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Abstract—In recent years, Downlink (DL) throughput estima-
tion in Mobile Broadband (MBB) networks has gained immense
popularity and it is expected to become a vital component of the
upcoming fifth generation (5G) systems. Plentiful adaptive video
streaming algorithms greatly rely on accurate DL throughput
predictions to adapt their mechanisms and ensure high Quality
of Service (QoS) to the end-users. Thus far, conventional DL
throughput estimation approaches, also known as speed tests,
require an extensive exchange of TCP traffic over the network
for an allocated time duration. While such tools appear to deliver
trustworthy results, they turn out to be inefficient when mobile
subscriptions with limited data plans are engaged.

In this paper, we propose a supervised Machine Learning (ML)
solution for DL throughput estimation that aims at delivering
highly accurate predictions while significantly limiting the over-
the-air data consumption. We capture the network performance
metrics by exploring both crowdsourced and controlled test-
ing methodologies. We leverage RTR-NetTest, a platform of
broadband measurements provided by the Austrian Regulatory
Authority for Broadcasting and Telecommunications (RTR), and
MONROE-NetTest, its counterpart wrapper built as an Experi-
ment as a Service (EaaS) on top of Measuring Mobile Broadband
Networks in Europe (MONROE). Results reveal that our solution
can achieve a 39.7% reduction in terms of data consumption
while delivering a Median Absolute Percentage Error (MdAPE)
of 5.55%. We further show that accuracy can be traded-off, for
example, a significant data consumption reduction of 95.15% can
be achieved for a MdAPE of 20%.

Index Terms—Downlink (DL) Throughput Estimation, Mobile
Broadband (MBB) Networks, Machine Learning (ML), Multiple
Linear Regression (MLR), Support Vector Regression (SVR),
Random Forests (RF)

I. INTRODUCTION

Mobile Broadband (MBB) networks underpin numerous
vital operations of the modern society and are arguably becom-
ing the most important piece of the modern communications
infrastructure in the world. The use of MBB networks has
exploded over the last few years due to the immense popularity
of mobile devices such as smart-phones and tablets, combined
with the availability of high-capacity networks. According to
the Cisco Global Mobile Data Traffic Forecast1, there will
be 11.6 billion mobile-connected devices by 2021, exceeding
the world’s projected population at that time. Moreover, by
2021, the emerging fifth generation (5G) mobile connections

1Cisco Visual Networking Index: Global Mobile Data Forecast Up-
date, 2016-2021, https://www.cisco.com/c/en/us/solutions/collateral/service-
provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html

will generate 4.7 times more traffic than the average fourth
generation (4G) connections. Among all mobile content types,
more than three-fourths of the world’s mobile data traffic will
be video. These facts motivate researchers to further enhance
the capabilities of MBB networks to cater for plethora of new
applications and services (e.g. user-generated live streaming
services, IP telephony, video chat applications, etc.) and a wide
variety of mobile devices. Therefore, it is essential to better
understand the fundamental characteristics of MBB networks
and how to characterize network performance. This is crucial
not only for improving the user’s experience for the services
that are running on the current MBB infrastructure, but also
for providing feedback to the design of the upcoming 5G
technologies.

In recent years, the term mobile speed (commonly repre-
sented by Downlink (DL) throughput) has become synony-
mous with the performance of Mobile Network Operators
(MNOs). A good estimate of the DL throughput is essential
for myriad tasks that include network performance optimiza-
tion, traffic management, application provisioning and crowd-
sourced reporting. Service providers, whose business depends
on MBB networks, can use these estimates to optimize the
performance of their services. Application developers can also
exploit these results to adapt their applications towards en-
hancing Quality of Service (QoS). For example, Youtube and
Netflix heavily depend on bandwidth estimation techniques
for video rate adaptation. They leverage accurate bandwidth
predictions and video performance models to provide a better
service to their subscribers. Therefore, it is of utmost impor-
tance to reveal the key factors that are required to accurately
characterize and predict the mobile speed in MBB networks.

Current crowdsourced speed test tools provide estimates
of throughput by initiating parallel TCP connections over
the network for an allocated time duration. When no data
limitations exist, these approaches seem to work sufficiently
well, delivering reliable results. However, when mobile sub-
scriptions with limited data plans are involved, a solution to
restrain data usage is imperative.

In this paper, we target to characterize DL throughput
and build an empirical supervised model that exploits the
potential of Machine Learning (ML), provides highly accurate
predictions and reduces the over-the-air data consumption.
The main research questions that we answer in this paper



are the following: What is the minimum set of network
features that can characterize DL throughput accurately? Is
the metadata information we extract from the end devices
adequate to capture and predict DL throughput? If not, which
are the additional parameters that we need to measure? Can
we extract these parameters via passive measurements, or
active ones are required? And how much data from active
monitoring do we need to increase DL throughput estimation
accuracy? Considering that there may be a leeway regarding
the accuracy of the DL throughput estimate, we investigate
scenarios where accuracy can be traded for a lower amount of
data consumption. For example, a video streaming application
might be fully operational with a coarse estimate of the end-
to-end DL throughput, while high accuracy is usually desired
for monitoring performance.

We answer these questions by leveraging the power of
ML to extract information from a data-rich environment
while analyzing large amounts of controlled and crowdsourced
measurements from operational MBB networks. Assuming
a non-cooperative environment without access to network-
side information, we present a supervised ML solution that
captures the relationship between network performance and
the underlying factors that affect it, as perceived from the end-
user plane.

Our main contributions in this paper are twofold:
1) We introduce a feature engineering process that aims to

derive features from raw parameters towards enhancing
the performance of ML models.

2) We propose a supervised ML approach that leverages
historical network data to estimate DL throughput with
high accuracy while reducing excessive amounts of
active measurements. We show that by leveraging our
approach we can achieve a 39.7% reduction in the
amount of data an end-user would normally transfer
to actively measure DL throughput with a conventional
speed test tool and only minimally reduce the measure-
ment accuracy, providing a Median Absolute Percentage
Error (MdAPE) of 5.55%. Moreover, we show that we
can trade-off accuracy, depending on the application’s
requirements, where a significant 95.15% data consump-
tion can be achieved for a MdAPE of 20%.

II. EXPERIMENTAL SETUP

There exists a plethora of methodologies adopted to capture
performance metrics for MBB networks that can be clustered
in two categories. The first is crowdsourced testing, where the
assistance of a group of people is required to extract network
related characteristics. The second is controlled testing, where
experimentation takes place in a more discipline manner where
less factors can influence the outcome (e.g. hardware testbeds,
drive tests with benchmarking equipment, etc.).

A. NetTest Measurement Methodology

In this paper, we rely on the NetTest measurement method-
ology to collect data from operational MBB networks. First,
we retrieve the measurements results from running NetTest

with a crowdsourced approach (as offered by RTR, see Section
II-B). Then, we retrieve similar results from running NetTest
with a controlled approach (as offered by Measuring Mobile
Broadband Networks in Europe (MONROE), see Section II-
C). We highlight the six phases that a NetTest speed test
undertakes in the following order: I) Initialization, II) Pre-
Test Download, III) Ping Test, IV) Download Test, V) Pre-Test
Upload and VI) Upload Test.

Initialization consists of the client connecting to the control
server and undertaking necessary authentication procedures
before making a measurement request, which, when granted,
starts the communication with the measurement server. The
above exchange is very brief and consists of an almost constant
number of packets. Once the connection is established, Pre-
Test Download begins. Both of the Pre-Test phases are under-
taken to ensure that the connection is in an active state. During
Pre-Test Download, the client requests and the server sends a
data packet in each active thread. While the duration of the
phase has not exceeded its nominal value, the client requests
a data block of double the size compared to the last iteration
step. The transfer of the last data block will be completed
even if the duration has already exceeded its nominal value.
Pre-Test Upload works analogously to Pre-Test Download, but
with the client as the sender and the server as the receiver.

Ping Test consists of the client sending a fixed number of
TCP pings to the server to test the latency of the connection.
Download Test and Upload Test are the last components of a
speed test, where multiple TCP threads are opened, and within
each of these, the receiver requests and the sender sends data
streams that consist of fixed size packets. After the nominal
duration, the sender stops sending packets on all connections.
The last packet for each thread is transmitted at its entirety
where DL and Uplink (UL) throughput are estimated. The
default duration value as provided by RTR is set to 7000 ms
while in MONROE it acts as a hyperparameter with its default
value set to 10000 ms. To maintain consistency between the
two platforms, we alter the duration value of the latter to match
the formers’ one.

B. RTR Crowdsourced Testing

The elemental notion behind crowdsourcing is to encourage
people to utilize their end devices and run specially designed
application tests, widely known as speed tests, to generate
and collect explicit information regarding their connection.
From end-users’ perspective, speed tests come at a benefit,
thus justifying the (sometimes costly) data consumption. For
example, end-users find speed tests convenient when assessing
the performance of their own network connection in terms
of throughput and latency. Examples of crowdsourced plat-
forms include Speedtest2, OpenSignal3, MobiPerf4 and RTR-
NetTest5. Among the available tools, RTR-NetTest is the only

2www.speedtest.net
3www.opensignal.com
4www.sites.google.com/site/mobiperfdev
5www.netztest.at



one that openly provides via its webpage the source code
together with an open dataset, called RTR Open Data.

Data Access. The results of RTR-NetTest are available as
CSV and JSON files. The CSV files are organized in monthly
bins, and can be downloaded as zipped archives. The JSON
files are linked to single measurements, hold a wider space of
features and can be fetched by using a RESTful API6.

C. MONROE Controlled Testing

Unlike crowdsourcing, experimentation in a controlled envi-
ronment implies that certain aspects of the experimental setup
can be controlled to eliminate certain bias. An example of
such testbed is MONROE, the first open access, European-
scale platform that allows for research on operational MBB
networks [1], [2]. It comprises of 450 stationary and mobile
nodes widely distributed across Norway, Sweden, Italy and
Spain while it is continuously expanding. The architecture of
a MONROE node includes an Accelerated Processing Unit
with AMD 1GHz dual core 64 bit processor and 4GB DRAM.
Nodes are multi-homed to three MBB networks using commer-
cial grade subscriptions. The three 3G/4G MC7455 miniPCI
modems support LTE Category 6 while WiFi connectivity is
available through a built-in dual band AC WiFi card. The op-
erating system is based on a Debian Linux/GNU distribution.
A GPS system is utilized for tracking their location in the
case of mobile nodes. To ensure reliability and provide agile
reconfiguration, MONROE runs experiments inside Docker
containers. The authors in [3] package RTR-NetTest as an
Experiment as a Service (EaaS) for MONROE (under the
MONROE-NetTest tag). We will use the measurement results
of MONROE-NetTest which by design allow for compatibility
at the methodology of the RTR-NetTest crowd campaign.

Data Access. MONROE-NetTest runs in MONROE as a
Docker container7 and produces four output JSON files cov-
ering the result fields, such as DL and UL throughput and
the median TCP payload Round Trip Time (RTT), raw time
series for each TCP flow, detailed TCP statistics and traceroute
information. We access the openly available result files that are
stored in the MONROE private database.

III. DATASETS

In this section we describe in detail the NetTest raw param-
eters and the derived model features while we unveil statistical
properties regarding the two datasets.

A. Statistical Properties

RTR-NetTest consists of 5038 observations collected be-
tween January ’18 and October ’18 (10 months timespan).
MONROE-NetTest consists of 3174 observations collected
from 6 MONROE testing nodes between October ’17 and
February ’18 (5 months timespan). We split both datasets in

6During an HTTP call, a unique test identifier (open-test-uuid) is required.
An example of a GET request is as follows: data.netztest.at/opendata/opentests/
〈open-test-uuid〉?〈parameters〉

7www.github.com/MONROE-PROJECT/Experiments/tree/master/
experiments/nettest

training data (67%) and testing data (33%) by using system-
atic sampling to ensure that they are drawn from the same
distribution. In ML, a good model should be able to capture
the intrinsic information of the training data but also perform
well on the never seen testing data, which basically means that
it is generalizable. We remove invalid or false measurements
that can affect the reliability of our results (e.g. samples with
negative values for throughput or latency, Reference Signal
Received Power (RSRP) or Reference Signal Received Quality
(RSRQ) values outside the licit range, etc.) However, we do
not treat extreme but rational values as outliers since they can
explain signs of variation in the data.

B. Features

NetTest8 parameters are divided in six clusters: test, location,
device, network, coverage and performance. The CSV files
consist of 39 parameters, while additional attributes bring the
number up to 76 for the JSON files. Such examples include
roaming information, amount of data volume transferred per
interface, an extensive list of location related features, and
many more9. The most high-profile parameter is called speed
curve (speed_curve). It is a compound parameter and it
is only available in the JSON files. A speed curve covers
the historical per-thread time series evolution of the Ping
Test, Download Test and Upload Test. However, and only for
RTR-NetTest, an aggregated (between the available threads)
estimation is returned instead due to several cases of missing
data. As a result, for MONROE-NetTest, we average between
the threads as a pre-processing step. Each sequence is unevenly
spaced with time intervals that lie between 50 ms and 100 ms
in average. The total number of bytes successfully transferred
after the nominal period of a Download Test is represented as
downlink. Upon conversion, downlink can be translated
to the link capacity.

We split the space of attributes in two tables. Table I outlines
the NetTest raw parameters while Table II the NetTest derived
model features. We provide a short description alongside.

We filter the data to account only for Android de-
vices (platform) with LTE connectivity (network_type,
e.g. UMTS, GSM, LTE, etc. and cat_technology, e.g.
3G, 4G, etc.) and no national or international roaming
(roaming_type). In addition, we filter by geo location
source (loc_src), NAT/IP-version (nat_type) and test
server (server_name, namely RTR https 10G AT) to elim-
inate unwanted bias. The number of active TCP threads
(num_threads) is three for RTR-NetTest and five for
MONROE-NetTest. The latter can be configured (if necessary)
during the docker deployment phase.

The LTE category (lte_cat) characterizes an end device
in terms of network capabilities, thus, we include it as a
categorical feature. In MONROE, however, due to the same
modems used in all the nodes, lte_cat is the same for all

8We refer to NetTest when the information following is common for both
platforms except implied otherwise.

9We refer the reader to the RTR-NetTest Open Data Interface Documenta-
tion for a complete list of available parameters and their description.



TABLE I: NetTest raw parameters alongside a short description.

ID Raw Parameter Short Description
1 speed_curve Historical evolution of speed test
2 network_type Type of the network e.g. GSM, LTE
3 cat_technology Technology category e.g. 3G, 4G
4 platform Operating system
5 roaming_type Roaming status
6 model Device brand
7 network_mcc_mnc Home network identification code
8 sim_mcc_mnc Access network identification code
9 num_threads Number of threads
10 loc_src Source for the geo location-data
11 nat_type Type of connection
12 server_name Name of the test server
13 land_cover Classification of the land cover
14 lat Latitude
15 long Longitude
16 time_utc UTC date and time

TABLE II: NetTest model features alongside a short description.
Features in bold are only available for RTR-NetTest. We represent
the scalar response in Italics. The horizontal lines split the pool of
features in three clusters based on how pricey they are to collect in
terms of data consumption.

ID Model Feature Short Description
1 ping_avg Latency average (ms)
2 ping_std Latency standard deviation
3 rsrp_avg Signal strength average (dBm)
4 rsrq_avg Signal quality average (dB)
5 time_of_day Hour of the day
6 weekend Weekend indicator
7 network MNO
8 move Distance covered (Km)
9 lte_cat LTE category
10 UL_beta0 Intercept of the UL regression line
11 UL_beta1 Slope of the UL regression line
12 DL_beta0 Intercept of the DL regression line
13 DL_beta1 Slope of the DL regression line
14 downlink DL transferred bytes

measurements, and hence, it is not considered as a feature.
At the time of writing, there are 19 available LTE categories,
and from end-user’s perspective, the primary difference lies on
mobile speed. Consequently, higher category devices can pull
the average throughput up and bias the reported results. Within
the scope of this paper, we select the five most popular mobile
devices, corresponding to two LTE categories that we extract
by using the device brand (model). An alternative way would
be to include model as feature, but we choose to use the
category in order to focus more on network related parameters
rather than individual brands. Table III summarizes the mobile
brands, DL/UL throughput values and LTE categories. It
should be noted that these are only theoretical speeds that
can only be observed under ideal conditions (e.g. minimum
interference, transmissions carried out in immediate proximity
of the eNodeB, etc.).

RSRP (rsrp_avg) is the power of a reference received
signal at the end-user side. It ranges between -140dBm and
-44dBm. Likewise, RSRQ (rsrq_avg) is a metric of the
wireless channel quality, that is the ratio of RSRP versus
the total received signal power, including interference and
noise, and it ranges between -19.5dB and -3dB. Both of the

TABLE III: List of mobile brands alongside their theoretical speeds
(in Mbps) and LTE category. Order is based on popularity.

Mobile brand DL UL LTE category
Samsung S8 (SM-G950F) 979 150.8 16/13
Samsung Galaxy S7 603 150.8 12/13
Samsung SM-N950F 979 150.8 16/13
Samsung SM-G955F 979 150.8 16/13
LG G5 603 150.8 12/13

features are not present in the MONROE-NetTest reported
results. Instead, we collect them from the MONROE metadata
with node ID, Integrated Circuit Card Identifier (ICCID) and
timestamp treated as primary keys.

To account for temporal effects, we derive the hour of day
(time_of_day) and a weekend indicator (weekend, 1 if
the measurement took place during the weekend, 0 otherwise)
from the absolute timestamp (time_utc, in POSIX time).

MNOs are in charge of network configurations, spatial
deployment of eNodeBs and traffic policies applied over
LTE. Furthermore, they regulate the QoS provided to their
customers and they settle the different tariffs and subscription
plans. We derive network, a three-level categorical feature
that stands as an identifier for each MNO (i.e. A1, T-Mobile
A and 3 AT for RTR-NetTest, and Telenor, Telia and ICE
for MONROE-NetTest). We only consider MNOs that own
the physical network infrastructure by using a combination
of sim_mcc_mnc and network_mcc_mnc which indicate
the Mobile Country Code and Mobile Network Code as read
from the SIM card (i.e. home network), and the network that
is currently in use (i.e. access network), respectively.

The end device geographical position is determined with
a combination of latitude (lat) and longitude (long) co-
ordinates. Both parameters are available as time series at-
tributes and we leverage them to estimate the distance covered
throughout a speed test, denoted as move and measured
in Km. In MONROE, only stationary nodes are considered,
therefore, move is not used as a feature. We must point out that
move declares the distance covered throughout the complete
NetTest experiment (all six stages). Since the duration of the
speed test is known, it can be interpreted to the end-user’s
speed rate. To further remove any location related bias, we
consider the most prominent land cover areas (land_cover)
in both countries (Austria and Norway).

In addition, a speed curve features the results of a Ping
Test. As we mentioned earlier, a Ping Test takes place prior
to the Download Test and Upload Test and consists of 10 (in
most cases) individual measurements. We represent latency
by average (ping_avg) and standard deviation (ping_std)
statistics.

IV. FEATURE ENGINEERING

One of the main contributions of this paper is the feature
engineering methodology. We split this process in two phases.
First, we introduce a linear interpolation method to guarantee
that all speed tests follow a consistent time series structure.
Second, we propose a curve fitting scheme to compress the



historical data information and consequently cut down the
data size and help fight overfitting during the training phase.
Feature engineering aims to reshape and prepare the datasets
in an appropriate manner before we move to the ML territory.

A. Linear Interpolation

Since the speed curve granularity can slightly differ between
samples or threads, we apply an interpolation method to sub-
sample the sequences in equal spaced segments and preserve
consistency across the two datasets.

In Listing 1, we illustrate the interpolation algorithm using
a pseudocode. The input parameters comprise of the dataset,
a level of granularity (70 ms) and the number of segments
that each sequence is split (100)10. A high level of granularity
may end up as an issue due to missing data, while a low
level of granularity may hurt the model accuracy. Therefore,
its selection needs to be a compromise between the two. At
every repetition, we compute the two interpolated coordinates,
and the outcome of the linear interpolation formula yields the
number of bytes transferred up to that point in time. We repeat
the linear interpolation algorithm for UL.

Algorithm 1 Linear Interpolation Algorithm

Input: data, g_level, no_segments
Output: DL_v, UL_v

1: for i = 1→ length(data) do
2: for j = 1→ no_segments do
3: x← [tDL1, DL1] . Coordinates for data point A
4: y ← [tDL2, DL2] . Coordinates for data point B
5: interval← g_level ∗ j
6: interp← function(x, y, interval)
7: Store the outcome
8: Repeat for Upload
9: end for

10: end for

B. Curve Fitting with Simple Linear Regression

In Listing 2, we depict the pseudocode that translates each
speed curve into coefficients by leveraging a simple linear
regression scheme. After the linear interpolation algorithm,
each sequence is divided in 100 evenly spaced segments.
First, we cut the time dimension in batches of 350 ms (i.e.
5 segments11). Then, we fit a simple linear regression model
with input data from the first batch to capture the relationship
between the response variable (bytes_transferred) and
the explanatory variable (time_elapsed). We store the
regression coefficients DL_beta0 (intercept) and DL_beta1
(slope) in a new table. At the next iteration, we linearly con-
catenate the adjacent batch to form a larger curve (i.e. 700 ms).

10We calculate the number of segments from dividing the default speed test
duration (i.e. 7000 ms) by the level of granularity.

11A basic assumption of a simple linear regression model is that at least two
data points are present, while to observe evidence of departure from linearity
three data points are required. Although we set the level of granularity to 70
ms to avoid dropping sequences with missing data, such cases may still exist.
Therefore, we select batches larger than three segments.

Likewise, we fit a linear regression model with a new pair of
regression coefficients. We carry out the same process until the
regression line fits the entire sequence. The new table length
equals to length(data) ∗ no_segments/no_batches
with the remainder of the features in Table II replicated row-
wise12. We repeat the curve fitting algorithm for UL.

Let n represent the number of points in a batch, then
the simple linear regression model is expressed as Yi =
β1Xi + β0 + εi, where Yi, i ∈ Z : i ∈ [1, n] is the
bytes_transferred and Xi is the time_elapsed. The
regression coefficient (β1) shows the magnitude of the effect
that the explanatory variable has on the response variable given
that the remainder of explanatory variables remain constant
(if any). The sign signifies whether this effect is positive or
negative. Last, β0 stands for the intercept term while εi is the
prediction error.

Algorithm 2 Curve Fitting Algorithm

Input: data, DL_v, UL_v, no_segments, no_batches
Output: Linear Regression coefficients

1: t← Split time in k = no_segments equal segments
2: for i = 1→ length(data) do
3: for j = 1→ no_batches do
4: x← DL_v[1 : (5 ∗ j)]
5: y ← t[1 : (5 ∗ j)]
6: DLfit← fit(x, y) . Fit a regression model
7: Store the coefficients
8: Repeat for Upload
9: end for

10: end for

V. MODEL DESIGN

Next, we provide a high level description of the forecasting
algorithms that we use during the DL throughput estimation
phase. Moreover, we leverage a feature selection approach to
obtain a subset of the NetTest model features and enhance the
performance of the ML models.

A. Overview of the Forecasting ML Algorithms

To estimate the number of bytes transferred at each speed
test duration scenario, we fit a supervised ML learning model.

1) Multiple Linear Regression (MLR): In statistical mod-
eling, Multiple Linear Regression (MLR) is an elementary
but rather efficient technique for capturing the relationship
between a response (dependent) variable and two or more
explanatory (independent) variables by fitting a line through
a multi-dimensional space of data samples. Despite the fact
that more complex approaches, such as principal component
analysis and neural networks, outperform MLR in terms of
accuracy, it delivers a good trade-off between computational
complexity and performance [4]. Throughout the years, linear

12Besides the regression coefficients, distance covered (move) also changes
across different batches (in case of mobility). Unfortunately, the available
time series data for lat and long are low granular, therefore, we make the
assumption that move has identical values for the entirety of scenarios.



regression analysis has found application in a wide variety of
fields including business, economics and medicine [5]–[7].

To approximate the optimal solution, MLR leverages the
linear least squares fitting approach that minimizes the sum
of squares between the predicted and the ground-truth data
[8]. The formal mathematical expression of a MLR model is
a generalized form of the Equation in Section IV-B. Let f
represent the number of available explanatory variables, then
b1 and Xi can be altered with bi and Xj,i respectively, where
j ∈ Z : j ∈ [1, f ] and i ∈ Z : i ∈ [1, n].

2) Support Vector Regression (SVR): The concept behind
Support Vector Regression (SVR) is similar to this of Support
Vector Machines but instead of classes, the output consists
of real value predictions [9]. A prime advantage of SVR is
that the output model does not depend on the distribution of
the underlying data, unlike MLR, but instead relies on kernel
functions. A kernel function transforms the data from a non-
linear space to a linear space and makes it possible to perform
the linear separation. A list of the most commonly used kernel
functions include the Linear, Polynomial and Radial Basis.

3) Random Forests (RF): Ensemble learning is the process
by which multiple algorithms are combined to solve a clas-
sification or regression related task. During the past decade,
numerous ensemble learning methods have been developed
with the main goal to improve the performance of previous
baseline approaches. Random Forests (RF) is one of the
most popular and powerful ML algorithms that is based on
Bootstrap Aggregation or Bagging [10]. That is, a horde of
decision trees are build by using bootstrap samples of the
training data. The final predictions are the average of the
predictions across the different trees. Throughout the years RF
has found success to a wide variety of applications in fields
such as geography, computer vision, and ecology [11]–[13].

There are two principal hyperparameters that highly dictate
the performance and computational complexity of RF. The first
is the number of features randomly sampled within each indi-
vidual tree. This hyperparameter heavily relies on the data and
it is usually defined either as the square root of the available
explanatory variables or by using a cross validation scheme
towards finding the optimal value. The second is the number
of trees that are used during the prediction phase. The selected
value should provide a good compromise between accuracy,
computational complexity and probability of overfitting in the
training data.

B. Feature Selection

In ML and data analytics, the process of selecting the
most important features for a predictive model is known as
feature selection or variable selection. Feature selection is
independent of any genre of ML algorithms and it is recom-
mended as a preprocessing stride before progressing to any
algorithmic paradigms. The objective of feature selection is
two-fold: first, to eliminate possible features in the dataset that
constitute noise and, second, to reduce the outcome error and
subsequently enhance the accuracy of the model. Therefore,
all features that do not contribute valuable information to the

learning algorithm are removed. Variable selection not only
reduces the feature space but also helps prevent overfitting
on the training data. As a side note, variable selection is a
special case of dimensionality reduction. The main point of
difference though is that in dimensionality reduction the new
set of features do not have to be a subset of the original set but
can rather be synthetic outcomes from linear combinations. In
this work, we do not consider dimensionality reduction as data
does not suffer from the curse of dimensionality.

Data collection when it comes to speed tests is by no
means an easy or a forthright process and at times comes
with a certain cost, in terms of data required to collect a spe-
cific attribute. Although there exists no available quantitative
variable that measures cost in neither datasets, we can still
approximate it by the amount of data consumed which results
in a different monetary cost depending on the data plan of the
user. That being said, there are numerous features that we can
collect free of charge. Some examples include the LTE device
category, MNO, RSRP, RSRQ, etc. On the contrary, collecting
mobile and network related data such as throughput, requires
a clear-cut number of over-the-air transmissions, hence, data
consumption is inevitable. In Table II, we divide the space of
features in three diverse clusters based on how pricey they are
to collect in terms of data consumption.

Features 1− 9 correspond to the group that does nor incur
any cost and it is denoted with the CL1 identifier. In LTE
networks, the mobile device systematically measures the Re-
ceived Signal Strength Indication (RSSI) and RSRP to decide
if a handover between two cells is in order. Both parameters
are reported by the Android API while RSRQ is determined by
using the expression: RSRQ = N ∗ (RSRP/RSSI), where
N is the number of available resource blocks in the channel.
Latitude and longitude dictate the geo-location of the mobile
device as exploited to estimate the covered distance during
a speed test. Both coordinate values are available from the
built-in GPS tracker system. The temporal related parameters
and the MNO name are available from the Android clock
application and a combination of the home and access network,
respectively. A number of continuous transmissions of TCP
ping packets are required to estimate latency between the client
and the server. Due to the data exchange being brief, latency
related statistics are appraised as zero-cost features.

Download Test and Upload Test are the main components of
a speed test where multiple TCP threads between the client and
the server are opened for a fixed duration of time to estimate
throughput. In terms of data consumption, Download Test test
is more expensive as the supported bandwidth for the two links
is most of the times not symmetric. Therefore, we split the
remainder of the features in two clusters. CL2 consists of the
UL related features (10 and 11) and CL3 of the DL related
features (12− 14).

Prior to the variable selection scheme, we fit a MLR
model with downlink as the dependent variable and all
the remaining features as the explanatory variables. This is
a preliminary step that aims to divulge the impact of higher
speed test duration times on the estimation error. We define



the error metric as the absolute values of the residuals divided
by the groundtruth values. The median value is also known
as MdAPE. Figure 1 depicts error boxplots along different
speed test duration scenarios. To capture signs of diversity
between the two datasets, boxplots are overlaid. We observe
that variance and MdAPE follow a decreasing trend for higher
duration scenarios. Moreover, RTR appears to have a slight
edge over MONROE that is due to differences between the
datasets characteristics. Such examples include geographical
differences (Austria vs Norway), number of features (move
and lte_cat do not exist in MONROE), operating systems
(Android vs Debian Linux/GNU), data collection timespan (10
vs 5 months) and so on. However, feature selection reveals
that any superiority can be diminished or yet reversed if less
features are accessible.

Forward Selection is a well-known data-driven iterative
approach that makes use of a model fit criterion to decide
on the importance of the available explanatory variables. The
forward selection algorithm begins with a null model, where
zero features are present, and gradually adds features that
improve the regression fit the most. The process terminates
when no significant improvement is obtained by the addition
of a feature. Examples of stopping metrics include the adjusted
R-squared, Akaike Information Criterion (AIC), Bayesian In-
formation Criterion (BIC), and probability values (P-values).
In this paper, we select the adjusted R-squared which is
defined as the percentage of the dependent variable variation
that is explained by the linear model. More specifically, it
measures how close the data points are to the regression
line, or in other words, how well the model fits the data. In
MLR, Adjusted R-squared is also known as the coefficient of
multiple determination. Opposed to R-squared, which always
increases along the number of features, adjusted R-squared
adds a penalty term when increasing the number of features
in the predictive model. Since we split the available features
in clusters, forward selection takes place in levels. During the
first level, we consider only features from CL1 as available
candidates for selection. When no improvement is observed,
we update the list of candidates with features from CL2 or
CL3. That way, we clearly show the contribution of each
cluster to the DL throughput estimation. To cover a variety
of scenarios and quantify the error diversity, we select subsets
from both datasets for five different duration scenarios (0.35 s,
0.7 s, 1.4 s, 2.8 s and 4.2 s). Therefore, we repeat the forward
selection algorithm five times for each dataset.

In Figure 2, we present results from the forward selection
algorithm. We divide the subplots in three parts, each one
mapping to a cluster as defined above. The x-axis shows
the ordering of the features at each iteration of the forward
selection process while the y-axis shows the corresponding
adjusted R-squared values. All five time duration scenarios are
illustrated by a dotted line as sketched in the legend. Lines in
CL1 coincide among different time durations since the features
involved remain unchanged through time. We observe a slight
improvement when adding features from CL2. However, the
bump in adjusted R-squared is paltry even when the duration
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Fig. 1: Error boxplots along different speed test duration scenarios.
To better visualize the differences between the two platforms, the
boxplots are overlaid.
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(b) Forward selection for MONROE-NetTest.

Fig. 2: Feature selection algorithm. x-axis depicts the selected
features at each iteration while y-axis shows the respective
adjusted R-squared values. Both plots are divided in three
clusters (CL1, CL2 and CL3), signified by different coloring.

of the Upload Test is 4.2 s, which makes it ineffective for
DL throughput estimation. Conversely, the improvement in
adjusted R-squared is tremendous with the addition of features
from CL3 which clearly reveals the significant gains that DL
information brings in the learning model.

VI. PERFORMANCE EVALUATION

To efficiently demonstrate the potential of the proposed
supervised ML solution for DL throughput estimation in



MBB networks, we divide performance evaluation in two
subsections. First, we present model selection and comparison
between the three forecasting algorithms presented in Section
V-A and second, we exhibit the trade-off between error and
over-the-air data consumption under different combinations of
clusters and speed test duration scenarios.

A. Performance Comparison of the Forecasting Models
To address the effectiveness of each forecasting algorithm,

we present results in terms of Mean Absolute Error (MAE),
Root Mean Square Error (RMSE) and R-Squared. We carry
out comparison by adopting repeated cross validation on
the training data with 10 folds and 3 repeats, which is a
common configuration when comparing ML models13. The
final evaluation takes place on the testing data. We select the
Radial Basis as the kernel function for SVR as it is shown to
outperform the Polynomial [14]. As for RF, we decide on the
number of random variables available for splitting at each tree
node by using cross validation techniques while we restrain
the number of trees to 100 [15].

In Figure 3 we show density plots for MAE, RMSE
and R-squared. Density plots portray the precise form of a
distribution, making it easier to detect and expose discrep-
ancies and similarities between numerous instances. Each
line color maps to a different forecasting algorithm while
the shape dictates the combination of clusters. The solid
lines (Algorithm_name1) represent CL1, the dashed lines
(Algorithm_name12) a combination of CL1 and CL2
and the dotted lines (Algorithm_name13) a combination
of CL1 and CL3. Thickness does not encode any piece of
information but aims to ease readability of the plot. We show
results only for RTR since the picture is nearly similar for the
MONROE use case. To provide a fair comparison between the
forecasting algorithms, we only include samples from a single
speed test duration (2.8 s). This selection is arbitrary whilst
signs of disparity can be observed for durations smaller than
3.5 s where limited DL information is current. Among the
available algorithms, the distribution of RF density function
has nearly always the lowest mean values for MAE and RMSE
and highest mean values for R-squared with SVR and MLR
following short behind. However, the performance of all three
algorithms becomes close even with the insertion of CL3. It is
remarkable that in that case (_13) MLR performs as well as
RF despite the fact that it under performs in scenarios _1 and
_12. As MAE and RMSE decreases and R-squared increases
with the addition of DL_beta0 and DL_beta1, the distri-
butions become extremely narrow, thence, variance is reduced
remarkably. As for the models computational complexity, RF
has the highest followed by SVR and MLR.

B. Trade-off Between Data Consumption and Error
In this paper we propose a ML solution that estimates DL

throughput accurately while reducing the amount of data traffic

13In general, cross validation techniques for RF are not needful to get
an unbiased estimate of the testing data error, since it is estimated internally.
However, for consistency’s sake, we use the same control setup when reporting
results for all forecasting algorithms.

exchanged over the network. Therefore, the trade-off between
error and data consumption is of utmost importance.

Figures 4a and 4b illustrate the percentage of data consump-
tion for each platform. Data consumption is determined as the
number of DL traffic exchanged until a nominal duration of
time divided by the total traffic it would have been exchanged
if the speed test was run for the full duration of 7000 ms14.
Since CL1 comprises of features that do not incur any cost
during data collection, the data consumption percentage is 0%
for each of the engaged features. For both datasets, the DL
regression coefficients obtain a close to double increase in
terms of data consumption compared to the UL regression
coefficients. The above indicates that, first, the two links are
not symmetric (in terms of bandwidth capacity), and second,
the NetTest measurement methodology for both Download
Test and Upload Test is consistent and can be generalized for
all possible speed test duration scenarios.

Likewise, Figures 4c and 4d depict the reciprocal MdAPE
values for each of the feature selection steps. Again, we
observe that the addition of CL3 highly affects the perfor-
mance of our models and contributes in reducing the MdAPE
significantly. Furthermore, we show that higher speed test
duration values improve the accuracy levels considerably.

VII. DISCUSSION

We discuss next on the principal takeaways from Section VI.
As we already determined from the feature selection phase, the
gains that the UL related features bring to the DL through-
put estimation error are trifling and they are not improving
even for large speed test duration scenarios. Therefore, one
should never consider UL traffic as an alternative traffic type
to assess DL throughput. Furthermore, the improvement in
terms of MdAPE between any speed test duration scenario
is only highly relevant for CL3, where DL comes in play.
For example, the decrease in MdAPE between 1.4 s and 2.8
s is 4.55% in average which is pretty significant for highly
sensitive applications.

Another important topic of discussion is with regards to the
model validity. In ML, retraining a model is required when
the new data belongs to a disparate distribution than the one
the model was originally trained. Retraining can be performed
either online, offline or by using the batch approach. Hence,
one question that remains is how often should we retrain
our models. Intuitively, if no change occurs in the way a
NetTest speed test runs, retraining should not be too often
and it is only needed to catch up with new device models and
seasonal trends. However, if a switch takes place in NetTest
methodology (see Section II) or it is replaced by a new tool,
retraining is highly recommended as it can lead to a significant
accuracy degradation. We plan to run a detailed analysis of the
horizon of the model predictions in future work.

14We consider 7000 ms as the baseline speed test duration value to beat.
In case a different speed test tool is available, the baseline value has to be
updated accordingly in order to estimate the gains (in terms of data usage)
that our proposed approach offers.
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Fig. 4: Trade-off comparison between MdAPE and over-the-air data consumption in MONROE and RTR. For all displayed results, we use
MLR as the supervised forecasting method. To ease comparison, illustration is in accordance with the plots of Figure 2.

It is also noteworthy to mention that we have to de-
sign a single model for each NetTest testing methodology
(crowdsourced and controlled). As mentioned in Section V,
although the measurement methodologies are similar, datasets
characteristics differ sufficiently with regards to the network
infrastructure, therefore, the design of a global supervised
model is not recommended. In other words, training a fore-
casting model on one dataset and testing on another would fail
to generalize and produce reliable results.

To conclude the discussion part, we have to comment on the
appropriate speed test duration value that should be leveraged

on each dataset. We find that there is no straightforward answer
to that argument as the optimal duration value highly relates to
the application’s error sensitivity requirements. For example,
if an application requires a rough estimation of the network
bandwidth capacity without having to consume a lot of data
traffic, it should always opt duration values smaller than a
couple of seconds. However, if high accurate DL throughput
estimates are of vital importance, exploiting higher duration
values will improve the performance error but inevitably
increase data consumption considerably. We recommend the
reader to use the four subplots in Figure 4 as a guideline to



decide for a duration value that offers an appropriate trade-off
for the specific purpose of the measurement campaign.

VIII. RELATED WORK

Over the years, there have been many attempts to model and
predict throughput behavior in wireless networks. In [16], the
authors propose an empirical approach for TCP throughput
prediction based on past file transfers and measurements of
simple path properties, such as queuing delay and loss. Eval-
uation analysis is being held in a fully controlled environment
and the results reveal a significant improvement in terms of
accuracy over pure history-based methodologies. Experimental
approaches are also followed in [17], where the authors
conduct a thorough comparison of regression algorithms to
determine the prediction of TCP throughput in operational
MBB networks, and [18], where Rattaro et al. leverage SVR
as a ML tool to model throughput on IEEE 802.11 networks.

In contrast with the prior empirical approaches, a novel
stochastic model for user throughput prediction in MBB
networks is presented in [19]. The proposed solution takes
into consideration sources of prediction precision, like fast
fading and user location. A crowdsourced large-scale dataset
from Bredbandskollen in Sweden is utilized in [20] to estimate
network performance. The authors present a scalable perfor-
mance map approach to characterize measurement usage in the
spatial domain. Furthermore, they present statistical tools to
analyze bandwidth variation and predictability of the download
speeds observed within and across different locations. Last,
in [21], the authors leverage machine learning techniques
including Gaussian process regression, exponential smoothing
of time series, and random forests to predict performance
and improve user experience in cellular networks. They focus
on three types of prediction problems (spatial, temporal, and
multidimensional) while for the validation process they use a
real world dataset in US consisting of 4G measurements.

IX. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a supervised ML solution
for Downlink throughput estimation in MBB networks that
delivers highly accurate results and reduces the over-the-air
data consumption considerably. While we carried out the
evaluation analysis for the RTR-NetTest crowdsourced dataset
and its counterpart wrapper MONROE-NetTest, our approach
can be also applied in real time applications with limited data
plans where throughput prediction is crucial for enhancing
QoS. Future work includes a more exhaustive study of ML
(or even Deep Learning) schemes that can boost accuracy at
higher levels. Finally, we will consider the development of
an open-source application that wraps up the functionality of
the proposed methodology and could be used as an alternative
speed test solution in the Android (or iOS) stock market.
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