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Abstract—With range anxiety becoming the every day problem
for Battery Electric Vehicles (BEVs) owners, even more research
is being conducted in the field of BEV charging and Charging
Stations (CSs) scheduling optimization. In this context our work
addresses the problem of BEV charging in an urban environment
with no a-priori knowledge of vehicle arrivals. Our system is
modeled as a M/G/K queuing system. Two adaptive charging
algorithms are proposed, both of them relying on queue stability.
The first one charges BEVs up to a percentage of their maximum
capacity when charging queues become unstable. The second one
when detects instability charges BEVs sufficiently enough to reach
their next destination. Both algorithms can be used in combination
with an admission control algorithm that does not allow BEVs
that do not fulfill certain criteria into the charging stations. The
First-Come-First-Serve (FCFS) algorithm is directly compared to
our proposed algorithms, with prominent improvement concerning
congestion in charging stations and waiting time of electric
vehicles.

I. INTRODUCTION

As of 2017 a total of 3 million Electric Vehicles (EVs) have
been sold worldwide with an increase of 50% in the sales just
between 2016 and 2017. The predictions, based on the legisla-
tion voted and the constraints imposed by the European Union
and other developed countries, are that by 2030 more than 130
million EVs will have made their way in the market [1]. Electric
cars have the potential to reduce carbon emissions, local air
pollution and the reliance on imported oil [2]. The turn of the
automotive industry in the all-electric car is unprecedented [3]
and as a result a vast amount of resources is being invested
in the development of Battery Electric Vehicles (BEVs). The
market is still growing and there are many opportunities for
innovation and profit. The impact of this turn is obvious in
terms of Electric Vehicle Supply Equipment (EVSE) increased
availability and rapid battery development. The fact that all
major automotive companies have set the goal for electrification
of vehicles can also be seen by the fact that the development
of Internal Combustion Engines (ICE) has dramatically slowed
down, with some companies soon retiring them completely. This
shift will drastically change the driving habits of millions of
people as both the range and charging time of EVs are still not
comparable to those of an ICE vehicle [4].

To address this issue, in this paper we attack the problem
of EV charging in urban environments, by reducing the time
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an EV is waiting to be charged. We assume a stochastic
modeling of vehicle arrivals to our charging system. We adopt
an adaptive queuing-based approach by scheduling in a way
that keeps all the charging queues stable [5]. We propose two
algorithms for this purpose. The first algorithm adjusts the
target charging percentage of each EV when the queue grows
more than the service rate of the charging station. However,
when the queue backlog is stable, each EV battery is charged
at its maximum capacity. The second algorithm considers the
distance that EVs need to cover for their next trip. Every time
we observe queue growth the system enters what we call a
Next-Trip-Mode where each EV is charged just enough to reach
its next destination. As in the first algorithm, when the queue
backlogs are normal charging takes place at the maximum
EV battery capacity. The main advantage of our approach is
that we use an adaptive technique to minimize the waiting
time for charging the vehicles. Second, we do not need extra
infrastructure costs for the installation of multiple Charging
Stations (CSs). Third, we model and evaluate the system based
on realistic assumptions collected from the most recent trends
reported in the EV industry.

The rest of this paper is organized as follows. In section II we
provide a thorough analysis of the relevant bibliography on the
field of EV charging. In Chapter III we describe the fundamental
principles on which our model is built. In Chapter IV we
formulate our optimization problem and set the constraints
needed with a detailed explanation of our proposed algorithms,
while the results of computer simulations are presented in
Chapter V. Finally, Chapter VI concludes this work.

II. RELATED WORK

This rise in interest of both the society and the automotive
industry has led into considerable research in the field of BEV
charging and its integration into the existing infrastructure, as
can be seen in [6] and [7]. Those detailed articles review
the literature in BEV Charging Scheduling Optimization and
present the problem formulation adopted in every case.

In [8] the authors focus on optimizing the driving range
of EVs by deploying several mobile CSs beyond the static
CSs. They formulate an optimization problem and due to
its complexity they solve deterministic formulation of it that
leads to significant extension of the driving range. In [9] the
authors propose two techniques that exploit BEV charging
during their workplace parking and utilize it through both
Vehicle-to-Grid (V2G) and Grid-to-Vehicle (G2V) technologies.
Their two strategies minimize daily cost and Peak-to-Average



Ratio (PAR) respectively. In [10], the authors propose a pre-
dictive management technique in order to allocate optimally
the BEV deployment into a community micro-gird. With day-
ahead energy prediction and real-time optimal allocation they
achieve a reduction in netload ramping and total energy cost
as in the previous work. However both of these works do not
consider the BEV owner and his convenience, something which
is accomplished in [11], where a bi-objective optimization
problem is formulated that jointly minimizes operation cost of
the charging station and maximizes the convenience of the BEV
owners. Despite the effectiveness of the proposed algorithm the
authors did not take into account the diversity of BEV batteries,
and the stochastic nature of the BEV arrivals. Similarly in [12]
while a queuing model with V2G communication is proposed,
the BEV arrival rate is considered steady, the number of BEVs
in the system is predefined and there is no diversity in BEV
battery capacity or CS charging rate.

While planning under uncertainty has been addressed in
many settings such as transportation, energy, the literature
considering uncertainty in planning for EV charging network is
limited. Taking into consideration the stochastic nature of this
problem the authors in [13] study a Stochastic Programming
Approach for Electric Vehicle Charging Network Design. In
[14], a two-stage stochastic programming model is proposed
to be determined the optimal network of charging stations
for a community, considering uncertainties in the arrival and
dwell times of vehicles, the state of charge of arriving vehicles
batteries, drivers walking ranges and charging preferences.
However, this solution is computationally expensive for large-
scale instances and the best trade off between the number of
charging stations and the utilization of every charging station
must be found. Also in [15] a distributed algorithm is presented
to schedule EV flows into neighboring charging stations, so
that EVs are all appropriately served along the highway and
that all the charging resources are uniformly utilized. However,
the authors do not comment on how the losses in Vehicle-
to-Vehicle (V2V) or Vehicle-to-Infrastructure (V2I) wireless
communication affects the waiting time of vehicles for charging.
A very interesting technique that involves BEV admission
control and optimal charging is studied in [16]. The authors
propose a two-stage process that ensures both CS owner profit
and customer satisfaction. Several researchers also have tried
a game-theoretic approaches in dealing with BEVs Charging
Scheduling [17][18]. A notable effort in the same field, is
[19] where an online distributed game-theoretic approach has
been proposed that minimizes waiting time of BEVs in CSs.
The great majority of works above uses a stochastic modeling
several uncertainties such as total EV flows, arrival time, dwell
time, battery SOC at the time of arrival and charging preference
of EV drivers. However, our proposed scheme not only does
not use a-priori knowledge of vehicle arrivals, but also two
adaptive charging algorithms are proposed, both of them relying
on queue stability of CSs, without need for infrastructure cost or
wireless communication overhead between the electric vehicles.

TABLE I
EV EFFICIENCY

EV Type | Battery Capacity (<Wh) | EE (kWh/Km)
Small 25 0.1897

Mid-Size 50 0.1757
Large 75 0.2008
SUV 100 0.2487

III. SYSTEM MODEL

Our system consists of N CSs co-located in an urban envi-
ronment, each having K chargers. We adopt a queuing model
for characterizing the behavior of a CS. The system is modeled
as a M /G /K queuing system. In each CS the incoming EVs
are serviced in order of their arrival (FIFO). Charging time
is divided into 7" timeslots each having a duration 7 seconds.
These timeslots are indexed by ¢, that is ¢ € {1,2,...,T}.

A. Electric Vehicle Arrivals

As mentioned in Section II the literature typically assumes a
steady arrival rate in the models to capture vehicle behavior.
This may result in large deviations between simulation and
reality [16], [20]. In real life vehicle arrivals in refueling stations
(both electric and conventional) are more frequent in some
intervals of the day and less frequent in some others. Thus, in
our work EV arrivals in CSs are modeled as a Poisson stochastic
process, with a variable, i.e. time-dependent, mean arrival rate
An(t). As a result the number of EV arrivals during ¢ is ax (t)
~ Poiss(A(t)).

B. Electric Vehicle Model

Each EV i € [, arrives with a state-of-charge SOC!,, € [0,1]
which is a normally distributed random variable, where a value
equal to 1 indicates full battery and a value equal to 0 indicates
empty battery. Its battery capacity is modeled by a discrete
random variable B in kW h that follows the distribution shown
in Figure. 1. This probability mass function results from the
market shares each EV type occupies as mentioned in [13]. The
Electric Efficiency (EE) per Kilometer is presented in Table I
and was extracted from [21], which contained the latest data
on EE of All-Electric Vehicles as of 2018. Finally, every EV
knows the information about the distance of its next trip. This is
modeled as a continuous normally distributed random variable
T; € [0,120] given in K'm.

C. Charging Station Model

Every CS has a Central Control Unit (CCU). This CCU
monitors the charging procedure in every charger and is respon-
sible for gathering the charging information from the recently
arrived EVs as described in Section III-B. Every charger has
its charging rate Ly and a queue Qg(¢) which represents
the amount of energy the charger has to deliver to the EV
charging in time ¢. The charging rate depends on the type of
the charger [1]. The charger types we use in our model are
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Fig. 1. Battery Capacity Probability Mass Function

summarized in Table II. Also a binary variable x(t) € {0,1}
is used to indicate whether the kyj, charger is available at time
t (xi(t) = 0), or not (xx(t) = 1). Finally each CS has a
cumulative queue U, (t) for unallocated EVs, which in turn
represents the amount of energy the charging station has to
give to the EVs currently waiting to be charged.

TABLE 11
TYPES OF CHARGERS

Charger Type Charging Rate (kW)

Level-1 5
Level-2 15
Level-3 30

Tesla Super Charger <200

D. EV Allocation

Every CS has an Allocation Matrix H}, that contains all
2k (t) variables. Every time slot the CCU checks if there are
any arrivals a(t), and whether any charger is available. If there
is an available charger, the CCU allocates the #;, EV to the &y,
charger by queuing its battery requirement R" = SOC!"  B;
into the Q. If there is no charger available the CCU queues R;
into queue U,,. The allocation procedure is explained in detail
in Algorithm 1.

IV. PROPOSED ALGORITHMS

Having clarified our system model, we will now formulate
our optimization problem. First we define the charging time to
be the sum of the time an EV waits in the queue to be charged
wy and the time it takes to charge w.

w; = w! 4+ w§ (1)

Algorithm 1 EV Allocation Algorithm
Input: H' ', a(t), and SOC! , B; for currently arrived EVs
Output: H]t\, and Qg, Uy for every CS

1: for i = FirstArrived to LastArrived do

22 forn=1to N do

3 if a,(t) > 0 then

4 for k=1to K do

5: Check x(t)

6: if 25 (t) = 0 then
7: Qr < Qr + R
8 xk(t) =1

9: else if x4 (t) =1 then
10: U, + Uy + Rz"
11: end if

12: end for

13: end if

14:  end for

15: end for

16: Recalculate HY,
17: return HY

Also by average waiting time we will be referring to:

M
> wi(m)
Wi _ m=1
M

where M is the set of EVs that have been charged and have
left the station.

Our main objective is to minimize the waiting time w; for
each EV i. The original problem can be formulated as follows:

min Z w; 3)

;m € (1,2,..., M) 2)

el
subject to RI" < B; Vi € I (4a)
R™ < wf* Ly < (B; — RI™) (4b)
N K
> (Un+ > Q)
lim n=1 k=1 -0 (4C)
t—00 t

With constraint (4a) we ensure all EVs will have an initial
charging requirement lower than their battery capacity, when
entering the system. In constraint (4b) charging time wy is
bound to a maximum of a full battery charge B;. Finally
constraint (4c) ensures queue stability of the system [5].

The queuing dynamics of the system are defined as:

Q(r+1) = Q(7) +a(r) = I(7) )

Where Q(7 + 1) and Q(7) are the charging queue backlogs in
respective time slots, a(7) is the new energy demand and I(7)
is the energy demand that was satisfied during the current time
slot. As a consequence the above constraint (4¢) can be fulfilled
only when a(7) & I(7). However, this will result in some EVs
having to stop charging and leave the system even though they
do not have enough battery charge to reach another CS.



In order to issue with the inequity described above, we
propose two algorithms that both minimize the waiting time
but at the same time do not force EVs out of the system in a
way that is sub-optimal for them and the system overall.

A. Adaptive Percentage Charging Algorithm (APCA)

In this first algorithm we modify our optimization problem
(3) - (4c) so that the CCU adjusts the charging percentage up to
which every EV charges, if the current charging queues become
unstable. To achieve that we introduce a constraint variable
p;(7). This constraint variable has an initial value equal to one
(pi(7) = 1) when EV ¢ enters the system at time 7, and changes
according to the charging queue backlog.

So our optimization problem now is reformulated as follows:

min Z wj (6)

icl

subject to RI" < B; Vi € I (7a)
R™ <wix Ly < pi(t) * (Bi — R")  (7b)
N K
> (Un+ 32 Qr)
lim 2= L9 (7¢)
t—o0
pi(t) £dp € [0,1] (7d)

When the current queuing time becomes greater than the
average queuing time then the charging percentage drops by
dp. Respectively when the current queuing time is smaller than
the average queuing time, charging percentage grows by dp.
The APCA is explained in detail in Algorithm 2.

Algorithm 2 Adaptive Percentage Charging Algorithm

Input: w!, Qx(t), Un(t)
Output: p;(t)
I

1 if Y w! > w; then

i=1
pi(t) = pi(t—1)—dp
3: else if Y w! < w; then

=1
pi(t) =pi(t — 1)+ dp
end if
return p;(t)

»
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B. Adaptive Next Trip Charging Algorithm (ANTCA)

In the second algorithm we propose, when the CCU detects
queue instability, it changes its charging policy, so that EVs are
charged sufficiently enough to reach their next destination. Our
optimization problem is again slightly modified as shown in Eq.

(8) - (9¢) next:
min Z w; (3

iel

subject to Ré" <B; Viel (9a)
RI™ < w x Ly, < p;(t) (9b)
N K
Z (Un + Z Qk)
lim "= L =0 (9c)
t—o00 t
pi(t) €[0,1] (9d)

As in Algorithm 2, when waiting time exceeds the queue
average waiting time, the charging station charges EVs suffi-
ciently enough to reach their next destination, based on the
information they provide about the distance they have to drive.
When the current queue waiting time does not exceed the queue
average waiting time EVs are charged to maximum percentage.
The ANTCA is described in in Algorithm 3.

Algorithm 3 Adaptive Next Trip Charging Algorithm

Illpllt: wga Qk (t)a UN (t)
Output: p;(t)
I

1 if > w! > w; then
i=1
I

(98]

else if >~ w! < w; then
i=1
pi(t) =1
end if
return p;(t)

SAR AN

C. Admission Control Algorithm (ACA)

We designed an Admission Control Algorithm (ACA) that
minimizes charging demands in CSs, when EV arrivals increase.
Specifically with ACA, CSs have the option of rejecting some
EVs whose charging demands are smaller than those of other
EVs. Let us assume, for example, that a CS is currently charging
its EVs at a maximum of 60% of their maximum battery.
When an EV arrives with a SOC},, > 60% it is rejected. This
threshold used in the example, has proved to be the optimal
in terms of waiting time under extensive simulations. We can
assume that the EVs that are rejected by the CSs have such a
sufficient SOC},, value in order to reach their next destination
or the closest CS. The proposed ACA obviously minimizes
waiting time observed in CSs and is an additional technique
used in conjunction with either of the algorithms described in
this Section. This combined charging policy can be assumed
as a kind of smart charging technique, in which the charging
priority of EVs is defined according to the remaining charging
time, the remaining electric energy needed to be charged for
EVs and the maximum operating power of the charger such
as [22]. However in the proposed charging policies the queue
stability issue is also taken into account.

V. PERFORMANCE EVALUATION

Our simulation is conducted in an urban environment in a
full 24-hour cycle. During this cycle there are periods with
difference in frequency of arrivals as can be seen in Figure
2. We consider CSs that have three chargers, two of them are



Algorithm 4 Admission Control Algorithm
Input: Qk7 UN7 Y23 (t)7 SOCZrn B;
Output: HY
if pi(t) > SOC;, then
Allocate EV per Algorithm 1

end if
t
return Hpy

9 12 15
Time (h)
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Fig. 2. EV Arrivals versus time.

Level-2 and one is Level-3. The total EVs entering each CS are
average to 450. This happens because we opted for an arrival
process which is of stochastic nature.

Our proposed algorithms APCA and ANTCA are put to
an initial comparison with the First-Come-First-Serve (FCFES)
algorithm which is the basic serving algorithm of Queuing
Systems in order to identify their applicability to more com-
plicated Queuing Systems. The ACA method, which is a kind
of smart charging technique, is also applied to both of the
proposed algorithms with positive effects in the minimization
of the waiting time.

A. APCA & ANTCA Queue Congestion Evaluation

Here we evaluate the effect the proposed algorithms have on
the system. As we can see in Figure 3 with ACPA we achieve
almost a 25% reduction in waiting time over FCFS algorithm.
However, there is still room for improvement, something that
ANTCA achieves, practically eliminating waiting time when
queues are unstable.

Concerning the average queue backlog we can see in Figure
4 that the results were similar as above. In FCFS it is expected
that the average queue backlog will keep growing as no EV is
leaving until it is fully charged. With APCA we see that, when
the queue starts growing so that the system becomes unstable,
some EVs leave the system because they are charged not at
100% as in FCFS but at a lower percentage. Finally ANTCA is
the algorithm that burdens the least the CS as when it detects
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Fig. 3. Average waiting time versus time.

instability starts charging EVs sufficiently enough for their next
trip.
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Fig. 4. Average queue backlog

We observe the same behavior in the number of total EVs in
the system as seen in Figure 5. It is worth noticing that both
APCA and ANTCA have almost identical behavior concerning
both Average Backlog and Total EVs in the system as they have
the same notion of a stable system embedded in them.

As mentioned in Section IV-C, another way to decongest CSs
is via ACA. The results, shown in Figure 6, reveal an obvious
reduction of the average waiting time EVs experience for APCA
and in Figure 7 for ANTCA.

Table III provides a summary on the evaluation of our algo-
rithms. It can be seen that neither of the proposed algorithms is
superior in every way to the others. APCA does offer a higher
SOC°“ but it charges 20% less EVs than ANTCA in the same
time period. On the other hand, we see that the application of
ACA on both the proposed algorithms does reduce the load
from the CSs but does not increase SOC°“! dramatically. This



TABLE III
ALGORITHM EVALUATION SUMMARY
Algorithm FCFS | APCA | APCA+ACA | ANTCA | ANTCA+ACA
Rejection Probability 0 - 0.75 - 0.7
EVs Charged (%) 14 40 25 20 30
Mean SOC°% 1 0.58 0.60 0.48 0.50
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Fig. 5. EVs in the system Fig. 7. Effect of ACA on ANTCA
w algorithms can be applied in charging stations located in urban
8 2Egﬁ+ AGA 1 environments, with a fraction of charging stations adopting
21 | APCA and another fraction of them ANTCA. We believe that
= in combination those two algorithms can handle charging rush
g 61 )l hours, without any modification to the charging stations or the
Esl i power grid. A detailed exploration of such a combined approach
2 is part of our future work. Furthermore, we also plan to evaluate
g 41 i our approach over networks of CSs, as part of our future work.
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