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Abstract—In this paper we present an optimization framework
that formalizes the inherent trade-off between the user perceived
quality of wireless video, and the energy consumption cost of
the network. The former is formulated in the context of the
emerging heterogeneous cellular networks (HCN) based on LTE.
We also consider users that employ dynamic adaptive streaming
over HTTP (DASH). Our framework quantifies this trade-off
carefully, by delving into the details of DASH, the LTE network,
and the HCN architecture. The result is a complex problem that
is solved in two levels. The master problem is responsible for
decisions regarding the the user association and the average
power they are allocated. The solution of this problem also entails
a decision about the encoding rate of the DASH video segments.
The previous decision is used in order to perform resource
allocation at a finer level by considering the technical details
of LTE that allocates resource blocks and power simultaneously.
Numerical results are presented with realistic parameters for the
LTE network and the video traffic.

Index Terms—Heterogeneous cellular networks, video delivery,
video quality adaptation, resource allocation, network optimiza-
tion

I. INTRODUCTION

One of the most remarkable aspects of the mobile data
tsunami that we are witnessing nowadays is that it is driven
by an increasing volume of user demand for multiply-encoded
and pre-stored video files [1], [2]. Mobile network operators
(MNOs) aim to satisfy these requests with timely delivery of
video content of high encoding quality, so as to increase the
satisfaction of the users and hence their expected revenues.
Nevertheless, this is a very challenging task that must be
carefully addressed. On the one hand, it involves sophisticated
network decisions as different users need to be served with
different data rates due to their varying channel conditions.
On the other hand, delivering high quality video files increases
the load of the network and hence induces an often unbearable
servicing cost for the MNOs.

One of the techniques that are currently gaining increasing
popularity for addressing the first issue are the adaptive video
streaming protocols. A prominent example is the dynamic
adaptive streaming over HTTP (DASH) technique [3]. The
main idea of DASH is that a video is stored as a sequence of
short duration video segments with a typical time duration of 2
to 10 seconds. Each segment is available at different quality in

Fig. 1. An LTE-based HCN with a hierarchical backhaul topology. There are
different types of base stations such as macrocellular (MBS) or pico-cell BSs
(PBS). The aggregation points are switches that transfer the traffic of the BS
to the core network .

terms of SNR encoding, spatial resolution, or even frame rate1.
Based on the actual throughput that each user achieved during
the delivery of the current segment, the protocol determines
the quality (and hence the size) of the next segment to be
delivered. The goal is to maximize the delivered video bit-
rate while taking into account the actual network performance
that each user experiences in practice.

However, it has been shown that allowing the users’ devices
to be fully responsible for requesting video segments (a pull-
based content delivery system) results in inefficient usage of
network resources, unfair allocation of network bandwidth
(especially among flows sharing common resources), and
even unnecessary variations of the bit rate [4], [5], [6], [7].
Therefore, it is imperative to employ a mechanism that will
involve centralized video delivery decisions at the network
side. Moreover, these decisions need to take into account the
operating expenditures (OPEX) of the MNO. The latter are
largely driven by the energy that is consumed by the active
network components in the radio access network (RAN) such
as the cellular base stations [8], [9], [10]. Clearly, from the
perspective of the MNO, it would be ideal to minimize the
energy costs while maximizing the user satisfaction by deliv-

1For example, in systems that use scalable video encoding (SVC), the
quality of the delivered segment may refer to any combination of these
different quality metrics.



ering high quality videos. However, these objectives are often
conflicting. Additionally, they involve a variety of different
network decisions such as the assignment of the users to the
different base stations, and the allocation of the spectrum and
transmission power of each base station to the users that it
serves.

Devising such a servicing policy is a more intricate task
nowadays where MNOs deploy small cells (micro-/pico-
/femto-cells) that overlay the typical macrocellular base sta-
tions in order to increase their networks’ capacity [11]. In
these emerging heterogeneous cellular networks (HCNs), the
users are often in range with multiple base stations (e.g., with
a macro-BS and a pico-BS), possibly having different energy
consumption profiles. Moreover, the smaller base stations are
typically connected to the core network with long-range and
low-capacity backhaul links. These links impose additional
hard capacity constraints on the amount of traffic the respective
base stations can serve, and at the same time consume an
important amount of energy [12], [13]. Our goal in this work is
to provide an optimization framework that takes video quality
and servicing decisions for the mobile users served by an
HCN, so as to improve its performance and reduce the overall
energy costs.

A. Related Work and Contributions

The problems induced by DASH in cellular networks were
recently studied in [14], which moreover proposed a rate
allocation framework that improves the user-perceived network
performance. References [15] and [16] followed a similar
methodology. However, in these works (and in references
therein) the authors do not consider the reduction of the
energy consumption or any other type of operating cost
of the cellular networks. On the contrary, [17] proposed
a sophisticated mechanism for centralized (network-driven)
decisions regarding the video quality, the transmission power
and the servicing airtime for each user. The goal is to increase
user satisfaction and reduce energy consumption. However,
this analysis applies to typical cellular networks and does
not take into consideration the implications of the HCNs
architecture, such as the energy consumption costs and the
capacity constraints of the backhaul links [18].

There is currently an increasing research interest for re-
source allocation problems in HCNs, though not in the context
of the energy consumption incurred by the serviced requests.
For example, [19] studies load balancing in HCNs, and [20],
[21] propose joint user association and resource allocation
mechanisms. More often than not, the goal is to maximize
the aggregate data rate of the served users [22]. Regarding
the works that study resource allocation for video delivery
in HCNs the works are even more limited. A recent work
reported in [23], studies rate allocation for DASH in HCNs
that employ time-domain resource partitioning (TDRP), which
is the dominant mechanism for minimizing interference in a
HCN. This work optimizes TDRP in real-life HCNs in such
a way that video quality is maximized. Despite their detailed
models and rigorous analytical approaches, these works do not

consider the important aspect of energy cost minimization. On
the contrary, here we adopt as the main cost metric the total
energy consumption that is induced in a typical HCN. This
includes the energy consumption of the base stations, and the
backhaul link of each base station.

In order to be able to quantify and control this metric, we
need to consider a large set of network decisions including
the users association, the spectrum, or, resource block (RB),
allocation of each base station, and the power transmission in
each RB for each user. Finding the optimal decisions is not
only computationally challenging (typically involves NP-hard
problems), but it also requires the solution of coupled problems
in different time scales, often under limited information. For
example, base station re-selection (and hence user association)
in an HCN requires several seconds, while the RB and power
allocation can be realized in milliseconds or whenever there
is updated channel state information [24]. Additionally, the
assignment of users to base stations has to be made using
estimated values for their future expected channel.

To cope with these issues and be able to improve the
network operation, we introduce a two-stage optimization
framework. In the first stage, the optimization problem deter-
mines jointly the base station that each user will be associated
with, the qualities of the video segments that will be delivered
to each user2, i.e., for a period of 2-10 seconds, and the total
energy (for the base stations and the backhaul links) that will
be consumed during this period. These decisions are taken at
the network-wide level (e.g., for a set of BSs) and leverage
average and expected values for the network and user-related
parameters, the exact value of which is unknown at the time
of their derivation, i.e., in the beginning of that period.

Accordingly in the second stage, each base station deter-
mines the resource block (spectrum) and power assignment
to each user that is assigned to it, for each time frame
that typically has a duration of tens of milliseconds. These
decisions are taken by solving a proper scheduling problem
and are updated in each frame3, based on the feedback about
the channel conditions of each user. Clearly, the scheduling
decisions across the different frames are coupled with each
other as they need to satisfy the respective decisions about the
delivered video data (and hence the video quality), and the
energy budget that were devised in the first stage.

The power and RB assignment problem is a well known
NP-hard problem and several algorithms have been proposed
for its heuristic or approximate solution [25]. Any of these
well-known methods can be employed for our second-stage
optimization problem in each frame, if modified properly so
as to satisfy across the entire time period the data delivery and
energy consumption overall constraints. On the other hand,

2Although this is not the typical operation of DASH, we consider a similar
model where the file is divided in segments, and each segment is encoded in
different qualities. Yet, the decision of the quality is made by the network.

3The framework is directly applicable to scenarios where users transmit
their channel quality indicators every 2 or more frames. This time interval is
a system-specific design choice, and does not affect our analysis.



by relaxing the discreteness of the delivered video qualities4

the first-stage (long-period) decision problem can be solved
using standard convex optimization techniques. For large set
of available video qualities (e.g., as in the case of scalable
video coding), this quantization has a relatively small impact.

To this end, the main technical contributions of this work
can be summarized as follows:
• We introduce a comprehensive framework for video

streaming with DASH in HCNs. Contrary to related work,
e.g., [19], [14], [22], [23] this framework employs a de-
tailed power cost model for the entire HCN (including the
backhaul infrastructure), supports DASH video quality
adaptation, and balances the quality of the delivered video
(users’ satisfaction) and the operator’s cost.

• Resource allocation that corresponds to the actual opera-
tion of LTE-A (RB and power). Contrary to related work,
[20], [14], [21], [23] the resource allocation problem
affected by power consumption constraints set before, in
a higher level of the problem.

• We propose a relaxed version of the scheduling opti-
mization problem that allows the very fast derivation
of the power and RB assignment solution which, albeit
suboptimal, can be employed for real systems that have
stringent time constraints.

• A detailed performance evaluation investigation is con-
ducted. We found that a MNO can either decrease total
energy consumption or provide the users with increased
data rates resulting in improved video quality, by care-
fully adjusting the parameters of the proposed framework,
or by adding more small cells to the topology.

The rest of this paper is organized as follows. Section
II describes the basic features of a HCN, gives an insight
of LTE’s downlink resource grid and backhauling techniques
to deliver video files. In Section III we introduce the two-
stage optimization framework, discuss the complexity of the
respective problems, and propose a solution approach. Section
IV provides the performance evaluation of the framework,
and Section V presents the conclusions and discusses open
directions for future work.

II. BACKGROUND AND SYSTEM MODEL

Radio Access Network Model. We consider a macrocell
of an HCN, that is overlaid by a set of smaller base stations
(SBSs) such as pico-cell BSs, and femto-cell BSs [11]. We
denote with I the set of I = |I| BSs (including the macro-
cellular BS, MBS) that can be overlapping. There exists a set
N of N = |N | users within the macrocell with video content
requests. We denote with Ni the set of the Ni users that are
associated with each BS i ∈ I. Also, we denote with In ⊆ I
the subset of BSs that are in range with each user n ∈ N , and
hence eligible to serve his request. We study the system for
a time period of T = 10 seconds. Clearly, the different base

4For example, in the case of SVC, the combinations of the different (spatial,
SNR, temporal) characteristics lead to a large set of qualities, hence reducing
this quantization error.
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Fig. 2. LTE resource grid. Each small rectangle represents a Resource Element
(RE). Each frame comprises 10 subframes, each subframe 2 slots and each
slot 7 REs. PDSCH REs are used for users’ data transmissions, while PDCCH
REs constitute the control channel. RBs (1 slot in time and 12 subcarriers in
frequency) are allocated to different UEs.

stations induce different servicing cost to the network, as they
have different energy consumption profiles [8], and involve
different backhaul links. Also, the BSs have different servicing
capacity as they are constraint by their backhaul links.

Backhaul Network. Namely, each BS is connected to
the cellular evolved packet core (EPC) through the backhaul
network. For the MBS this is a high-capacity direct link.
However, the backhaul network for the smaller base stations
typically involves more hops. Here, we adopt a tree topology
for the backhaul network [12], as illustrated in Fig. 1. Namely,
a switch is placed as the first hop of the backhaul path
that immediately connects the MBS to the core network and
forwards traffic destined to the small-cell users to a second
switch that forwards it to the appropriate SBS. Each BS is
connected to exactly one interface of the switch, so the rate
that each BS can provide to the associated UEs is limited by
the rate of that interface. If more SBSs than the total number of
interfaces are deployed, a second switch is required to support
the backhaul traffic. However, in this work we don’t consider
the scenario of dynamically increasing or decreasing the
number of switches in the backhaul network. Following [12]
and references therein, we assume that the basic parameters
characterizing the backhaul network are the power consumed
by one downlink interface of the aggregation switch denoted
as Pdl > 0 (Watts), the number of downlink interfaces of
the aggregation switch maxdl ∈ Z+, the maximum power
consumption of the switch Pmax,s > 0 (Watts), the maximum
amount of traffic the switch can handle Cmax > 0 (bps), and
the data rate of a single downlink interface Cinterface > 0
(bps). These parameters are considered constant and known.

User Model. Each user requests a video file that has to
be delivered through the network that we described in the
previous paragraphs. We assume that DASH is used for video
delivery. Hence, for each user n ∈ N , the network has to
deliver a certain amount of data during a 10 second period
that belong to a single DASH segment. The size of this
segment obviously depends on the quality of the delivered



video description. The size of each one of the video quality
descriptions for the video of user n is the set:

Qn = {Q1n, .., Qln, ..., } . (1)

In the general case, the quality of the delivered video is
typically characterized as a convex function of the rate. In our
optimization we define this quality as γn logDn, where Dn

is the average delivered rate to the user. The parameter γn for
user n can be seen as the quality gradient of the requested
video content, i.e., its quality versus the size in bits [26].
This formulation will allow our optimization to calculate the
required Dn, that must be bounded in practice by (1).

LTE-A PHY. In LTE a frame has a duration of 10ms and
consists of 10 subframes (each consisting of 2 slots) as shown
in Fig. 2. Consequently, the total number of available frames
for the 10 second period is T = 1000 subframes. Each BS
has a certain set M of M Resource Blocks (RB) that can
allocate to each user during each frame5. We assume that
each BS has access to the same number of RBs (i.e., we
assume equal time/frequency resources are available across
the different BSs) [24]. For each one of these RBs the BS
can determine the transmission power [27]. We assume that
RB allocation and power control decisions are taken in the
beginning of a frame. The smallest unit of resource allocation
in LTE is a RB that comprises 1 slot in the time domain
and 12 OFDM sub-carriers in the frequency domain, while
its total bandwidth is usually 180 KHz [28]. Depending on
the available frequency band of the system (1.4 to 20 MHz),
one can easily calculate the total number of RBs available for
the duration of one LTE frame. For example, in a 2.5 MHz
system, there exist 12 RBs in 1 slot and 240 in 1 frame. This
RB organization is also illustrated in Fig. 2.

Channel Model. The BSs have a single omni-directional
antenna that can be used in half-duplex mode for transmission
and reception. We denote the average channel coefficient from
the i-th BS to the n-th user as hni. We assume that the
fading coefficients are independent and hni ∼ CN (0, 1),
i.e. they are complex Gaussian random variables with zero
mean and unit variance. All the channels are considered to
be block-fading Rayleigh. The channel coefficients are quasi-
stationary, that is they remain constant for the coherence period
of the channel that is equal to the transmission length of the
complete subframe (Fig. 2). We also consider the path loss and
shadowing effects according to the LTE channel model [27].
Additive white Gaussian noise (AWGN) is assumed at every
receiver with variance σ2. We assume that users provide
channel quality feedback (CQI) to the base stations once every
frame [27].

III. NETWORK DECISIONS AND OPTIMIZATION
FRAMEWORK

As it was explained in Section I, the goal of the operator
is to maximize the video quality of the files that are delivered

5Without loss of generality, we assume here that each BS has at its disposal
the same amount of spectrum.

to the users, and, at the same time, minimize the respective
servicing cost. These two objectives are often conflicting since
increasing the transmission power or the spectrum on the one
hand increases the network performance (in terms of video
delivery) but may also increase significantly the respective
operating expenditures. Clearly, it is important to provide a
method for assessing this trade off in a systematic fashion.

A. User Association and Video Quality Selection

First we define the master optimization problem that is
solved in the first stage. Its solution yields the decisions for
the association of each UE to a BS, and the average allocated
power from a BS to each UE for the time period T (10
seconds). The last decision also determines the average rate
for each user, and therefore the delivered video quality. Hence,
the master problem performs the User Association and Video
Quality Selection (UAVQS).

The variables and constants used in the problem formulation
are summarized in Table I. Specifically, the network deter-
mines for each user the associated BS and the transmission
power that will be used to satisfy his request. We denote with
yni ∈ {0, 1} the binary decision of whether user n will be
associated with BS i ∈ In, or not. The respective association
and power allocation matrices are:

y =
(
yni : n ∈ Ni, i ∈ In

)
, (2)

and,
P =

(
Pni ≥ 0 : n ∈ Ni, i ∈ In

)
. (3)

The average rate for user n during the time period T is:

Dn = bM
Ni
cWb log(1 +

∑
i hniPni
σ2

), ∀n ∈ N (4)

In the above bMNi c assumes equal allocation of the M RBs
to the Ni =

∑
n∈Ni yni users associated to BS i. Clearly,

changing the number of RBs impacts the rate. We will discuss
in detail this later. Pni is the average power allocated to user
n that is associated to BS i, during the interval T . Inside the
logarithm we have the average SNR in order to obtain the
ergodic Shannon channel capacity in bps.

Also, the total power allocated to the associated users of a
BS i is:

P txi = bM
Ni
c
∑
n∈Ni

Pni, ∀i ∈ In . (5)

This quantity is very important as it determines the energy
consumption cost that each BS induces to the operator [8].
Besides, every BS i ∈ I, based on its type, has a certain max-
imum transmission power Pmax,i [24] that must be respected
by the power allocation decisions.

Similarly, there are constraints for the total backhaul power
consumption. Following the analysis in [13], we assume that
the power consumption consists of two components weighted
by a variable c. The first one corresponds to the standard
operating cost of the switch, while the second is proportional



Parameter Description
Dn The average data rate enjoyed by user n
γn Video quality gradient of user n
hni Average value of the channel between user n and

base station i
P tx
i Radio power budget of base station i

P bh
i The power consumed at the backhaul switch due to

the rate provided to base station i to serve the users
associated to it.

I Set of base stations, macro and picos
I Total number of base stations, i.e. |I|

Pmax,i The maximum transmission power of BS i
Wb Bandwidth of a Resource Block
N Set of users in the cell
Ni Set of users associated to BS i
M The number of resource blocks available to the BS

for allocation
yni Takes the value of 1 if user n is associated to BS i

and 0 otherwise
Pni The average power of each allocated RB to user n

by base station i
TABLE I

MAIN OPTIMIZATION VARIABLES AND SYSTEM PARAMETERS.

to the rate provided to each BS’s associated users. This
analysis leads to the total power cost of the backhaul:

P bh = d I − 1

maxdl
+ 1ecPmax,s +

∑
i

P bhi (6)

The first term in the above is fixed and does not affect the
optimization once a switch has been deployed. At least one
switch is required to support the MBS, and d I−1

maxdl
e for the

remaining SBSs. Note that if the number of SBSs exceeds the
number of available interfaces of a switch, one more has to be
deployed. Hence, in the optimization only the second part is
can be controlled since it depends on the traffic load. In [13]
this is defined as:

P bhi = (1− c)
∑
n∈Ni Dn

Cmax
Pmax,s + Pdl, ∀i ∈ I (7)

Formally, the optimization problem that the operator needs
to solve every T seconds so as to devise the user association
and video quality decisions (Problem UAVQS), is:

max
y,P

a

N∑
n=1

γn logDn − b(
I∑
i=1

P txi + P bhi ) (8)

s.t., (4), (5), (7) (9)
P txi ≤ Pmax,i , i ∈ I (10)
I∑
i=1

yni = 1, ∀n ∈ N (11)∑
n∈Ni

Dn ≤ Cinterface, ∀i ∈ I (12)

Dn · T ≤ maxQ (13)
Pni ≤ yniPmax,i, ∀n ∈ N , i ∈ In (14)
Pni ≥ 0, yni ∈ {0, 1},∀i ∈ I, n ∈ N . (15)

Constraint set (10) ensures that the total transmission power
of each BS i ∈ I will not exceed its maximum transmission

RB 1

RB M

Sub-frame 0 Sub-frame 1

…

frame t, 10 sub-frames(10 msec), Decisions: p(t),x(t)

Sub-frame 0 Sub-frame 1

1000 frames, Decisions: P,y

Fig. 3. Time-scale separation of the UAVQS (master problem), and LTERA
problem. The former is solved in the beginning of each time period T while
the latter in each frame t.

level. Also, the set of (11) ensures that each user will only
be assigned to one BS exactly, i.e., there will not be users
served by more than one BS, or users not been served by any
BS. Eq. (12) imposes the backhaul capacity constraint for al
the interfaces of the switches6. Also, it is clear that each user
should not receive more service rate than it is necessary for
the maximum available video quality level. This constraint
is imposed by (13). Finally, (14) ensures that power is not
allocated to a user that is not associated to a specific BS, and
in any case does not exceed the maximum possible value.

The objective function in (8) is a weighted sum of the
UE utilities plus the overall network power consumption.
Note that both video quality and power can be translated
to a financial cost expressed in $. Hence, in the above the
balancing parameters a and b allow the MNO to precisely do
that by quantifying the relative importance of the two parts of
the objective. These parameters are expressed in $/byte and
$/Watt, respectively.

The solution to (8) gives us the association decisions for
the users, the power budget for each BS during the 10-second
period (the vector P ), as well as the average data rate Dn of
each user and the DASH video quality. This solution applies
for a duration of 10 seconds and is illustrated in Fig. 3.

B. LTE Resource Allocation Problem

Now, we address the LTE resource allocation problem
(LTERA) that is solved by each BS in every time frame
t = 1, 2, . . . , T that has duration 10 milliseconds. The par-
ticular resources that are allocated to each user are the RBs
and the power for each RB. The average power budget for each
BS has already been decided by solving the previous problem.
Now resources must be allocated to UEs so as to deliver the
required data, while respecting the aforementioned solution.

The main motivation behind the formulation we will present
next, is the observation that LTE provide CQI feedback from
UEs for every frame (7-8 milliseconds). This information is
critical since it allows the resource allocation algorithm to use
this CQI for allocating optimally the available power and the
discrete RBs. Hence, this problem is solved for every LTE
frame. Also consistently with the concept of opportunistic

6We assume here that the backhaul links are dimensioned based on the
capacity of the respective interfaces.



communication when multiple users experience different chan-
nel fades, the optimal course of action is to allocate more
resources (power) to the user with the best channel. Another
aspect of this formulation, is that because the solution provided
by the master problem only limits the average power per BS
and the average rate per user, we lift the assumption of an
equal RB allocation to each user.

Let us now formally define the problem. The LTE resource
allocation decisions of the base station for each frame t are
(we drop the i notation from the decision vectors): (i) the RB
assignment vector:

x(t) =
(
xmn(t) ∈ {0, 1} : n ∈ Ni, m ∈M, t = 1, . . . , T ) ,

(16)
where xmn(t) ∈ {0, 1} denotes whether the RB m is assigned
to user n (xmn(t) = 1) or not, during frame t, and, (ii) the
RB power allocation vector:

p =
(
pmn(t) ≥ 0 : n ∈ Ni,m ∈M, t = 1, . . . , T

)
, (17)

where pmn(t) denotes the transmission power for RB m when
allocated to user n, in frame t.

Regarding the total transmission power consumed by BS i,
it is the sum of the power that it allocates to its RBs and it
must be less or equal to the power budget limit set by the
solution of the master problem:∑

m∈M

∑
n∈Ni

pmn(t) ≤ P txi (18)

Additionally, the power pmn(t) is constrained by the maxi-
mum transmission power of the BS, and is applicable only if
the respective RB is indeed allocated to user n, i.e.,

0 ≤ pmn ≤ xmn(t)Pmax,i (19)

The above decisions yield a data rate rn(t) for user n ∈ N in
frame t, that can be written as:

rn(t) =
∑
m∈M

Wb log(1 +
hnpmn(t)

σ2
) (20)

In the above equation, we drop the index i from hni since
the association of the user to BS is known from the UAVQS
problem. Similarly with before, the served rate for all the users
of a base station cannot exceed the respective capacity of its
backhaul link: ∑

n∈Ni

rn(t) ≤ Cinterface, ∀i ∈ I (21)

In the above note that we assume that each backhaul link has
the same capacity. Clearly this does not have to be the case
in general. Also each RB for each BS is allocated only to one
user: ∑

n∈Ni

xmn(t) ≤ 1, ∀ m ∈M,∀ i ∈ I (22)

Formally, the RB allocation and power control problem that
each BS i ∈ I solves, can be written as follows:

max
x,p

∑
n∈Ni

un(t) log rn(t) (23)

s.t. (18)− (22)

In the objective of LTERA we introduced a new parameter that
is related to DASH. To explain the parameter un(t), recall first
that Qn is the size of the 10-second DASH segment that will
be delivered to a user n, which was decided after solving the
UAVQS problem. Also let Dn(t) be the total number of bits
that have been delivered to user n until LTE frame t. We desire
to track the progress of the LTERA solution with respect to
the solution of the master problem. Hence, the ratio:

Qn/10

(
∑t
τ=1 rn(τ))/t

, (24)

serves as an indication of how the average data rate experi-
enced by user n until frame t, deviates from the average rate
Qn/10 that the DASH video segment requires. The goal is
to boost users that experience lower average rate compared to
average segment rate up to frame t and slow them down in the
opposite case. This is consistent with the works such as [16],
[17] since it is effectively a way to track the contents of the
playback buffer of each user and act accordingly. If a user has
already received the entire segment before the end of the 10
second period, then un is set to 0 to prevent further allocation
of unneeded resources. Formally we can write:

un(t) =

{
Qn/10

(
∑t
τ=1 rn(τ))/t

ifDn(t) ≤ Qn
0 else

, ∀n ∈ Ni (25)

Additional data pre-buffering can be allowed by minor en-
hancements of this parameter. For example we continue to
allocate resources even if a complete DASH segment has been
received.

C. Solution Approach and Suboptimal Problem Formulation

The above optimization problems clearly constitute non-
convex mixed integer non-linear programs (MINLP). It is also
known that even simpler instances of this power and RB
allocation problems are NP-hard [25]. Hence, our approach
for solving this problem is to adopt first a numerical approach.
We used Matlab and specifically the Opti Toolbox [29] for
solving these problems. More specifically, we used the BON-
MIN solver, which solves smooth twice differentiable MINLP.
This approach can provide very fast solution for the master
problem. However, the most challenging problem due to its
larger size and the need to solve it within a few milliseconds, is
clearly LTERA which is similarly a MINLP. For this problem,
we define

1) Suboptimal Problem Formulation: Here, we define a
convex alternative to LTERA that allows for its faster ex-
ecution. Now the transmission power is constant and in
particular it has the value that was calculated with the UAVQS
problem. Setting a constant power definitely leads to a sub-
optimal solution, but the use of a continuous variable for RB
allocation does not (after relaxing the discrete RB allocation
variable). The practical implication is that the implementation
of such a system should convert this continuous result into
a discrete number of RBs. Consequently, the relaxed LTERA



optimization objective is:

max
x

∑
n

un(t) log rn(t) (26)

subject to: (21), (25) and

rn(t) = xn(t)MWb log(1 +
hnPn
σ2

), ∀n ∈ N (27)∑
n∈Ni

xn(t) = 1 (28)

0 ≤ xn(t) ≤ 1, ∀n ∈ N (29)

The above problem is a convex one and can be solved
in sufficiently small amount of time to allow its application
in a real world system. The only variable is x(t) and it is
a continuous one and Pn is now constant and equal to the
value calculated in the UAVQS problem. Thus the problem
formulated is convex but also suboptimal.

IV. PERFORMANCE EVALUATION

In this section we present a performance evaluation of our
proposed framework through simulations. We evaluate the
performance of our framework with respect to the achieved
data rate by the users, the average power consumption of
the network, and the average delivered video quality. Several
picocells and UEs are uniformly spread in an area of 3x3 Km.
A single macro BS is located at the center of the area. The
available bandwidth is 2.5 MHz [28] which means 240 RBs
are distributed among the BSs. The bandwidth Wb of each RB
is 180 KHz [28]. We assume a path loss propagation model in
the HCN with the maximum transmission power of the BSs
chosen according to 3GPP specifications. Different values for
the weighting factors of the first problem objective function
namely a and b are investigated through our simulation.
Regarding the parameters of the backhaul switches they are set
equal to Pdl=1W, maxdl=24, Pmax,s=300 W, Cmax=24 Gbps,
Cinterface=1 Gbps and were adopted from [12], [13]. Con-
cerning video quality decisions, video traces from [30] were
used and in particular a 352x288 resolution video segment
with 5 different quality layers Q1 −Q5 with Ql > Ql−1, l ∈
{1, ..., 5}.

Picocell density. The system performance for different
picocell deployment densities are illustrated in Fig. 4. Here
we wave set a = 2 and b = 1. One can see how the users’
average data rate relates to the number of users served by
the cell. The proposed framework allows the reduction of the
data rate provided to the users as their number increases in
order to save power. The total number of RBs is the same in
case of 4 picocells as is in the case of 5, but we can see a
slight increase in the average rate because 1 more picocell can
provide more flexibility with respect to the BSs that can serve
the users. Also this scenario with 5 BSs, higher spatial-reuse
is achieved.

For the same experiment, we present the total power con-
sumption in Fig. 4(b). This power consumption is the sum of
the BS radio transmission power, and the power consumption

of the backhaul. It increases as the number of users increase
since the optimization is effectively trying to provide users
with enough data rate while they share the total amount of
RBs. A fifth picocell has the potential to lead to significant
power savings that reach 16% when the number of users is
equal to 12. The reason is that the same data rate that the
same group of users require, can be served more efficiently
by an additional BS. This fifth BS gives he ability to users to
associate with it and enjoy communication of higher spectral
efficiency.

Results for the delivered video quality are presented in
Fig. 4(c) and are expressed in terms of the highest video
quality layer that is delivered to a user. The results correspond
to the same experiment. It is important to notice that the
presence of 5 picocells increases the fraction of the users
that receive high quality video. The value of our framework
for a MNO is also evident again here. Our framework allows
the precise quantification of different picocell densities on the
quality of the delivered video.

From this first set of results we conclude that for constant
a, b, and as the number of UEs in increased within a cell, to
minimize the increase in the power cost, the delivered rate
and video quality has to be reduced. It can be alleviated by
introducing more small cells. Hence, our framework can allow
the MNO to identify the optimal solution for delivering a
certain video quality.

Balancing parameters. Our framework allows the operator
to save even more power or offer a better video streaming
service to the UEs by adopting different ratios of a/b. In this
subsection the effect on data rate and power consumption when
using different values for a/b is examined. The deployment in
the following simulations is 4 picocells plus 1 macrocell. In
Fig. 4(a) the average cell data rate in relation to the number
of UEs is illustrated for different values of a/b. As a/b
increases, more weight goes to the data rate of the users
rather than the operator’s power consumption. The impact
of the increased data rate as a result of a bigger a/b value
on power consumption is illustrated in Fig. 4(b). As UEs
within a cell increase, the total power consumption increases
in order to provide a certain average data rate to them. But as
this level of service increases (a/b increases), the total power
consumption increases too. Regarding the video quality we
notice in Fig. 4(f) that the video with an increasing ratio a/b,
the users receive higher video quality.

The choice of the number of picocells and the values of the
balancing parameters define network’s performance in terms of
minimum QoE provision and maximum power consumption.
A MNO can adjust those parameters according to their needs
and succeed the desired performance.

Resource allocation and video segment delivery. Finally
we evaluate the performance of the relaxed LTERA problem
formulation. We consider its performance for the duration of
an entire 10-second period. We measure the amount of bits that
are received by the users during each one the 1000 frames of
the 10-second period as a result of the relaxed LTERA solution
of each frame. We also present an ”ideal” system (dotted lines)
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Fig. 4. Performance evaluation results. The effect of picocell density and balancing parameters on the average cell rate, network power consumption and user
video quality. In (a)-(c) the ratio a/b is 2. In (d)-(f) The HetNet consists of 4 picocells.

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6
x 10

7

Frame

T
o
ta

l 
b
it
s
 r

e
c
e
iv

e
d

Video segment delivery during a 10 second period

 

 
UE actual delivery

UE ideal delivery

UE 2 actual delivery

UE 2 ideal delivery

UE 3 actual delivery

UE 3 ideal delivery

Fig. 5. LTE resource allocation results.

by assuming that the total number of bits is delivery equally
among the 1000 frames. Fig. 5 displays the related results. The
solid lines obtained with LTERA always stay above the dotted
ones, for a certain user/quality, which serves as an indication

that no buffer underrun occurs. This is expected, since the
power level for each transmission from a user is based on
UAVQS and the selected quality requires at most the bit rate
Dn. This results in the early delivery of the segments and
when they are finally received (un(t) is set to 0), no more
resources are allocated and thus the solid lines become flat.

V. CONCLUSIONS

In this paper, we presented an optimization framework that
formalizes the inherent trade-off between the user perceived
quality of wireless video, and the energy consumption cost of
the network. The former is formulated in the context of the
emerging HCNs based on LTE. We also considered users that
employ DASH for video delivery. Our framework quantified
this trade-off carefully, by delving into the details of DASH,
the LTE network, and the HCN architecture. The result is a
complex problem that was decomposed into a master problem,
and several sub-problems that were solved sequentially. The
detailed model presented and analyzed through simulation in
this work is to be validated via real world experiments in our
future work. Another promising idea is the extension of the
model to support dynamically different number of available
resources in the concept of the emerging LTE License Assisted
Access (LAA). Numerical results indicate that performance
improvements for the users can be achieved both by deploying
more small cells or by increasing the allowed transmission



power (the servicing cost). Our framework allows the operator
to configure the network depending on the desired trade-off
between cost and user QoE.
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