
Output Security for Multi-user Augmented Reality
using Federated Reinforcement Learning

Fengchao Wang∗†, Yanwei Liu∗¶, Jinxia Liu‡, Antonios Argyriou§, Liming Wang∗ and Zhen Xu∗
∗Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
†School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China

‡Zhejiang Wanli University, Ningbo, China
§University of Thessaly, Volos, Greece

Abstract—With the rapid advancements in Augmented Reality,
the number of AR users is gradually increasing and the multi-
user AR ecosystem is on the rise. Currently, AR applications
usually present results without limitations, which causes great
latent danger to users, so it is necessary to apply strategies to
ensure the safe output of AR. Due to the environmental diver-
sities among the distributed users, the traditional approaches
designed for single-user AR are not efficient for multi-user AR
applications. Considering the characteristics of multi-user AR
scenarios, we propose a multi-user AR output strategy model
based on Federated Reinforcement Learning. With the device-fog-
cloud hierarchical architecture, the proposed models are obtained
first by Reinforcement Learning on users’ devices, and are then
hierarchically aggregated on the fog nodes and cloud server. We
performed extensive AR simulations in Unity and obtained the
results that show our method can avoid several security problems
existent in multi-user AR applications.

Index Terms—Multi-user augmented reality, output security,
federated reinforcement learning, hierarchical aggregation

I. INTRODUCTION

Augmented Reality (AR) is a promising technology that
ingeniously integrates virtual information with the real world,
which captures input from the user’s surroundings and overlays
output on the user’s perception of the real world [1]. In recent
years, rapid advancements in hardware allowed AR technology
to make considerable progress and be used in quite a few areas,
such as entertainment, education, health, and transportation.
The newest tech trends show that the AR market will surpass
$13360 million by 2024 [2]. Moreover, interest in exploring
AR technology in diverse industries is increasing, and AR
applications are on the way to flourish.

AR applications typically form a user group, and thereby
constitute a multi-user AR ecosystem. These applications
operate on top of 5G networks with edge intelligence, enabling
the frequent data interaction between users with low latency
[3]. Similar to multi-user Virtual Reality (VR) [4], there are
also many application cases for multi-user AR. For example,
the AR game Pokémon Go has a large number of game
users who can simultaneously play online games with mutual
interactions; AR collaborative office supports multiple users to
collaborate and interact in different locations at the same time;
Augmented vehicle reality enhances the vehicle perception

This work was supported in part by National Natural Science Foundation
of China under Grants 61771469
¶Corresponding Author: Yanwei Liu (Email: liuyanwei@iie.ac.cn)

of the visual information by sharing the visual information
collected by multiple vehicles nearby [5].

Simultaneously with the increased use of AR applications,
a series of security issues emerge in AR systems. One of
the issues is the security of the AR content output. AR
systems provide an immersive interactivity that enables virtual
objects to coexist with real objects, but current AR applications
usually present the results without any limitations. Conse-
quently, malicious outputs created by attackers can easily
not only cause click-hijacking [6], sensory overload [7], but
also obstruct crucial real-world objects, such as pedestrians,
vehicles, and so on, which all pose a great risk to users.
Moreover, in a multi-user AR system, the risks users faced are
from buggy or malicious apps, as well as other users, such as
output conflict between AR contents shared by multiple users.
The above-mentioned risks widely exist in all AR systems,
especially in the immersive systems such as the AR windshield
[8] and a head-mounted display (HMD). In such settings, the
output directly affects the information that users can achieve
and interact with others, so it is particularly important to
ensure the security of AR output.

To solve the output security issues in AR, the computer
security and privacy community have already taken steps
toward reducing the conflict in AR output [9], [10], but it is
not enough for the multi-user AR systems. Moreover, these
approaches adopted manual settings in a rule-based output
strategy with extremely huge workload, and cannot completely
cover all the cases that may be encountered in an AR appli-
cation. As for the security of multi-user AR, existing research
work [11] primarily focused on the multi-user interaction.
How to intelligently control the information output in multi-
user AR system to ensure user security is still an open issue.
Motivated by the naturally distributed architecture as well as
the requirement for privacy preservation in user’s data sharing
in multi-user AR system, in this work we propose a federated
reinforcement learning (FRL) framework to solve multi-user
AR output strategy problems. The reinforcement learning (RL)
model is trained on each AR device to automatically learn an
output strategy that seeks for high-reward state-action, and the
models from all devices are aggregated hierarchically on the
fog node tier and the cloud server tier. In this way, we can
take full advantage of FRL to learn the information from the
diverse environments in multiple nodes, and establish a more

accurate and stable AR output strategy model. In comparison
with the existing approaches of manually setting strategies
as well as the single-user learning [9], our method is more
adaptive, universal and scalable.

To the best of our knowledge, this is the first work that
combines reinforcement learning with federated learning to
solve the security problem of AR output. Our contributions
are summarized as follows:

1) We illustrate the output threats in multi-user interaction
and design the corresponding output control strategies, which
firstly solve the output security problem of the multi-user AR
system.

2) Aiming for multi-user AR applications, we propose a
hierarchical federated reinforcement learning framework for
generating and aggregating the AR output strategy model for
multiple users, coupling federated learning with reinforcement
learning in a way that averages the distributed strategy gradi-
ents of multiple users’ models.

3) To train the AR output control model more accurately
with reinforcement learning, we design a set of novel reward
functions that give full considerations to the output cases in
co-located and non co-located multi-user AR applications.

The remainder of this paper is organized as follows. Section
II reviews the related work. In Section III, we analyze the
security issues in multi-user AR system. In Section IV, the
proposed FRL system is explained in detail. Section V presents
experimental results. Finally, Section VI concludes the paper.

II. RELATED WORK

A. AR Output Security

The safety of AR systems has attracted the attention of
researchers, and there has been plenty of research work on
AR security. Some researchers laid their focus on taking
measures to restrict access to AR applications [12], [13], [14],
and intended to secure the privacy of users and bystanders.
Focusing on AR output security, Roesner et al. [10] proposed
a fine-grained output model for management at the AR object
level. By transforming the AR objects to operating system
primitives, the system can implement object-based constraints,
dynamically manage and draw objects. According to this
output model, researchers designed an AR platform ARYR, in
which a series of output strategies of AR object granularity
were preset. Before the AR object has been output, the
platform will judge whether the AR object conforms to the
preset rules and then adjusts the output. However, manual
settings in a rule-based output strategy cannot completely
cover all of the output cases in the AR applications, requiring
thus extremely huge workload. For intelligently output policy
settings, Ahn et al. [9] proposed a method using RL to generate
adaptive strategies in AR systems. Using relevant information
about the surrounding environment, the fog nodes run simula-
tion training and apply RL algorithms to automatically learn
an appropriate output strategy. Nevertheless, only a single
user is considered in this method, which only learns limited
environmental information owned by a single device.

All of the above methods did not take into account the
output security of multi-user AR. For multi-user AR systems,
Poretski et al. [15] investigated users’ concerns about multi-
user AR interactions by a user study, and then Ruth et al. [11]
proposed a method to secure multi-user AR content sharing
based on HoloLens. In contrast, the output problem of multi-
user AR systems has not attracted sufficient attention until
now. To cater to the multi-user AR application output scenario,
we propose to use FRL to generate output control strategies,
that fully exploit the enlarged information-perception space of
multiple users, and handles the output case with multi-user
interaction.

B. Reinforcement Learning

RL is a branch of machine learning, which is used to solve
problems of agents in the process of interacting with the
environment through learning strategies to maximize rewards
or achieve specific goals [16]. RL systems usually consist of
a dynamic environment and one or more agents that interact
with the environment. Agents learn in a “trial and error” way,
and select action decisions according to the current environ-
mental state. Meanwhile, the environment changes accordingly
under the influence of the agent’s decision. The agent can
obtain rewards and improvements based on its own decision-
making and environmental changes. Actions plan to adapt
to the environment, so as to maximize the expected reward
results. RL is mainly used to learn to generate problem-solving
strategies, that is, to generate corresponding actions based
on the current state [17]. In more complex scene tasks, it
is necessary to use the powerful perceptual ability of deep
learning to automatically learn the abstract representation of
the environment and use the representation as a basis for RL
to generate decisions [18]. Therefore, Deep Reinforcement
Learning (DRL) is proposed, which can realize direct control
from original input to output through an end-to-end learning
method.

C. Federated Learning

Federated Learning (FL) is one of the typical distributed
machine learning methods that aim to establish a learning
model over distributed data sets, while preventing data leakage
[19]. Suppose there are N data owners, and hope to train
a machine learning model on the entire data set. Traditional
learning methods combine all data for centralized training to
obtain the model. However, in FL, participants train local data
at the devices, and those updated parameters are uploaded to
the parameter servers after training. Parameters are aggregated
by parameter servers to obtain the overall model parameters.
After multiple iterations, the overall training model is finally
obtained. For AR applications, the study in [20] proposed
an FL algorithm based on mobile edge computing (MEC)
to solve the problems of target detection and classification.
To build policies of high quality over the distributed data
sets, RL was utilized to be integrated with FL, with paying
attention to user’s privacy protection. Liu et al. [21] proposed a
Lifelong Federated Reinforcement Learning framework under

autonomous navigation settings, using the scalable architecture
and knowledge fusion algorithms. Liang et al. [22] proposed
a Federated Transfer Reinforcement Learning for real-time
knowledge extraction in autonomous driving.

Different from the above approaches, we propose a novel
FRL framework suitable for multi-user AR systems to generate
the AR output strategy model, in which the particular multi-
user characteristics are integrated with the algorithm pipeline
of FL and RL.

III. MULTI-USER AR OUTPUT SECURITY ANALYSIS

Besides traditional software security issues, AR systems are
vulnerable to attacks due to their particular operation of fusing
the outputs of the real world and virtual objects. Especially in
the immersive AR systems like HMD and AR-enabled wind-
shield, what users can see is all supplied by AR systems. Once
the AR systems have been attacked, the malicious or tampered
output can easily reach users undetected. For example, when
driving with an AR-enabled windshield, if the AR navigation
has been attacked, its outputs can easily obstruct the other
vehicles. In addition, attackers can mount clickjacking attacks
that overlay transparent output on the normal output of the
application, tricking users into unconsciously triggering links
to malicious programs [6]. Furthermore, sensory overload,
caused by flashing visuals, harsh sound, or intense haptic
feedback signals, could cause physiological damage to users
[7].

Apart from the threats motioned above, some specific output
occlusions will occur inadvertently in multi-user systems,
which may not be malicious but has a significant effect on
multi-user interaction. One user, who uses an AR application
to interact with others, may encounter output problems caused
by both its own outputs and the others’. Usually, multi-user
AR applications can be divided into two main categories: non
co-located and co-located. In non co-located AR applications,
the interaction among users is confined to their own user space,
that is, the users can only send AR content and display it in
their own output interface, without interfering with each other.
For example, user A and user B use an AR message application
at the same time, and user A sends a message to user B. After
receiving the message, user B only needs to display it in his
own output interface, without considering the display in user
A’s interface. In such cases, AR output from each user should
be handled properly with only considering the threats coming
from himself. While in co-located AR applications, such as
community art [11], multiple co-located users share an output
space, and the output of each user will be observed by other
users in real time and so they affect each other. In such multi-
user interaction, a user outputs an AR art on a specific position,
followed by which if another user outputs an AR slogan or
another AR art, then there will be possibly occlusion between
AR outputs. This is because of different field of view (FoV)
among users, so that from the perspective of user A, its output
does not block that of user B, but it may form occlusion from
the perspective of user B. To avoid this problem, the AR output

of each user needs to take into account the perspectives of
other users interacting with it.

IV. SYSTEM DESIGN

A. System Overview

In an AR system, as shown in Fig. 1, when people use
AR devices interacting with the real world, the sensors first
capture the environmental information and send them to the
content process module. Then cooperating with the cloud, the
content process module completes the information processing
and receives the generated holograms. For meeting the low-
latency requirement of AR, it is common to deploy fog nodes
to assist this process. After that, the holograms would be
output to users by the display module. In this work, we intend
to add an output policy model between the display and the
content process module.

Considering the multi-user AR scenario in the cloud-edge
(fog) collaborative computing framework, there are a large
number of users that use AR applications online simultane-
ously in a distributed way. Inspired by this, we design an
FRL framework for multi-user AR output control, based on
the Proximal Policy Optimization (PPO) algorithm and the
federate learning concept. There are three tiers in the proposed
architecture:
• AR device: Collecting the local environment information,

an AR device can train and obtain a new output strategy
model by the PPO algorithm. When the gradient infor-
mation is received, the output model is updated.

• Fog node: With a specified aggregation period T1, the
fog nodes collect the gradient information from the on-
line AR devices, and then carry out an average weighting
of gradients, followed by returning them to the devices.

• Cloud server: Similar to fog node, the gradient informa-
tion is collected from each fog node with the aggregation
period T2, and then the averaged gradient is obtained and
returned to each fog node.

With the device-fog-cloud hierarchical architecture, exploring
the training phase on AR devices can minimize the privacy
leakage risk, and the fog nodes and cloud can cover large
amount of devices and collect more information. Meanwhile,
adopting the fog nodes close to devices can reduce the latency
and accelerate the training.

B. State and Action Space

In RL of each agent, the environment is usually modeled
as a Markov decision process (MDP), which is denoted as a
four tuple (S,A, P,R), where

(1) S is a set of finite states, and st ∈ S is the state of the
agent at time t;

(2) A is a set of finite actions, and at ∈ A denotes the
actions taken by the agent at time t;

(3) P : S × A × S → [0, 1] is the probability distribution
function of state transition. st+1 ∼ P (st, at) denotes the
probability of agent executing action at in state st and
transferring to the next state st+1;

Display

Sensor

RL Agent

Content
Process

 Model

State Action

Fig. 1. The system architecture.

(4) R : S × A is the reward function. rt ∼ R(st, at)
represents the immediate reward value obtained by the
agent executing action at in state st.

In this work, the state space consists of the locations of all
holograms and real-world objects, the size of their bounding
boxes, and the transparency of the holograms. Besides those,
it also contains the AR output FoV. For multi-user AR, the
locations of users are also included in the state space to
estimate the views of other users. Each location is given
by a three-dimensional real vector, and each bounding box
is represented by its width and height when projected onto
the user’s screen. Action space contains the adjustment of
the holograms’ 3D position, transparency, and bounding box.
Agents can take either continuous or discrete action to adjust
the output of holograms to maximize the reward value.

In RL for each device, the PPO algorithm [23] is used to
learn the policy. Specifically, the objective function is defined
as:

LPG(θ) = Êt
[
log πθ (at | st) Ât

]
(1)

where πθ is a stochastic policy and Ât is an estimator of the
advantage function at timestep t, and Ê[·] is the empirical
average over a finite batch of samples. In the PPO algorithm,
the agent obtains the expectation of samples gathered from an
old policy πθold under the new policy πθ by the importance
sampling. The objective function of the conservative policy
iteration is:

LCPI (θ) = Êt
[
πθ (at | st)
πθold (at | st)

Ât

]
= Êt

[
lt(θ)Ât

]
(2)

However, the maximization of LCPI would lead to an exces-
sively large policy update without a constraint. To address this
deficiency, the PPO objective function is given by:

LCLIP (θ) = Êt
[
min

(
lt(θ)Ât, clip (lt(θ), 1− ε, 1 + ε) Ât

)]
(3)

where ε = 0.2, and clip(lt(θ), 1 − ε, 1 + ε)Ât) modifies the
surrogate objective by clipping the probability ratio, removing
the incentive for moving rt outside of the interval [1− ε, 1 +

ε]. Then the parameters of πθ are updated with the gradient
∇LCLIP as follows:

θ = θ − ηθ∇LCLIP (θ) (4)
where ηθ is the learning rate of optimization.

C. Reward Function

Considering the obstruction, flicker, and click hijacking in
AR output, we design the following reward function. Some
key notations are summarized in Table I.

TABLE I
PARAMETERS AND NOTATIONS

Notation Definition
h,H Original object and the set of holograms
w,W Object and the set of real-world
h′, H′ Policy-modified objects and the set of holograms
α, β, γ Importance of requirements
τ Transparency of holograms
µh Ratio of the bounding box
τ0, µ0 Thresholds of transparency and bounding box ratio
Bh, Bini Current and initial bounding box
o,O Object and the set of User’s own holograms
u, U Object and the set of other users’ holograms
m,M Original objects and the set of shared holograms
m′,M ′ Policy-modified objects and the set of shared holograms
i, I User and the set of other users
V, Vi Transformation matrix from world space to camera space
λ Trigger of multi-view reward

For the occlusion problem, the 3D position of the AR output
is adjusted to avoid the collision between the AR output object
and real-world objects. This part of the reward is defined as:

R1=
∑

h∈H,w∈W

{
ReLU (wz − hz)×
[DistXY (w, h′)− αDistXY (h, h′)]

}
(5)

where
DistXY (w, h′)= |wx − h′x|+ |wy − h′y| (6)
DistXY (h, h′)= |hx − h′x|+ |hy − h′y| (7)

and ReLU function is defined as:

ReLU(x) =

{
x if x > 0
0 if x ≤ 0

(8)

and the XY -plane is the projection plane of AR display. In this
plane, by rewarding for increased distance DistXY (w, h′), the
above reward function ensures that the new policy-modified
outputs will not obstruct real-world objects. In addition, by pe-
nalizing large DistXY (h, h′), the position change constraint
is introduced to make the AR output change as minimum
as possible to avoid occlusion. Without this constraint, the
strategy model may be inclined to adjust the AR output
position as far as possible, pursuing a higher reward value. But
in a practical application, this adjustment will affect the normal
application of AR. Although there is a high reward value, it
is not a correct output strategy. Finally, we add a constraint
of the Z-plane which indicates the depth information of the
hologram. If the hologram is in front of the real object, the
output should be adjusted according to the above reward, and
vice versa.

In order to place restrictions on the transparent output,
we use the reverse ReLU function to limit the AR output
whose transparency is lower than τ0 that is empirically set

to 0.8. When the output transparency is higher than 0.8,
the transparency has no contribution to the value of reward
function. When the output transparency is below 0.8, with the
decrease of transparency, it will have a reverse effect on the
value of reward function. This part of reward is defined as:

R2 = −
∑
h∈H

βReLU (τ0 − τh) (9)

Similarly, we limit the abrupt change of hologram size to
avoid sensory overload caused by flashing visuals, using the
reverse ReLU function. This part of reward is given by:

R3 = −
∑
h∈H

γReLU (µ0 − µh) (10)

where

µh =

∣∣∣∣Bh −Bh ini

Bh ini

∣∣∣∣ (11)

The value of µh ranges from 0 to +∞. If µh exceeds the µ0

that it is empirically set to 0.5, the value of reward function
will have a negative effect.

For non co-located multi-user AR applications, the oc-
clusion between different users’ outputs is a critical issue.
To avoid being disrupted by malicious users, we ensure the
normal output of user’s own holograms as much as possible
by adjusting the others’ output. Similar to R1, we define the
reward as:
R4 =

∑
o∈O,u∈U

[DistXY (o, u′)− αDistXY (u, u′)] (12)

where the DistXY (o, u) and DistXY (u, u′) are similar to
Eqs. (6) and (7). Utilizing this reward function, we hope that
the output of other users can be adjusted as small as possible
to avoid occlusions.

Apart from several parts of the reward mentioned above,
the output of co-located multi-user AR applications should
also consider the different perspectives among users. Due to
the different FoV, the same real-world objects in the views
of the involved users may be different. Hence, in multi-user
interaction, when showing something to others, the user should
not only ensure the holograms output properly in his own
view, but also in the views of the other users. To achieve this
goal, the agent needs to collect multi-user information and
computes the 2D to 3D and then 3D to 2D transformations
in both the camera space and the world space. This part of
reward is defined as:

R5 = λ
∑
i∈I

∑
m∈M,w∈W

{ReLU (Tci(wz′)− Toi(mz′))×∆Po}

with ∆Po = ∆Po(w,m)− α∆Po(m,m′)

∆Po(w,m) = DistX′
iY

′
i

(
Tci(w), Toi(m

′)
)

∆Po(m,m′) = DistX′
iY

′
i

(
Toi(m), Toi(m

′)
)

(13)
where

Tci(w) = Vi × w (14)

Toi(m) = V −1 ×m× Vi (15)

Toi(m
′) = V −1 ×m′ × Vi (16)

The X ′iY
′
i -plane is the projection plane of i-th user’s dis-

play, and the calculation of DistX′
iY

′
i
(Toi(m), Toi (s

′)) and
DistX′

iY
′
i
(Tci(w), Toi (s

′)) are similar to Eqs (6) and (7).
Tci(w) is the coordinate transformation of real-world object
from world space to camera space, and Toi(m) is the coordi-
nate transformation of shared hologram from one camera space
to another camera space. Owing to the pertinence of this part
of reward function, parameter λ is only triggered when the
agent receives multi-user information.

Finally, considering all the above cases, the overall reward
function is defined as:

R = R1 +R2 +R3 +R4 +R5 (17)

D. Model Aggregation

Tow-tier Fog-Cloud hierarchical aggregation is used to gen-
erate the federated model, where the cloud collects the infor-
mation of multi-user environments to improve the robustness
of the model and the fog nodes share the computation burdens
of the cloud to reduce the network transmission delay. The
whole process of model aggregation is shown in Algorithm 1.
Initialized with the distributed model, online agents, interact-
ing with the environment, train and update the model πθ using
RL (Lines 1-6). Lines 8-11 describe the model aggregation of
agents at the fog nodes. Fog nodes collect the gradient of
agents gθi(k) and return the averaged gradient gfθ (k) to the
agents (Lines 13-15). Similarly, the model aggregation and
gradient gθ(k) return at cloud is presented in Lines 17-22.

Algorithm 1 FRL training
1: Initialized all agents with distributed model parameters
2: for t = 1,2,...,T do
3: for each agent i = 1,2,...,N in parallel do
4: Run the RL model πθ for st and do action at
5: Get rt+1, st+1from the environment
6: Compute the gradient gθ and update πθ
7: end for
8: if t|T1 = 0 then
9: for each fog-node f = 1,2,...,F in parallel do

10: Receive the gradient from agenti, i ∈ Cf
11: gfθ (k)← average(gθ1(k), gθ2(k)...gθN (k))
12: end for
13: for each agent in parallel do
14: gθi(k)← gfθ (k)
15: end for
16: end if
17: if t|T1T2 = 0 then
18: gθ(k)← average(g1θ(k), g

2
θ(k)...g

F
θ (k))

19: for each agent in parallel do
20: gθi(k)← gθ(k)
21: end for
22: end if
23: end for

V. EXPERIMENTS AND RESULTS

A. Experimental Design

In the experiment, we use Unity 3D to simulate AR environ-
ment, creating some AR scenarios such as AR-enhanced au-
tomotive windshields, AR navigation [8] and AR Community
Art [11]. Using the Unity Machine Learning Agents SDK and
TensorFlow, we built a FRL network incorporating into our
simulations in Python. The communication between Unity and
Python is implemented over open socket. During the training,
the agent samples data through interaction with the given
simulated environment and optimizes its objective function
using Adam [24] optimization algorithm. Hyperparameters
used in the experiments are shown in Table II.

TABLE II
HYPERPARAMETERS USED IN FRL

Hyperparameters Value Hyperparameters Value
Batch Size 10 Buffer Size 100

Learning Rate 0.0003 Hidden Units 128
Num Layers 3 Max Steps 500000

To evaluate the performance of the proposed method (FRL-
based), we carried out extensive experiments, comparing the
AR simulation results of our FRL-based control model with
those of the state-of-the-art approaches without output control
and with the single user RL (RL-based) output control. For
the simulation, the single user RL output control model is
similar to that proposed in [9] except the reward function. In
addition, we also compared the results of the single-view and
the multi-view output policy.

B. Performance Evaluation

Following the environment simulation, we trained different
output policy models. In Fig. 2, we offer two representative
scenes: the left scene is the view of AR windshield, and
the right one is the AR navigation interface. Both of the
scenes in Fig. 2 are the initial output. In the left scene,
the AR advertisement (AD) shields the car on the road, and
the AR navigation information shields the trash in the right
scene. Using the RL output policy model trained with its own
environment, as shown in Fig. 3, the agent outputs AR content
avoiding obstructing the real-world object.

Fig. 2. The AR output results without output policy model.

However, in another scene where the car and trash appear
at the same time, using the RL output policy model that is
trained with the environment that only has a car cannot be
effective. As Fig. 4 shows, in the left picture with RL output
policy model, the AR message output shields the trash, which
affects normal driving. While in the right one with FRL output
policy model, its output can avoid obstructing both the car and

Fig. 3. The AR output results with RL output policy model.

the trash. The results in Fig. 4 obviously show the superiority
of the FRL-based model over the RL-based model.

Fig. 4. The same scene with RL-based and FRL-based output policy models
respectively.

Fig. 5 shows the loss curves of RL and FRL training. The
loss of FRL is a little lower than that of RL on average, and is
more stable. This is because FRL utilizes more environmental
information to learn the policy, and compared with RL, it is
less likely to experience drift affected by a small number of
iterations of a single agent. Overall, the losses of FRL and
RL both present a downward trend and finally approach an
extremely low value.

Fig. 5. The loss curves of FRL and RL.
We ran the experiments ten times and averaged the results of

cumulative rewards for the proposed FRL-based approach. As
shown in Fig. 6, the green area is the range of reward values
for multiple experiments, and the blue line is the averaged
reward value over the ten iterations of experiments. Overall,
the reward is on the rise, and tends to be stable after 200k
steps. Although different agents in different environments may
have differences on reward components with the proposed
reward function, the total reward can also continue to rise and
converge to an upper bound.

Fig. 6. The reward of FRL training.

Aiming at the output of the co-located multi-user AR appli-
cation, the proposed method also trained output policy model

that fuses multi-user perspective information. The results are
shown in Fig. 7 and Fig. 8. We simulate a scene where two
users are in the community art application at the intersection,
with one user showing the balloon to the other. In the view of
balloon owner (the left in Fig. 7), the balloon does not obstruct
the real-world trash, but it do obstruct the trash in the view of
the other user (the right in Fig. 7). So the other user may hit the
trash when going straight. This example indicates the hidden
danger in multi-user AR interaction. As shown in Fig. 7, the
single-view output policy model cannot solve this problem for
the lack of multi-view information. In the contrast, the multi-
view output policy model obtained by the proposed method
considered the perspective of all interactive users to output
the holograms in a proper location, as illustrated in Fig. 8.

Fig. 7. The AR output of different user-view with single-view output policy
model.

Fig. 8. The AR output of different user-view with multi-view output policy
model.

VI. CONCLUSION

In this work, we proposed a FRL-based method for gen-
erating AR output strategy model suitable for multi-user AR
applications. Via the hierarchical aggregation of models, the
proposed method can effectively learn the information of
multi-user AR scenarios and improve the robustness of the
adaptive output strategy model. Currently, most of the existing
AR security technologies only consider the visual output,
while AR systems do not only have the visual output, but
also auditory, tactile and other types of non-visual output.
Our future research work will consider the security problems
caused by non-visual output, as well as the conflict between
multiple types of outputs.

REFERENCES

[1] J. Carmigniani and B. Furht, “Augmented reality: An overview,” in
Handbook of Augmented Reality, 2011.

[2] “Headworn ar revenue forecast, 2019-2024,” 2020.
[Online]. Available: https://artillry.co/artillry-intelligence/
headworn-ar-revenue-forecast-2019-2024/

[3] Y. Li and W. Gao, “Muvr: Supporting multi-user mobile virtual reality
with resource constrained edge cloud,” in 2018 IEEE/ACM Symposium
on Edge Computing (SEC), 2018.

[4] X. Liu, C. Vlachou, F. Qian, C. Wang, and K. Kim, “Firefly: Untethered
multi-user vr for commodity mobile devices,” in USENIX ATC 2020,
Boston, MA, USA, 2020.

[5] H. Qiu, F. Ahmad, F. Bai, M. Gruteser, and R. Govindan, “Avr:
Augmented vehicular reality,” in Proceedings of the 16th Annual In-
ternational Conference on Mobile Systems, Applications, and Services
(MobiSys2018), New York, USA, 2018, pp. 81–95.

[6] F. Roesner, T. Kohno, and D. Molnar, “Security and privacy for
augmented reality systems,” ACM Commun., vol. 57, no. 4, pp. 88–96,
Apr. 2014.

[7] S. Baldassi, T. Kohno, F. Roesner, and M. Tian, “Challenges and new
directions in augmented reality, computer security, and neuroscience –
part 1: Risks to sensation and perception,” arXiv:1806.10557, Jun. 2018.

[8] R. Haeuslschmid, B. Pfleging, and F. Alt, “A design space to support
the development of windshield applications for the car,” in Proceedings
of the 2016 CHI Conference on Human Factors in Computing Systems,
New York, NY, USA, 2016, pp. 5076–5091.

[9] S. Ahn, M. Gorlatova, P. Naghizadeh, M. Chiang, and P. Mittal, “Adap-
tive fog-based output security for augmented reality,” in Proceedings of
the 2018 Morning Workshop on Virtual Reality and Augmented Reality
Network, New York, NY, USA, 2018, pp. 1–6.

[10] K. Lebeck, K. Ruth, T. Kohno, and F. Roesner, “Securing augmented
reality output,” in 2017 IEEE Symposium on Security and Privacy (SP),
2017, pp. 320–337.

[11] K. Ruth, T. Kohno, and F. Roesner, “Secure multi-user content sharing
for augmented reality applications,” in USENIX Security Symposium,
2019.

[12] S. Jana, A. Narayanan, and V. Shmatikov, “A scanner darkly: Protecting
user privacy from perceptual applications,” in 2013 IEEE Symposium on
Security and Privacy, 2013, pp. 349–363.

[13] S. Jana, D. Molnar, A. Moshchuk, A. Dunn, B. Livshits, H. J. Wang,
and E. Ofek, “Enabling fine-grained permissions for augmented reality
applications with recognizers.” USA: USENIX Association, 2013, pp.
415–430.

[14] J. Jensen, J. Hu, A. Rahmati, and R. LiKamWa, “Protecting visual in-
formation in augmented reality from malicious application developers,”
New York, NY, USA, 2019, pp. 23–28.

[15] L. Poretski, J. Lanir, and O. Arazy, “Normative tensions in shared
augmented reality,” Proceedings of the ACM on Human-Computer
Interaction, vol. 2, no. CSCW, Nov. 2018.

[16] R. S. Sutton and A. G. Barto, in Reinforcement Learning: An Introduc-
tion(2 ed.). Cambridge, USA: MIT Press, 2017.

[17] H. Wang, N. Liu, Y. Zhang, D. Feng, F. Huang, D. Li, and Y. Zhang,
“Deep reinforcement learning: a survey,” Frontiers of Information Tech-
nology & Electronic Engineering, vol. 21, 2020.

[18] N. C. Luong, D. T. Hoang, S. Gong, D. Niyato, P. Wang, Y. C.
Liang, and D. I. Kim, “Applications of deep reinforcement learning
in communications and networking: A survey,” IEEE Communications
Surveys Tutorials, vol. 21, no. 4, pp. 3133–3174, 2019.

[19] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Proceedings of the 20th International Conference on Artificial
Intelligence and Statistics. Fort Lauderdale, FL, USA: PMLR, 20-22
Apr. 2017, pp. 1273–1282.

[20] D. Chen, L. Xie, B. Kim, L. Wang, C. Hong, L. Wan, and Z. Han,
“Federated learning based mobile edge computing for augmented reality
applications,” in 2020 International Conference on Computing, Network-
ing and Communications (ICNC), 2020, pp. 767–773.

[21] B. Liu, L. Wang, and M. Liu, “Lifelong federated reinforcement learn-
ing: A learning architecture for navigation in cloud robotic systems,”
IEEE Robotics and Automation Letters, vol. 4, no. 4, pp. 4555–4562,
2019.

[22] X. Liang, Y. Liu, T. Chen, M. Liu, and Q. Yang, “Federated transfer
reinforcement learning for autonomous driving,” arXiv:1910.06001, Oct.
2019.

[23] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” CoRR, vol. abs/1707.06347,
Jul. 2017.

[24] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
International Conference on Learning Representations, Dec. 2014.

