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Abstract—The deployment of Connected Autonomous Vehicles
(CAVs) in Vehicular Ad Hoc Networks (VANETs) requires secure
wireless communication in order to ensure reliable connectivity
and safety. However, this wireless communication is vulnerable
to a variety of cyber atacks such as spoofing or jamming attacks.
In this paper, we describe an Intrusion Detection System (IDS)
based on Machine Learning (ML) techniques designed to detect
both spoofing and jamming attacks in a CAV environment. The
IDS would reduce the risk of traffic disruption and accident
caused as a result of cyber-attacks. The detection engine of the
presented IDS is based on the ML algorithms Random Forest
(RF), k-Nearest Neighbour (k-NN) and One-Class Support Vector
Machine (OCSVM), as well as data fusion techniques in a cross-
layer approach. To the best of the authors’ knowledge, the
proposed IDS is the first in literature that uses a cross-layer
approach to detect both spoofing and jamming attacks against the
communication of connected vehicles platooning. The evaluation
results of the implemented IDS present a high accuracy of over
90% using training datasets containing both known and unknown
attacks.

Index Terms—Intrusion Detection Systems, Connected Au-
tonomous Vehicles, Vehicular Ad Hoc Networks

I. INTRODUCTION

The deployment of Connected Autonomous Vehicles
(CAVs) is considered the key factor to enhance road safety,
increase the infrastructure efficiency, and reduce fuel consump-
tion in Intelligent Transportation Systems (ITS) [1]. Adaptive
Cruise Control (ACC) can automatically regulate parameters
such as speed changes and gaps between vehicles by using
on-board sensors.

Vehicle platooning is an application for semi-autonomous
cooperative driving that comprises a leading vehicle and a
group of following vehicles. The motion of the vehicles
forming a platoon is determined by the Cooperative Adaptive
Cruise Control (CACC) technology [2]. CACC is an enhance-
ment to ACC that introduces Vehicle-to-Vehicle (V2V) com-
munications, and allows vehicles to travel in more compact and
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stable platoons than ACC [1]. Most CACC systems require the
following vehicle to communicate with its nearest preceding
vehicle and/or the leading vehicle of the platoon [1].

Vehicle platooning is achieved by the exchange, in real-
time, of information about the longitudinal (e.g. acceleration
and braking) and lateral (e.g. steering) control system of
the vehicles, as well as management protocols that supervise
the formation of the platoon, driving maneuver and platoon
disengagement [3]. This information is shared by the exchange
of Cooperative Awareness Messages (CAMs) between the
connected vehicles. These messages are transmitted several
times per second using Dedicated Short Range Communica-
tion (DSRC) and Wireless Access in Vehicular Environments
(WAVE) technology, based on the IEEE 802.11p standard.

The CAV infrastructure requires secure wireless communi-
cation channels in order to ensure reliable connectivity and
safety. Connected vehicles are permanently interconnected by
periodically broadcasting CAMs. However, these messages
are vulnerable to a wide range of cyber threats, such as
eavesdropping, spoofing and modification attacks. For exam-
ple, a spoofing attack against the communication between
CAVs could allow an attacker to change the distance between
autonomous vehicles within the platoon, disrupting the flow of
traffic and increasing the chances of accident. Moreover, the
wireless communication channel is exposed to RF jamming
(e.g. radio signals maliciously emitted to disrupt the legiti-
mate communication) and Denial-of-Service (DoS) attacks [4].
Jamming against CAMs can be implemented easily, and can
disrupt the performance of platooning [5]. For this reason,
it is important to design innovative and robust cyber security
solutions that can successfully protect the technology powering
CAVs against cyber-attacks.

In this paper, an Intrusion Detection System (IDS) based
on Machine Learning (ML) developed to detect spoofing and
jamming attacks in a CAV environment, with special focus on
vehicles’ platooning communication is presented. This is the
first proposed ML IDS in the literature that can effectively
detect both spoofing and jamming attacks. The detection
engine of the proposed IDS is based on several ML algorithms
like Random Forest (RF), k-Nearest Neighbour (k-NN) and978-1-7281-4757-4/19/$31.00 c©2019 IEEE



One-Class Support Vector Machine (OCSVM), as well as the
use of data fusion techniques in a cross-layer approach. both
supervised learning techniques used are very popular, with the
k-NN being robust against noisy training data like the ones
obtained from a real-life urban environment and RF being
one of the most accurate algorithms, due to the fact that it
reduces the chance of over-fitting (by averaging several trees,
there is a significantly lower chance of over-fitting). Moreover,
except of supervised ML techniques, we also use a semi-
supervised ML technique (OCSVM), in order for the proposed
IDS to be applicable in cases where only one class data
(normal data) exists. This is a common case, because vehicular
communication datasets obtained by a real testbed comprising
also traces of cyber-attacks are rarely available. Last, the
proposed IDS has as a goal to achieve the fusion of the two
used supervised ML algorithms using data fusion techniques
with special purpose to enhance the overall performance.

The main contribution of this paper is the development
of a novel cross-layer IDS for CAV platooning capable of
detecting a spoofing attack and a reactive jamming attack too.
The novelty of the proposed IDS is the cross-layer set of
features that are utilized for both training and testing. The
second contribution is that the implemented IDS can produce
probabilistic results for both known and unknown attacks.

The rest of this paper is organised as follows. Section
II provides an overview of related work in the domain of
spoofing and jamming attack detection. Section III describes
the topology and the types of the implemented attacks. Sec-
tion IV describes the proposed probabilistic IDS. Section V
presents the experimental evaluation setup, the impact of the
implemented attack in V2V communication and finally, the
experimental results. Section VI summarizes our findings and
concludes our work.

II. RELATED WORK

A. Spoofing Attacks

The literature in the area of cyber security for connected ve-
hicles is divided in two distinctive areas of interest. Firstly, the
techniques that use metrics from the Application layer (APP),
e.g. speed-deviation, such as Acceptance Range Threshold
(ART) [6]. Speed Deviation Verification at consecutive time
intervals has been also used for the verification of each vehicle
location. However, this metric is vulnerable against GPS
spoofing attacks. Swaszek et al. [7] consider the use of range-
only information to detect Global Navigation Satellite System
(GNSS) spoofing of a platoon of vehicles equipped with inter-
vehicle communications. However, this paper considers the
use of short range only information communicated amongst a
platoon of vehicles to detect GNSS spoofing. These methods
are mainly based on upper layer metrics, the honesty of nearby
vehicles and the traffic density of spoofing attackers.

Secondly, there is a specific area in which the publications
also use metrics from the Physical (PHY) layer, such as
the Received Signal Strength (RSS), and metrics from the
Application (APP) layer, such as speed-deviation of nodes [8].
In various publications, the strength distribution analysis is

used to detect Sybil or Spoofing attacks [9]. Last, the authors
in [10] propose a solution to correct the wrong position given
by the fake GPS. The correction is based on a validation
process by comparing the given position to an RSU using
the wireless Vehicle-to-Infastructure communication (V2I).
However, the wireless communication between the transmitter
and the Roadside Unit (RSU) can be impaired by fast fading
characteristics that exist in VANETs.

All the above publications do not use ML approaches for
detecting spoofing attacks. On the other hand, several articles
such as [11], [12] introduce the Received Signal Strength
Indicator (RSSI)-based schemes for detecting spoofing attacks
in Wireless Sensor Networks (WSNs) using ML techniques
without using a cross-layer architecture.

Additionally, extensive works present the applications of
spatial processing methods for GPS spoofing detection and
mitigation that use either Phase Delay Measurements [13]
or the Angle of Arrival (AoA) estimation [14] from the
PHY layer to verify the message originator. From an attacker
perspective, an illegitimate node may intentionally falsify the
information to achieve a certain goal that might be rational in
some scenarios. A drawback of using metrics from the PHY
layer is the incorrect GPS spoofing detection (e.g. false alarms)
that may occur in situations where multiple correct satellite
signals are received from similar directions and phase delay
differences are below a predefined threshold.

B. RF Jamming Attacks

ML techniques for jamming attack detection in vehicular ad-
hoc networks have been proposed in the past [15], [16]. The
authors use the metrics Noise and Channel busy Ratio (CbR),
Packet Delivery Ratio (PDR), Maximum Inactive Time (Max
IT) and RSSI in order to detect attacks using ML techniques
and examine both reactive and constant jammers.

Several recent works have proposed machine-learning based
techniques for jamming attack detection in vehicular ad-hoc
networks. Puñal et al. [15] used the above mentioned metrics
in order to detect attacks using machine learning techniques
and examine both reactive and constant jamming. Azogu
et al. [16] proposed a new mechanism, called Hideaway
Strategy according to which all nodes should remain silent
while the network is under a jamming attack. The authors
in [5] propose a data mining-based method for real-time
detection of radio jamming DoS attacks in IEEE 802.11p
V2V communications for a platoon of vehicles. State-of-the-
art methods are compared with the proposed method under
the realistic assumption of random jitter accompanying every
CAM transmission. However, authors did not use a cross-layer
set of features for the training procedure because only features
from the network layer are utilized.

In contrast to all the aforementioned works, we use an
additional metric: the relative speed (∆u) between the sender
and the receiver. The novelty of this metric from the APP
layer is that it can be estimated by the wireless channel of the
PHY layer using the effect of the Doppler phenomenon. This
estimated metric can be combined with other metrics from



the APP and the PHY layer leading to a cross-layer detection
approach. The proposed cross-layer detection approach can be
used without the need for a position verification model which
is subject to statistical errors. Specifically, from the APP layer
we can use the GPS coordinates indicating the location of the
sender and from the PHY different metrics such as the RSSI,
the Signal to Interference and Noise Ratio (SINR) and PDR
for the effective detection of a spoofing attack or a jamming
attack, differentiating also one from the other.

III. SYSTEM MODEL

A. Topology

The simulated CAV enviroment comprises of a platoon of
four connected vehicles, whose motion is determined by the
CACC technology [2]. As described previously, most CACC
systems require the following vehicle to communicate with
its nearest preceding vehicle and/or the leading vehicle of the
platoon. As represented in Fig. 1, the leading vehicle (Veh1)
and second vehicle (Veh2) represent the Receiver (Rx) and
Transmitter (Tx) of messages, respectively. The third vehicle
(Veh3) is the attacker that conducts a reactive jamming attack,
and the fourth vehicle (Veh4) in the platoon is the attacker
that conducts the spoofing attack.

The experimental results analysis presented in this paper
focus on assessing the effect of the different attacks in the
communication between the Tx and Rx vehicles.

B. Spoofing Attack in V2V Communications

All connected vehicles in a platoon periodically broadcast
CAMs, known as beacon messages, in order to inform neigh-
bouring vehicles of their presence. Each CAM comprises of
several fields such as Node Identifier (Vid), Time instance
(Time), the MAC address and current vehicle GPS location.
However, the Vid and the MAC address of sender in the WAVE
Service Advertisement (WSA) frame [17] can be modified by
a spoofer. .

For the simulated attack scenario, initially, the Tx and Rx
vehicles have a wireless connection established using the IEEE
802.11p MAC protocol, and drive in a platoon formation.

Figure 1: Schematic representation of the vehicles platooning topol-
ogy: Receiver vehicle (Veh1), Transmitter vehicle (Veh2), Jammer
vehicle (Veh3), and Spoofing vehicle (Veh4).

The attacker Veh4 follows the Tx and Rx vehicles. When
the distance between Veh4 and Veh2 is about 35m, the
attacker intercepts the Vid and MAC address of Veh2 from
the broadcasting CAMs and starts its spoofing attack. During
the spoofing attack, Veh4 also broadcasts a CAM message
every 0.1 seconds, using the Vid of Veh2, in order to inform
the Rx about an incorrect GPS location and speed value.
Since the attacker replicates the Vid and MAC address of
Veh2, during the spoofing attack, there would be WSA frames
showing discrepancies between the identity and the physical
characteristic of the frames. The routing flow that is selected
in transport layer is based on the the incorrect spoofed MAC
address of the transmitter Veh2. This has as a consequence
frame losses in PHY layer due to path losses and fast fading
factors or due to the strict delay constraints of the backoff
procedure in MAC layer. So many CAMs sent by the legal
Tx are lost in MAC layer and are never acknowledged by the
client, increasing the Packet Error Rate (PER) and decreasing
the throughput too. So it is clear that the spoofing attack affects
the communication channel. This attack can be also assumed
as an another kind of a Denial of Service (DoS) attack. The
communications problem that is provoked is discussed more
thoroughly in Section IV-C. The designed IDS aims to detect
these discrepancies in the communication channel.

As we previously said, the attacker exploits these fields to
transmit false GPS location coordinates within the CAMs,
which misdirects the platoon of connected vehicles to an
incorrect location. This has as a consequence the observed
RSSI values by the wireless communication between Tx and
Rx to move to a different level, indicating the spoofing attack.
Fig. 3 shows a comparison between the RSSI values and the
distance between the Tx and Rx vehicles during the first two
stages of the simulation (e.g. the initial period of normal
traffic and the spoofing attack). When the position of the
transmitter, which is the spoofer during the spoofing attack,
is quite different from the legitimate’s position the level of
the RSSI values change significantly as can be seen in Fig. 3.
This fact can indicate the spoofing attack, proving also that the
RSSI maybe is a crucial metric for the detection of a spoofing
attack using a cross-layer ML approach.

Figure 2: Spoofing Attack Scenario



C. Jamming Attack in V2V communications

For the evaluation of the jamming attack scenario, a reactive
radio frequency jammer has been implemented [18]. The RF
jamming targets the IEEE 802.11p Orthogonal Frequency Di-
vision Multiplexing (OFDM) based PHY layer operating in the
5.85-5.925 GHz unlicensed national information infrastructure
band, with 10 MHz bandwidth. In Fig. 4 shows the standard
protocol WAVE IEEE 802.11p OFDM frame format, which
consists of the OFDM PHY Layer Convergence Protocol
(PLCP) preamble, PLCP header, PLCP Service Data Unit
(PSDU), tail bits, and pad bits. In the PLCP preamble field, the
preamble consists of ten identical short training symbols and
two identical long training symbols. The OFDM signal has a
fixed shape in the time domain and lasts Tconst = 64µs. before
the next OFDM signal can be transmitted, there is an idle time
of Tprep = 10µs required to set up the next transmission.

The jammer aims to block completely the communication
between the pair of the Tx and Rx vehicles by transmitting in a
reactive manner upon the detection of IEEE 802.11p frames in
the communication channel, causing a DoS attack. Assunming
the topology of Fig. 1, every time the Tx vehicle transmits
a CAM message, Veh3 also transmits a CAM message to
cause a collision. The reactive jammer starts the transmission
of a CAM using OFDM signal with QPSK modulation upon
sensing energy above a certain threshold. This threshold has
been empirically set to−75 dbm for a certain time of Tdetect =
1.2µs as a good tradeoff between the jammer sensitivity and
false transmission detection rate [4]. The reactive jammer
starts transmitting when it is located at a distance of 35m
from Veh1. Therefore, the Rx vehicle receives a combined
signal from the jammer and the Tx vehicle with the form:

~y = h1~x+ h2~s+ ~w (1)

where ~y is the combined received baseband signal at the Rx
vehicle, h1 is the Rician fading channel between the Tx and Rx
vehicles, h2 is the Rician fading channel between the jammer
Veh3 and the Rx vehicle, ~x is the valuable signal sent by the
transmitter, ~s is the jamming signal sent by the jammer and ~w
is white Gaussian noise. The total reaction Treaction is the sum
of the detection time Tdetect = 1.2µs and the preparation time
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Figure 3: Different RSSI levels during the normal operation and
spoofing attack

Tprep = 10µs. For the discussion of the results, we consider
that the overall reaction time is, on average, 11.2µs.

Although, the jamming misses the beginning of the IEEE
802.11p preamble, this noise signal overlaps with the PLCP,
MAC and WSMP header of the IEEE 802.11p frame sent from
Tx to Rx, as represented in Fig. 4. because of the reactive
jamming, the Rx vehicle cannot process the CAM from the Tx
vehicle due to insufficient SINR.

IV. INTRUSION DETECTION FRAMEWORK

An IDS is a fundamental element of security infastruc-
ture, aiming at identifying evidence of attacks or indications
of suspicious activities in the system under protection. The
use of ML techniques has gained wide interest in the area
of network security and intrusion detection. An ML-IDS is
based on models that allow the classification of the analysed
information [19]. In the area of network security, the use of
ML techniques has proven to improve the accuracy of an IDS
[20]. We propose the use of an ML-IDS in the area of CAV
communication security.

A. Machine Learning Techniques

The novel ML-IDS that we propose makes use of the super-
vised ML techniques k-NN and RF for the attack classification
process. Additionally, experiments using the semi-supervised
ML technique OCSVM have also been conducted.

The k-NN is a simple ML technique for pattern recognition,
based on feature similarity [21]. When we say a technique is
non-parametric, it means that it does not make any assump-
tions on the underlying data distribution. Therefore, k-NN
could and probably should be one of the first choices for a
classification study when there is little or no prior knowledge
about the distribution data. k-NNN is also a lazy algorithm
(as opposed to an eager algorithm). What this means is that it
does not use the training data points to do any generalization.
In other words, there is no explicit training phase or it is very
minimal. This also means that the training phase is pretty fast.
So, the k-NN algorithm is also useful for non-linear data,
which is the case for the data that we use for training.

The RF is a supervised learning algorithm, based on deci-
sion tree models that split a subset of features at training time
and output the class that has the majority votes of the classes
of the individual trees [22]. This supervised ML algorithm is
preferred over others for the following reasons. Firstly, it can
be used for both classification and regression tasks, providing

Figure 4: Reactive jamming against IEEE 802.11p frames.



high accuracy. Secondly, if there are more trees, it do not allow
overfitting trees in the model. It has the power to handle a
large data set with higher dimensionality. Last, RF classifier
handles the missing values and maintains the accuracy of a
large proportion of data.

The OCSVM is an effective semi-supervised classification
technique that constructs the classification model of normal
behaviour during the training process using only one type
of samples (e.g. training datasets comprising of only non-
malicious data). This feature makes OCSVM an ideal classifi-
cation technique when only non-malicious training datasets
are available Segmentation and clustering algorithms seem
to be better choices because they do not need to know the
signatures of the series. The shortages of such algorithms are
that they always need parameters to specify a proper number
of segmentation or clusters and the detection procedure has
to shift from one state to another state. In order the above
mentioned drawbacks to be minimized, the goal of an OSVM
is to find the optimal separating hyperplane which maximises
the margin of the training data and minimises the chance of
accepting outliers [23].

B. Data Fusion Techniques

Each of the classification algorithms is able to generate
accurate results when implemented independently. However,
the combined use of these algorithms may help improve the
overall performance of an IDS [24]. Different methodologies
were evaluated to assess whether the classification results
could be improved, for instance, by applying data fusion
techniques.

Ensemble learning has been used to combine the outputs
from different classification techniques. Ensemble learning
is the process in which multiple classifiers are strategically
selected and combined in order to solve a particular compu-
tational intelligence problem. Ensemble learning is primarily
used to improve the classification performance of a model. One
of commonly used ensemble learning algorithms is known as
bagging [25]. In this algorithm, bootstrapped replicas of the
training data for each classifier (RF, k-NN) are used. During
the last step of bagging, the majority voting combination
rule is used. Since the intended output of the IDS is a
probabilistic IDS, the conditional probabilities are estimated
for each classifier in the presented IDS using the bayesian
rule as data fusion technique.

C. CAV Communication Dataset

The presented IDS uses metrics from both, the PHY and
APP layers. From the PHY layer we extract the RSSI, the
SINR and the PDR. From the APP layer we extract the
Relative Speed (∆u) and the GPS coordinates. All these
metrics, listed in Table I, are used in a cross-layer approach
to improve the detection accuracy of the detection system.
Furthermore, for the training-testing procedure of the proposed
IDS, the data have been divided into 70% for training and 30%
for testing.

The Relative Speed (∆u), introduced in [26], indicates the
relative speed between an attacker and the receiver Veh1:

∆uA = |~uA − ~uRx| (2)

where ~uA, ~uRx are the speed of the attacker and the receiver,
respectively. The metric ∆u can be effectively estimated by
the RF signals’ interchange in the PHY layer. The novelty
of this metric is that it can be estimated by the physical
properties of the wireless channel, using the effect of the
Doppler phenomenon. For the jamming attack, we use again
the Doppler effect in order to estimate the ∆u between the
jammer and the receiver from the combined value of the useful
and the jamming signal at the receiver, as described in [27].

The scarcity of publicly available real vehicular communica-
tion datasets has been previously discussed in [28]. Currently,
no vehicular communication dataset is available comprising
traces of cyber-attacks. Computer simulation software be-
comes the only available alternative to conduct cyber security
research in the area of connected vehicles.

We have developed an experimental simulation testbed
using Veins [29] to evaluate the proposed IDS for a platoon
of vehicles as depicted in Fig. 5 in a part of the Erlangen city.
The simulation comprises a flow of four connected vehicles in
a platoon formation. This simulation consists of 800 timesteps,
of which 300 timesteps correspond to the normal operation of
the system, 200 timesteps correspond to a spoofing attack and
the remaining 300 timesteps correspond to a jamming attack.

In order to show the effect of the two attacks in the commu-
nication between the Tx and Rx vehicles, the Throughput has
been plotted in Fig. 6. The Y-axis represents the throughput
in Mbps, whereas the X-axis represents the time in seconds.
The normal (e.g. without attack) communication between the
Tx and Rx vehicles is represented in pink, the spoofing attack
is represented in blue, and the jamming attack is represented
in green. The normal communication between the Tx and Rx
vehicles occurs in two periods, between the time interval 15-
25 second, and the time interval 75-95 seconds. The spoofing

Figure 5: Close-up view of the Erlangen city map used for conducting
the simulations. The four vehicles platooning are marked in green,
moving south along the road.



attack is launched during the time interval 25-45 seconds.
Finally, the jamming attack is launched during the time interval
45-75 seconds.

As can be seen in Fig. 6, the average throughput for the
normal communication is 18 Mbps, approximately. When the
spoofing attack is launched, the average throughput drops to
10 Mbps. This change in the throughput clearly shows that the
modification of the GPS coordinates and speed values within
the CAM messages has a clear effect upon the communication
between the connected vehicles. Even more noticeable is the
effect of the jamming attack, where the average throughput
reaches 0.5 Mbps. This makes the communication between
the Tx and Rx vehicles almost impossible. In this simulation,
the Tx vehicle broadcasts a CAM message every 0.1 seconds
in order to inform the Rx about its current GPS location and
speed.

The experiments have been conducted using the simulation
parameters presented in above: The minimum distance be-
tween the jammer from Veh1 (minDistJx−Rx) is 25m, the
minimum distance between Veh1 and Veh2 (minDistTx−Rx )
is 15m, the minimum distance between the spoofer and Veh1
(minDistV eh4−Rx

) is 35m, Transmission Signal Strength is
100mW, Packet Length is 500 bits, and Data Rate is 18Mbps.
both vehicles Veh1 and Veh2 move at a maximum speed
of 10m/s, whereas both vehicles Veh3 and Veh4 move at a
maximum speed of 25m/s. The jammer starts transmitting
within a radius of 35m from Veh1. This simulation replicates
a realistic example, in which the attackers show distinctive
moving behaviours from the legitimate vehicles.
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Figure 6: Throughput (Mbps) of the communication between the
Tx and Rx vehicles during the experimental simulation. The normal
communication without attack in pink, spoofing attack in blue, and
jamming attack in green.

V. EXPERIMENTAL EVALUATION

We evaluated the performance of our attack detector by
using a detection rate and receiver operating characteristic
(ROC) curve. It is proved that the proposed IDS presents a
high accuracy of over 90% using training datasets containing
both known and unknown attacks.

A. Spoofing Attack Detection Results

The experiments to evaluate the efficiency of the developed
IDS have been conducted using k-NN and RF. The ML
techniques have been trained with both Attack and No Attack
instances. The initial set of experiments has been conducted
using single metric approach only, using the metrics described
in Table I.

Table II presents the classification accuracy results when
using single feature for each of the supervised ML techniques.
As it can be seen by using metrics from the PHY layer, the IDS
achieves the highest results, reaching over 91% accuracy with
both techniques. The best detection is achieved by k-NN using
the RSSI (e.g. 95.88% accuracy). Focusing on the metrics from
the APP layer, the accuracy drops to 72.43% when using RF
to analyse the metric Position Y (e.g. longitudinal control).
Furthermore, it has been shown that the use of the k-NN
algorithm outperforms the accuracy of the RF algorithm for the
majority of metrics. Generally, in most cases k-NN performs
better in dataset with low dimensional space. The results have
been plotted using a ROC curve for each single feature when
using k-NN and RF in Figs. 7 and 8, respectively.

Focusing on a multi-metric approach, using only features
from the APP layer with k-NN, the detection reaches 98%
accuracy. On the other hand, the detection results when using
only features from the PHY layer reaches 99% accuracy. These
results clearly show the improvement achieve by using a multi-
metric detection approach.

Finally, the IDS that we have developed takes advantage on
a cross-layer architecture, using metrics from both the PHY
and the APP layers. The combination of all the considered
features generate the best attack detection accuracy overall. by

Table II: Accuracy of the cross-layer classification

Metric k-NN Random Forest

RSSI 95.88% 95.47%
SINR 91.77% 92.18%
PDR 92.59% 94.24%

Estimated ∆u 86.83% 78.6%
Position Y 84.77% 72.43%
Position X 94.24% 92.59%

Table I: Metrics that are jointly processed by the classification algorithms

ID Model Feature Short Description

1 ∆u Estimated relative speed between Jx-Rx (m/sec.)
2 GPS cords GPS coordinated in x-axis, y-axis indicating the location
3 RSSI Signal Strenght Indicator (dbm)
4 SINR Signal Quantity Indicator (db)
5 PDR Packet Delivery Ratio



using cross-layer k-NN, the IDS generates 99.59% detection
accuracy and 98% accuracy using the RF algorithm.

For the jamming attack detection, we have conducted two
versions of the reactive Jamming attack. One generic version
that transmits activity is sensed on the wireless channel. The
other version is an intelligent reactive jamming attack that
reduces the number of intended collisions in order to minimise
its exposure to be detected by an IDS. For the former version
of the jamming attack, the developed IDS achieves 100%
accuracy using k-NN and 99% accuracy using RF. Whereas the
IDS reaches 95% accuracy detecting the intelligent jamming
version. The last detection result is achieved by both ML
techniques with cross-layer approach.

B. Multi-Attack Detection Results

In order to evaluate the adaptability of the presented IDS,
additional experiments have been conducted. These experi-
ments combine the two implemented attacks, spoofing and
jamming. by using the k-NN algorithm with a cross-layer
approach, the IDS generates almost perfect detection (e.g. 99%
accuracy), whereas the RF algorithm reaches 96% accuracy
approximately. Fig. 9 represents the detection results using
ROC curves when both attacks are included in the training
and testing datasets. The ROC in pink represents the detection

Figure 7: Spoofing Attack Detection: ROC curves for single feature
spoofing attack classification using the k-NN algorithm.

Figure 8: Spoofing Attack Detection: ROC curves for single feature
spoofing attack classification using the RF algorithm.

results for the experiments using only jamming attack and
normal traffic in the training and testing dataset, the one in
green represents the results using only spoofing attack and
normal traffic, and the ROC in blue represents the results when
only both attacks are used in the training and testing dataset.
As can be seen, worst classification results are generated
when only the two implemented attacks are considered. In
this case, the proposed IDS is difficult to differentiate the
two implemented attacks because a lot of metrics indicating
the communication problem (such as SINR, PDR) between
transmitter and receiver get quite low values for both attacks.

C. Data Fusion Technique Results

In this subsection, we want to combine the two supervised
ML classifiers (k-NN, RF) in order to achieve better perfor-
mance than a single decision from one classifier.

In the proposed IDS, firstly, bootstrapped replicas of the
training data for each classifier are used. The intended out-
put of the IDS is a probabilistic IDS, which estimates the
conditional probability of an observation to belong to class
Attack or No Attack, given the probability that each of the
classifiers predicts the same class. For this reason, conditional
probabilities are estimated for each classifier in the presented
IDS using the bayesian rule as data fusion technique. Last,
bagging is used in order to provide with a final prediction
based on the aggregation of above predictions from the two
supervised ML classifiers. The final prediction is estimated
using the majority voting combination rule.

In subsequent Fig. 10 the accuracy results achieved for the
spoofing attack detection by the Data Fusion technique are
compared with these that achieved using only k-NN or RF.
The above reported accuracy results have been plotted using
a ROC for each classifier and a different ROC for the Data
Fusion technique. The Data Fusion approach combined the
outcome of the two supervised ML classifiers. It is observed
that it achieves the same accuracy with the k-NN algorithm,
which in this case has an almost perfect result. It can also
enhance the performance of the RF algorithm, which in our
experiments shows the worst accuracy results.
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Figure 9: Multiclass results with class by class ROCs for the RF
classifier



D. Detection using Normal Data Training

The supervised ML algorithms require training datasets
comprising Attack and No Attack instances. In cases where
only normal (e.g. non-malicious) data is available, the use
of semi-supervised ML algorithms is required. This section
describes a final set of experiments focusing on the use of
the semi-supervised ML algorithm OCSVM. The training
dataset is 50% smaller than the testing dataset, and comprises
normal data only. The training dataset comprises 20% of
overall malicious data. The accuracy obtained by the OCSVM
algorithm reaches 90% accuracy approximately. In this set of
experiments using the OCSVM algorithm after training only
with No Attack data, the IDS generates 40 False Negatives
(FNs), 41 False Positives (FPs) alarms, 527 True Positives
(TPs) indicating the No Attack class and 200 True Negatives
(TNs) indicating the Attack class.

In most cases, no vehicular communication dataset is
available comprising traces of cyber-attacks. From the above
results, we can conclude that in cases where there is no
malicious data the performance of the proposed IDS is not
affected a lot.

VI. CONCLUSIONS

In this paper, we describe an IDS based on ML techniques
designed to detect both spoofing and jamming attacks in a
CAV environment. The IDS would reduce the risk of traffic
disruption and accident caused as a result of cyber-attacks.
The detection engine of the presented IDS is based on the ML
algorithms RF, k-NN and OCSVM. To the best of the authors
knowledge, the proposed IDS is the first in the literature
that uses a cross-layer approach to detect both spoofing and
jamming attacks against the communication of connected
vehicles platooning. Various features from the APP and PHY
layers have been extracted and analyzed.

In order to evaluate the efficiency of the developed IDS
against different type of attacks, the vehicular network simula-
tor Veins [29] has been considered. Although the experiments
have been conducted using datasets from a simulated CAV
environment, with vehicles platooning, the same IDS could
be used to detect similar type of attacks launched from fixed
location, for example, from a building on the side of the road.
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Figure 10: Accuracy evaluation for spoofing attack detection com-
parison among Data Fusion, k-NN, RF

The empirical analysis proves that both attacks impact on
the communication between the transmitter and receiver vehi-
cles. Overall, the features from the PHY layer weight out those
from the APP layer in their contribution to the classification
process, helping to detect correctly between Attack and No
Attack using a cross-layer approach. In order to verify the
adaptability of the proposed IDS, multiple sets of experiments
have been conducted. The presented results shows that the
proposed IDS can efficiently detect both attacks with high
accuracy. The proposed IDS can also produce a measure of
confidence or probabilistic classification result, instead of a
binary classification (e.g. Attack or No Attack).

As future work, we will test the proposed IDS under more
complicated scenarios with more wireless interference taking
into consideration cases with more communicated nodes and
attackers in the entire area.
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