
Scalable and Adaptive Polling Protocol for Concurrent Wireless Sensor Data Flows

Manos Koutsoubelias, Antonis Argyriou and Spyros Lalis
Electrical and Computer Engineering Department, University of Thessaly

Email: {emkouts, anargyr, lalis}@uth.gr

Abstract—The uncoordinated transmission of sensor measure-
ments to a collector over simple wireless technologies can lead
to severely degraded performance when operating close to
channel capacity. In this case, it can be far more effective to
let the collector poll the sensor nodes to retrieve their data. We
propose a coordinated protocol that exploits the broadcast ca-
pability of the wireless channel to eliminate contention between
nodes and to minimize the number of packet transmissions
performed at each poll. Furthermore, to let the protocol follow
the dynamic changes in the sensor data generation rate, we
propose an application-agnostic method for estimating the
data generation rate of each node locally, and extend the
protocol so that the collector dynamically adjusts the polling
rate accordingly. Our method is based on a Kalman filter
tuned for stable data generation rates, which is controlled via
simple signals generated at runtime by the underlying polling
protocol. We experimentally evaluate an implementation of our
protocol for different data traffic scenarios using real nodes
that communicate with the collector over IEEE 802.15.4 radio,
showing that the collector can successfully track the actual data
rate for both periodic and stochastic data generation.

1. Inroduction

A wide range of monitoring applications, spanning from
personal activity tracking to smart homes, employ wireless
sensor nodes to obtain the required measurements. In most
cases the sensors are sampled at a given rate, and the data,
possibly after some local processing, is sent over the air to
a collector. The collector, in turn, stores and processes this
data to support some monitoring or decision/control process.

Several applications require this data transmission to be
reliable. Also, in some occasions, data may need to be sent
to the collector at a relatively high rate. There are two
fundamentally different ways to achieve this. One approach
is for each sensor node to send data to the collector as
soon as this is produced. When the collector receives the
data, it replies with an acknowledgement. We refer to this
as notification. The other approach is for the collector to
explicitly request the sensor nodes to send their data. In
this case, each node stores the data in a local buffer, and
transmits it only at the request of the collector. If the node
receives a request but has no data, it replies with an empty
acknowledgement. We refer to this method as polling.

Notification is attractive when there are a few sensor
nodes and the data generation rate is relatively low com-

pared to the capacity of the communication channel. Else,
it can result in bad performance and poor utilization of the
wireless channel. This is particularly so when nodes transmit
in an uncoordinated way and the wireless communication
technology does not feature any advanced medium access
control mechanism.

In this case, polling can provide very good performance,
especially when the data rate approaches the channel capac-
ity, without requiring nodes to feature advanced radios or to
be synchronized with each other. However, a key issue with
polling is that the data generation rate may be unknown,
and as a result the coordinator may poll too frequently or
too slowly. Both situations are undesirable as they can waste
system resources or reduce data freshness and lead to data
buffer overflows, respectively.

To tackle the above issue, we propose an efficient polling
protocol which dynamically adapts the polling rate of the
collector according to the actual data generation rate of the
sensor node. The main contributions of this paper are as
follows: (i) We propose a polling protocol that exploits
the broadcast capability of the wireless channel in order
to reduce the number of packet transmissions required to
retrieve data from sensor nodes as well as to minimize the
respective latency. (ii) We propose an application-agnostic
method for locally estimating the data generation rate of
each node, based on a Kalman filter that is dynamically
controlled/reset via signals that are generated at runtime
by the polling protocol. (iii) We experimentally evaluate an
implementation of our protocol in a IEEE 802.15.4 radio
testbed showing that it can successfully track the actual
application data rate.

The rest of the paper is structured as follows. Section 2
describes the basic polling protocol, and compares its peak
performance to that of an equally simple notification pro-
tocol. Section 3 presents an application-agnostic data rate
estimation method that can be applied locally by each node
at the protocol layer of the wireless sensor nodes, while
Section 4 discusses its experimental evaluation. Section 5
provides an overview of related work. Finally, Section 6
concludes the paper and points to directions for future work.

2. Basic Polling Protocol

Let processes pi, 1 ≤ i ≤ N , represent a set of wireless
sensor nodes that produce data. We refer to such processes
as sensors. A special process pc represents the collector

Figure 1: Basic polling protocol. When polled, nodes send
data in sequence, in ascending order of their identifiers.

node. All processes are in the same broadcast domain, with
a known maximum packet transmission delay MsgT .

When the collector wishes to retrieve data, it starts a poll
by broadcasting a poll request. The set of sensors addressed
is encoded in a bitmask addr[1..N]: if addr[i] = 1 then pi
is expected to send a response, else pi should remain silent
during the poll. The address mask also indicates the order
in which sensors should respond. Namely, if both pi and pj
are addressed in the poll and i < j, then pj must wait for
pi to transmit, before it performs its own transmission.

Every sensor pi keeps the data it generates in a local
buffer, and sends it when polled. If the buffer is empty, pi
transmits an empty data packet. All data packets also include
the size of the sender’s data buffer. Just like the poll request,
data packets are broadcast and are received/overheard by all
sensors. Sensor pi responds to the poll as soon as it receives
the packet of the immediately preceding sensor process pprv
in the address bitmask. To deal with packet loss, pi sets a
timer to expire when pprv is expected to have sent its data
packet (based on the bitmask order and MsgT), and upon
timeout proceeds with its own transmission (the timer is
canceled if pi receives the packet sent by pprv). If pi is first
in order according to the address mitmask, it sends its data
as soon as it receives the poll request.

Figure 1 illustrates the operation of a single poll. Each
polling cycle, initiated by the collector periodically, may
lead to several consecutive polls. These are performed at
full speed, adjusting the address mask as needed, until the
collector receives a reply from every sensor node and all
nodes indicate that their data buffer is empty.

Note that the protocol serializes access to the shared
wireless medium and eliminates contention, without relying
on advanced medium access control mechanisms at the
lower layers of the network stack. Thus, it is suitable even
for simple radios and systems with a large number of
sensors and high data rates. Also, sensors do not need to
be synchronized or even have a proper clock.

To get a feeling about the performance of this protocol,
Figure 2 shows the maximum sustainable aggregate and per-
node reliable data transfer rate over IEE 802.15.4 radio, as
a function of the number of sensor nodes that generate/send
data. As a reference we use an optimal transport protocol
where the sensor nodes send their data to the collector with
prefect medium access synchronization. We also show the

Figure 2: Maximum aggregate (full bar) and per-node (sub-
bar) rate for reliable data transfer.

maximum data rate that can be sustained with acceptable
data loss (less than 1%) for a notification protocol where
each sensor node unicasts its data to the collector and waits
for an acknowledgement.

It can be seen that the polling protocol approaches opti-
mal performance as the number of nodes increases, because
the overhead of the poll request is amortized over a larger
number of data packet transmissions. In contrast, the perfor-
mance of the notification protocol is bad and degrades to the
number of sensor nodes, due to the increasing contention.

3. Rate Estimation

If the collector knows the rates at which sensor pro-
cesses (nodes) generate data, it can set its polling strategy
accordingly. However, in the general case, the data rate ri
of sensor process pi may be unknown, even to the process
itself. For instance, the application layer may not inform the
protocol layer about the rate at which data will be generated,
because it may be not be able or willing to compute it. The
challenge is for the protocol layer to estimate ri without any
input from the application.

We assume that data generation is independent for each
sensor process, and let each pi estimate ri locally. The
estimated rate is then piggy-backed to the response that pi
sends to the collector in order to adjust the polling rate.

In the general case, the average data rate ri may vary
in time. We assume that changes in the average data rate
are rather abrupt, corresponding to internal state changes
of the application (which are hidden from the protocol
layer). We also assume that once such a state change takes
place, the application remains in that state for a relatively
long time. These assumptions are realistic for a wide range
of applications. Two indicative scenarios are illustrated in
Figure 3: the top part shows a process that performs a
transition between different but constant data rates, while
the bottom part illustrates a transition between two different
average rates for a stochastic data generation process.

Our goal is to design a unified method that can estimate
the average rate in both cases, without knowing which case
actually applies to the current system operation. To describe
our approach, we introduce additional notations that capture
the time-dependency of the average data rate. We denote
with ri[n] the actual average data rate of the application
process when the n-th data packet is generated. Process
pi can estimate ri[n] in different ways depending on the
assumptions about the model that governs data arrivals.

For our purposes, we assume a first-order dynamic
model for the the evolution of the average arrival rate:

ri[n] = a× ri[n− 1] + u[n], n ≥ 0 (1)

The value of parameter a corresponds to the weight of the
last average rate of the application: if a is close to 0 then
the previous value hardly affects the next one, whereas if a
is close to 1 then the previous value strongly affects the next
value. In this model u[n] is a random variable that follows a
Gaussian distribution, and models potentially abrupt changes
in the average rate over successive time instants. Since our
assumption is that most of the time the application generates
data at a constant average rate, the best choice is to set a
close to 1.

We want to compute an estimate of ri[n]. However, this
estimate will unavoidably suffer from measurement noise:
xi[k] = ri[k] + w[k]. The question is how to estimate ri[n]
accurately. The metric we use is the mean square error
(MSE) from the Bayesian estimation theory.

Since u[k] is Gaussian for the linear model in (1), we
adopt the scalar Kalman filter, which has been shown to
be optimal for the linear data model [1]. The scalar Kalman
algorithm is an adaptive filter defined from a set of recursive
equations:

Prediction : r̂[n|n− 1] = ar̂[n− 1|n− 1]

Min. Pred. MSE: ce[n|n− 1] = a2ce[n− 1|n− 1] + σ2
u

Kalman Gain: K[n] =
ce[n|n− 1]

ce[n|n− 1] + σ2
u

Correction: r̂[k] = r̂[n|n− 1] +K[n](x[n]− r̂[n|n− 1])

Minimum MSE: ce[n|n] = (1−K[n])ce[n|n− 1]

The algorithm initializes ce[n − 1|n − 1] to an arbi-
trarily low value close to 0. Then it calculates recursively
K[n], r̂[n], ce[n|n].

The above model will work well, regardless of whether
data generation is periodic or stochastic (Poisson), provided
that the average data rate remains constant, and a is close to
1 (which is true in our case). However, as already noted, we
are interested in supporting scenarios where abrupt changes
in the average data rate can occur. One way to do this
is to employ a more “clever” filter that can detect and
respond to such transitions. Here, we follow a different
approach, namely we keep the same simple filter, but control
its operation based on information that is available at the
layer of the polling protocol. The heuristic is quite intuitive:
since the above filter is not designed to track significant

time

D
at

a
pa

ck
et

 in
te

r-
ar

riv
al

Constant data rate switch

time

average data rate switch

Deterministic Data arrivals during T

T

Figure 3: Traffic models considered in this work.

changes in the average data rate, it is reset when there is an
indication of inefficient polling. More concretely, each node
resets its Kalman filter when the collector performs several
consecutive poll cycles that do not return any data (collector
polls too fast), or when in a given poll cycle the collector
performs several consecutive polls in order to empty the
buffers of the data processes (collector polls too slowly).
As it will be shown in the next section, it suffices to adapt
the operation of the filter, and to let the collector adjust the
polling rate according to the data rate estimates received
from the sensor nodes.

4. Experimental Evaluation

The proposed polling protocol has been implemented as
a refinement of GCBRR [2], which supports 1-to-N request-
reply interactions in a process group. We have evaluated our
implementation using real wireless nodes that communicate
over 802.15.4 radios. In the following, we describe the test
setup, and then present results from indicative experiments.

4.1. Experimental setup and metrics

For our experiments we use TelosB-class devices from
AdvanticSys [3], equipped with 802.15.4 radios. To enable
detailed logging during the experiments, the protocol logic
runs on powerful PCs, which are connected over serial to
the TelosB devices that essentially act as wireless modems.
We have confirmed that the serial interface is fast enough
to support the packet rate of 802.15.4. Henceforth we refer
to a PC-TelosB pair as a “node”.

The nodes are arranged in a 1-hop topology so that they
can communicate with each other directly. A distinguished
node is the collector, all others play the role of sensor nodes
that produce data. Sensor nodes run a simple application that
generates data items according to a predefined scenario. The
scenario is stored in a file as a sequence of time intervals.
When the experiment starts, the application waits for a short
random back-off interval and then, in a loop, reads the next

entry from the scenario file, sleeps for the specified amount
of time, and issues the next data item for transmission to
the collector. We investigate both periodic/deterministic and
stochastic data generation scenarios. In the latter case, the
scenario file is generated using Matlab, according to the
behavior of a Poisson process (separate scenario files are
genenerated for each sensor node). The data produced by the
application are passed to the protocol layer for transmission.
In our experiments we let each data item occupy a full
packet. As a consequence, it is not possible to piggy-back
several data items in a single packet, and if a node has
more than one items buffered locally then the collector has
to retrieve them via consecutive polls that are performed
within the same polling cycle.

The protocol layer of the node runs the heuristic for
estimating the local application data rate, as discussed in
Section 3. This information is included in the data packets
sent to the collector when the node is polled. Based on
this information, the collector adjusts the rate at which it
performs polling cycles, also referred to as polling rate. The
strategy of the collector is intentionally kept simple, namely
the polling rate is set equal to the highest data rate reported
by a sensor node. Note that this is suboptimal from a latency
perspective, because a data item will remain in the node’s
buffer for half the polling period on average, and for an
entire polling period in the worst case. Since the objective
of our experiments is to evaluate the ability of the protocol to
adapt its polling cycle according to the average application
data rate, we do not try to optimize the delivery delay.

4.2. Unknown but stable data rates

In a first set of experiments, we evaluate the ability of the
polling protocol to track a stable but unknown data rate of
the sensor nodes. We run the rate estimation heuristic with
the filter reset logic disabled (no-reset version). We have ex-
perimented with different application data rates and numbers
of sensor nodes, for periodic as well as stochastic (Poisson)
data generation scenarios. Due to space constraints, here
we present the results for a rate of 0.5 data packets/second
and 3 nodes (other configurations result in similar behavior).
The results are shown in Figure 4 and Figure 5. The top
plot in these figures shows the actual application data rate
of each node and the rate at which the collector decides
to perform polling cycles (polling rate), averaged over 10-
second intervals. The bottom plot shows the total number
of polls and the number of void polls performed by the
collector over 10-second intervals (recall that each polling
cycle may include several consecutive polls).

In the periodic data generation experiment, after a short
warm-up phase, the sensor nodes accurately estimate their
local application rate. As a consequence, the collector per-
forms polling cycles at exactly the right rate, avoiding any
void polls. The same observation regarding the accuracy
of the estimated data rate also applies to the stochastic
data generation scenario. However, in this case, due to the
inherent variance of the application data generation process,
some sensor nodes end-up having several data items in

Figure 4: Periodic data generation.

Figure 5: Stochastic data generation.

their buffer, and the collector often has to perform several
polls per cycle to retrieve this data. The variance in data
generation also results in the opposite effect, namely it can
be that no node generates any data within the next polling
interval, in which case the collector will perform a void poll.
But, naturally, this happens quite rarely.

4.3. Unknown and dynamically changing data rates

In a second set of experiments, we evaluate the ability
of the polling protocol to track dynamic transitions between
significantly different unknown data rates of the application.
Here, we test the rate estimation heuristic with the filter reset
logic disabled and enabled (no-reset vs. reset version). We
investigate a scenario where the sensor nodes initially have
a data rate of 0.5 data packets/second, then switch to a data
rate of 1.5 data packets/second, and after some time switch
back to the initial data rate. Due to space limitations we
only present the results for 3 nodes, for periodic as well as
for stochastic data generation.

Figure 6: Periodic data generation with dynamic rate tran-
sitions, filter reset disabled.

Figure 7: Periodic data generation with dynamic rate tran-
sitions, filter reset enabled.

The results for the periodic data generation scenario
are shown in Figure 6 and Figure 7. The no-reset version
performs well in the first phase of the experiment, where the
data rate does not change. However, when the application
switches to a different rate, the estimation filter reacts slowly
and is unable to find the actual data rate. The inability
to track the first rate switch results in infrequent polling
cycles, which leads to a slightly increased number of polls
compared to the node’s data rate. Since nodes generate data
at different points in time, their buffers increase unevenly
in time, and the number of polls in a polling cycle is
determined each time by the node with the longest buffer.
Conversely, after the second switch, inaccurate data rate esti-
mation results in overly frequent polling, and to a significant
number of void polls.

In contrast, the reset version tracks the rate transitions of
the application smoothly and accurately. Thus the collector
always polls the sensor nodes at the right rate. There are just
a few void polls when the application makes the transition

Figure 8: Stochastic data generation with dynamic rate
transitions, filter reset disabled.

Figure 9: Stochastic data generation with dynamic rate
transitions, filter reset enabled.

from the higher to the lower data rate, at which point the
filter is reset and can immediately track the new data rate.

The results for stochastic data generation are shown in
Figure 8 and Figure 9. Again, the no-reset version fails to
track the rate changes of the application. The reset version
is (as before) better in this respect, but now this does not
always translate in better behaviour. Namely, due to the
variance of data generation, the reset version adjusts the
polling rate in a jerky way, even when the average rate
is stable, and performs more void polls than the no-reset
version in the first and second phase of the experiment. In
the third phase, when the application switches from a high
to a low rate, the more accurate estimation of the application
data rate pays-off, leading to a reduced number of total polls
and void polls compared to the no-reset version.

5. Related Work

The efficient data transfer in WSNs where the channel
capacity is limited has been studied at various layers of
the network stack. S-MAC [4] uses CSMA to eliminate
packet collisions, and synchronizes the transmiting nodes
using a sleep-wakeup schedule. T-MAC [5] follows a similar
approach, but it employs an adaptive logic for the sleep-
wakeup schedules based on a timer which is adjusted based
on the network load. Both approaches are designed to be
energy efficient, however they do not perform well for high
network loads.

Z-MAC [6] is adaptive to the network load. It uses
CSMA for low network loads, and switches dynamically
to a version of TDMA when high network load is sensed.
In the TDMA mode, nodes can use empty slots based on a
priority scheme where the owners of the slots have higher
priority than others. Z-MAC achieves high throughput, but it
requires clock synchronization among the senders, and needs
extra carrier sensing for the utilization of empty slots.

Another protocol that tolerates variations in periodic
network load of a sensor network is SCP-MAC [7]. In this
case, the nodes are sleeping and periodically wakeup to
perform channel polling. When a node has data to transmit,
it first sends a short preamble to the respective destination,
which in turn is activated to receive the data. The nodes
are strictly synchronized in a fixed schedule in order to
wakeup for the preambles. Prior to the transmission of the
preamble, the medium is sensed to avoid collisions between
multiple senders. A more adaptive approach is adopted in
WiseMAC [8], where each node learns the sampling period
of its neighbours, and creates a local wakeup schedule that is
piggy-backed to each data transmission. The receiver com-
bines its own schedule to the one received, to minimize void
wakeups (getting ready for packet reception even though no
node will transmit).

In terms of reliability, a number of protocols have been
proposed above the MAC layer. In RCRT [9] several reliable
unicast flows are directed from the nodes to a sink, which
is responsible for controlling their data rate. The protocol
guarantees reliability as the missing packets are recovered
through a negative acknowledgement scheme. However, as
the network size increases, the supported transmission rates
drop significantly due to high contention. RBC [10] also
uses negative acknowledgements, but takes a different ap-
proach to decrease channel contention by giving priority to
the nodes that have more data to transmit. Nodes piggyback
their buffer size to each packet, while other nodes overhear
these transmissions and postpone their own data transmis-
sion for a period of time if the received buffer size exceeds
a certain threshold. This technique avoids contention, but
nodes with a higher data rate might lead to the starvation
of nodes with lower rates.

Our approach does not rely on a specific wireless tech-
nology, can be applied on top of simple radios, does not
require clocks or any elaborate synchronization between
the transmitting nodes, supports high data rates close to
channel capacity with high reliability without explicit ac-

knowledgements while performing very few (usually no)
retransmissions, is fair for all nodes, and can be extended
to support priorities without starvation. Also, thanks to the
ability of the protocol to dynamically adapt the polling rate,
the number of unnecessary polls and empty replies sent by
sensor nodes can be reduced when the application switches
to low data rates.

6. Conclusions

We have presented a simple but effective polling proto-
col, designed to allow even a large number of sensor nodes
to send data over the air to a collector, without contention
and good utilization of the wireless channel. We have also
proposed and evaluated an application-agnostic mechanism
for estimating the actual data rate so that the collector can
adjust the polling rate accordingly.

The protocol can be extended to allow sensor nodes to
send several packets as a response to a single poll request.
Especially in stochastic data generation scenarios, this can
greatly reduce the number of consecutive polls that need
to be performed in order to empty the data buffers of the
sensor nodes, further amortizing the cost of the poll request.
It is also possible to devise more elaborate strategies for the
collector, to trade-off polling efficiency (and the number of
void polls) for improved data freshness.

References

[1] S. M. Kay, Fundamentals of Statistical Signal Processing, Volume I:
Estimation Theory. Prentice Hall, 1993.

[2] M. Koutsoubelias and S. Lalis, “Coordinated Broadcast-based
Request-Reply and Group Management for Tightly-Coupled Wireless
Systems,” in Proceedings of the 22nd International Conference on
Parallel and Distributed Systems, 2016, pp. 1163–1168.

[3] [Online]. Available: https://www.advanticsys.com/shop/mtmcm5000sma-
p-23.html

[4] W. Ye, J. Heidemann, and D. Estrin, “An energy-efficient mac
protocol for wireless sensor networks,” in Proceedings of the 21st
Annual Joint Conference of the IEEE Computer and Communications
Societies, vol. 3, 2002, pp. 1567–1576.

[5] T. van Dam and K. Langendoen, “An adaptive energy-efficient mac
protocol for wireless sensor networks,” in Proceedings of the 1st
International Conference on Embedded Networked Sensor Systems,
2003, pp. 171–180.

[6] I. Rhee, A. Warrier, M. Aia, J. Min, and M. L. Sichitiu, “Z-mac: A
hybrid mac for wireless sensor networks,” IEEE/ACM Transactions
on Networking, vol. 16, pp. 511–524, 2008.

[7] W. Ye, F. Silva, and J. Heidemann, “Ultra-low duty cycle mac with
scheduled channel polling,” in Proceedings of the 4th International
Conference on Embedded Networked Sensor Systems, 2006, pp. 321–
334.

[8] A. El-Hoiydi and J.-D. Decotignie, “Low power downlink mac pro-
tocols for infrastructure wireless sensor networks,” Mob. Netw. Appl.,
vol. 10, no. 5, pp. 675–690, Oct. 2005.

[9] J. Paek and R. Govindan, “Rcrt: Rate-controlled reliable transport
protocol for wireless sensor networks,” ACM Trans. Sen. Netw., vol. 7,
no. 3, pp. 1–45, 2010.

[10] H. Zhang, A. Arora, Y.-r. Choi, and M. G. Gouda, “Reliable bursty
convergecast in wireless sensor networks,” in Proceedings of the 6th
ACM International Symposium on Mobile Ad Hoc Networking and
Computing, 2005, pp. 266–276.

