

C2 are used to ensure stability when the means and variances
are close to zero [10].

For the wireless video streaming, the decoding distortion is
induced not only by the irreversible quantization, but also by
the packet loss and the error propagation. When the slice sn,i
is discarded in the transmission process, all the MBs in sn,i
are decoded using the error concealment strategy. For the MB
mbn,i,j in the slice sn,i, denote bn,i,j and be c

n,i,j the original MB
pixels and the concealed MB pixels, respectively. If the slice sn,i
is lost in the transmission process, the SSIM-based decoding
distortion for the MB mbn,i,j is 1−SSIM(bn,i,j , b

e c
n,i,j). When

the slice sn,i is correctly received, the MBs that belong to the
slice sn,i are decoded with the intra or inter decoding tools.
Denote bn l

n,i,j the decoded MB pixels without packet loss for
the MB mbn,i,j . At this condition, the SSIM-based decoding
distortion for the MB mbn,i,j is 1−SSIM(bn,i,j , b

n l
n,i,j). Thus,

the expected SSIM-based decoding distortion E{DSSIMn,i,j}
for the MB mbn,i,j can be correspondingly calculated as

E{DSSIMn,i,j} = ρn,i · (1− SSIM(bn,i,j , b
e c
n,i,j))

+ (1− ρn,i) · (1− SSIM(bn,i,j , b
n l
n,i,j))

= 1− ρn,i · SSIM(bn,i,j , b
e c
n,i,j)

− (1− ρn,i) · SSIM(bn,i,j , b
n l
n,i,j), (9)

where ρn,i is the PLP for the video packet corresponding to the
slice sn,i, and it can be estimated by (2).

After getting the expected decoding distortion for each MB
that belongs to the slice sn,i, a RoI-based decoding distortion
expectation E{Dn,i} RoI is used to estimate the decoding
distortion for the slice sn,i as

E{Dn,i} RoI =
1

Nnon
n,i

· αnon

∑

mbn,i,j∈Anon

E{DSSIMn,i,j}

+
1

Nr
n,i

· αr

∑

mbn,i,j∈Ar

E{DSSIMn,i,j}, (10)

where Nnon
n,i and Nr

n,i are the non-RoI MB number and the
RoI MB number that slice sn,i contains, Anon and Ar indicate
the non-RoI and RoI MB sets respectively, αnon and αr are
the corresponding weights with αnon + αr = 1 [14]. In this
work, the interactive RoI decision method which enables the
end user to select the RoI while watching the received video
is adopted [15]. Furthermore, to enhance the video quality of
RoI, the quantization parameters for the MBs belonging to the
RoI are adjusted to be smaller than those of the other MBs.
When performing the RoI-based cross-layer optimization, the
quantization parameter QPn,i for the slice sn,i refers to the
quantization parameter pairs {QPRoI

n,i , QPRoI
n,i + QPscale}, in

which QPRoI
n,i and QPscale indicate the quantization parameter

for the MB belonging to the RoI and the quantization parameter
difference between the MBs belonging to RoI and the other
MBs.

B. Dynamic programming solution for the formulated cross-
layer problem

For the slice sn,i, the proposed cross-layer
optimization is performed by selecting the optimal



5

parameters from the possible values of the parameter
set {Pn,i,MCSn,i, QPn,i, {EMn,i,j |mbn,i,j ∈ sn,i}}.
As discussed in Section II.B, the encoding modes
{EMn,i,j |mbn,i,j ∈ sn,i} for the MBs inside the slice
sn,i are selected by (6). When performing the cross-layer
optimization for the slice sn,i as (7), the optimal Lagrange
multiplier λn,i has to be determined. It has been shown [16]
that if there is a λ∗

n,i such that

{P ∗
n,i,MCS∗

n,i, QP ∗
n,i} = arg min Jn,i(Pn,i,MCSn,i, QPn,i)

(11)
makes Pn,i = P b

n,i, then {P ∗
n,i,MCS∗

n,i, QP ∗
n,i} is also an

optimal parameter set for (7). It is known that the transmit
power-distortion curve is non-increasing for the transmitted
video packet. λ∗

n,i can be obtained by the bisection algorithm as
shown in Algorithm 1. Then, given the transmit power budget,
the optimal cross-layer optimization can be performed as (6)
and (7).

Algorithm 1 Bisection searching algorithm for λ∗
n,i

1: Choose two values of λn,i, λl
n,i and λu

n,i with λl
n,i ≤ λu

n,i

which satisfy P ∗
n,i(λ

u
n,i) ≤ P b

n,i ≤ P ∗
n,i(λ

l
n,i)

2: Set λnext
n,i ← λl

n,i+λu
n,i

2
3: Perform the optimization as (7) with λnext

n,i

4: if P ∗
n,i(λ

next
n,i ) = P ∗

n,i(λ
u
n,i) then

5: λ∗
n,i = λu

n,i, algorithm stop
6: else if P ∗

n,i(λ
next
n,i ) > P b

n,i then
7: λl

n,i ← λnext
n,i , go to step 2

8: else
9: λu

n,i ← λnext
n,i , go to step 2

10: end if

IV. EXPERIMENTAL RESULTS

With the help of H.264/AVC reference software JM16.1 and
the LTE uplink channel model [12], the proposed cross-layer
optimized LTE uplink video streaming is simulated. The main
experimental parameters are shown in Table II.

TABLE II
EXPERIMENTAL PARAMETERS

P0 (-82, -78, -74, -70, -66)dBm

Distance attenuation L = 35.3 + 37.6 · log(d) dB
d: distance in meter

UE to eNodeB distance d 200m
Fractional power factor α 0.7

Penetration loss 20dB
Thermal noise per RB -116dBm

Maximum transmit power 24dBm
IoT Rayleigh distribution

Candidate MCS modes Table I
Transmission rate 300k symbol/s

A. Transmit power efficiency

The RoI quality enhancement is not adopted in this evalua-
tion, and we set αnon and αr to equally be 0.5. The Cross-Layer
Optimization scheme without Transmit Power Awareness (CLO-
w/o-TPA) which adopts the constant transmit power (open-
loop power control) is used as the anchor scheme. At the

condition of the average IoT IoT = −27dBm, the Distortion-
Transmit Power (DSSIM-TP) curves of the proposed Transmit
Power Aware Cross-Layer Optimization (TPA-CLO) scheme
and the CLO-w/o-TPA scheme are presented in Fig. 3. It
can be seen from Fig. 3 that the proposed TPA-CLO scheme
can significantly decrease the decoding distortion at the same
transmit power cost compared to the CLO-w/o-TPA scheme.
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Fig. 3. The DSSIM-TP curves of the TPA-CLO scheme and the CLO-w/o-TPA
scheme for the sequences (a) Soccer (CIF) and (b) Parkrun (720P).

To get the accurate amplitude of the transmit power saving
ratio for the proposed scheme over the CLO-w/o-TPA scheme,
the transmit power saving ratios for nine video sequences at
different channel conditions are summarized in Table III. At
the conditions of IoT = −38dBm, IoT = −27dBm and
IoT = −20dBm, the proposed scheme can achieve 24.28%,
22.64%, and 21.18% reductions in transmit power on average,
respectively. It can be seen that the proposed TPA-CLO scheme
can achieve significant transmit power reduction compared to
the CLO-w/o-TPA scheme. This is because that the transmit
power can be dynamically adjusted to meet the SINR demand
for the required video quality by compensating the signal power
at unsatisfactory channel condition and decreasing the transmit
power at good channel condition.

TABLE III
TRANSMIT POWER SAVING RATIO

Sequences
ΔP (%)

IoT =
−38dBm

IoT =
−27dBm

IoT =
−20dBm

Bus(CIF) -21.44 -19.79 -17.97
Football(CIF) -19.53 -17.36 -16.55
Foreman(CIF) -17.32 -16.54 -15.75
Stefan(CIF) -23.08 -21.64 -19.65
Paris(CIF) -24.33 -21.75 -20.09

Soccer(CIF) -18.43 -16.78 -15.69
Parkrun(720P) -33.49 -32.28 -30.26
Mobacal(720P) -29.43 -27.98 -26.34
Shield(720P) -31.47 -29.68 -28.22

AVG -24.28 -22.64 -21.18

B. Video experience quality improvement

In this subsection, the video experience quality improvement
due to the RoI quality enhancement is evaluated. αnon and αr

are set to 0.1 and 0.9, respectively. The quantization parameter
difference QPscale between the MBs belonging to the RoI
and the other MBs is set to 5. As an example, the region
that the tennis player moves is recognized as the RoI for the
sequence Stefan(CIF). At the condition of P0 = −78dBm
and IoT = −27dBm, one sample picture for the original
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sequence and the decoded sequences for the TPA-CLO without
RoI enhancement (TPA-CLO-w/o-RoI) scheme and the TPA-
CLO with RoI quality enhancement (TPA-CLO-w-RoI) scheme
are shown in Fig. 4 (a), (b), and (c), respectively.

Subjectively, compared to the TPA-CLO-w/o-RoI scheme, we
can find that the TPA-CLO-w-RoI scheme can achieve better
visual experience for the user who is interested in the tennis
player, especially for the face of the player and the tennis packet.
As shown in the caption of Fig. 4, the average SSIM-based
distortions DSSIM (αnon = αr = 0.5) for the decoded frames
of both the TPA-CLO-w/o-RoI scheme and TPA-CLO-w-RoI
are similar. However, the TPA-CLO-w-RoI scheme can achieve
significant less RoI-based SSIM distortion DSSIM RoI (αnon =
0.1, αr = 0.9) than the TPA-CLO-w/o-RoI scheme. It can be
seen that the adopted RoI-based distortion metric can properly
measure the perceptual video quality degradation for RoI quality
enhancement optimization.

� � � � � � � � �

���� � � � � � � � � � � � � � � � ���� � � � � � � � � � � � � � � ����

Fig. 4. The 3rd frame for (a) original sequence, the decoded se-
quences optimized by (b) TPA-CLO-w/o-RoI scheme, DSSIM = 0.0737,
DSSIM RoI = 0.0744 , and (c) TPA-CLO-w-RoI scheme, DSSIM =
0.0782, DSSIM RoI = 0.0491.

In addition, the Degradation Category Rating (DCR) [17] is
used as the evaluation method to verify the overall perceptual
quality improvement due to the RoI-based unequal quality
control. The opinion score is continuously mapped to the value
of 0 (bad perceptual quality) to 5 (excellent perceptual quality),
and twenty viewers participate in the subjective evaluation
process. As shown in Fig. 5, the Mean Opinion Score (MOS)
values for three decoded sequences at different channel con-
ditions are shown. It can be seen from Fig. 5 that the video
streams optimized by the proposed TPA-CLO-w-RoI scheme
can achieve higher MOS values than those of the TPA-CLO-
w/o-RoI scheme.
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Fig. 5. The MOS values for different sequences at the conditions of (a) IoT =
−27dBm and (b) IoT = −32dBm.

V. CONCLUSIONS

In this paper, a transmit power aware cross-layer optimization
scheme is proposed to optimize the perceptual quality of LTE
uplink video streaming. The video coding quantization param-
eter and encoding mode for each MB at the application layer,
and the transmit power and MCS mode at the physical layer
are jointly adjusted to achieve the optimal trade-off between
the acquired video quality and the transmit power. In addition,
the video quality for RoI is enhanced at the limited transmit
resource condition. Extensive experimental results show that the
proposed scheme can achieve about 23% transmit power cost
reduction at the condition of the same perceived video quality
compared to the traditional CLO-w/o-TPA scheme, and that
significant perceptual quality improvement due to RoI quality
enhancement for LTE uplink video streaming is achieved.
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