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Abstract—As one type of omnidirectional projection, fisheye
images have been widely used in automatic driving and visual
surveillance. However, they cannot be processed well by the
traditional algorithms designed for the planar rectilinear images
since they usually suffer from severe geometric distortion during
image formation. In this paper, the conventional face detection
algorithm is enhanced to fit the fisheye images via combining with
the spherical convolution block by learning rotation-invariant
features from the spherical domain. The learned features from
both planar and spherical domains are subsequently mixed by the
spatial attention mechanism. Consequently, the whole network
can automatically learn the distorted features directly from
different positions on the target image. Experimental results
verify that our network can detect distorted faces on fisheye
images effectively and maintain the performance on traditional
planar images.

Index Terms—Fisheye image, face detection, geometric distor-
tion, spherical-domain attention

I. INTRODUCTION

A 360-degree omnidirectional camera, that provides a super
wide-angle view in space, uses a double fisheye lens for
imaging to capture more information than ordinary lenses
for the perception of the visual environment. For autonomous
driving [1], intelligent 360-degree monitoring [2] is essential
for rapidly detecting and recognizing the target in the omni-
view scene. Furthermore, the fisheye image is one of the
most widely used formats to represent an omni-view of the
scene. Consequently, target detection on this view is of great
significance for omni-directional visual applications.

In the past, several mature algorithms of object detection in
traditional 2D rectilinear images have been developed. Early-
developed detectors mainly used hand-crafted features such
as the rectangle features on the integral image [3] and the
Histograms of Oriented Gradient (HOG) features [4] to detect
objects in images. As for the later studies, the work in [20,
26] used convolution to improve the performance of detection
algorithms, while feature learning [16] based on Convolutional
Neural Network (CNN) was adopted in the solution. In recent
years, two mainstream CNN models have dominated due to
their superior performance. The first is the two-stage model
that adopts the strategy of predicting first and fine-tuning later
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[5, 6]. The second one is the single-stage model that predicts
dense samples directly by regressing from anchor boxes to
ground-truth object boxes.

The aforementioned schemes can attain superior perfor-
mance relative to conventional rectilinear images. However,
they are not suitable for fisheye images because the geomet-
ric projection leads to severe barrel distortion towards the
perimeter of the circle. The geometric distortion in fisheye
images poses a significant challenge for object detection. To
alleviate this problem, one method that has been proposed is
to rectify the fisheye image directly with explicit geometry
constraints [9] or the line constraints [10]. However, this
approach inevitably results in partial information loss of the
original representation.

The approach in [11] proposed to re-train the traditional
model that adopted the planar 2D convolution for fisheye face
detection, something that makes challenging the capture of
rotation-invariant features of objects. Recently, Cohen et al.
[36] adopted the spherical convolution for capturing rotation-
invariant features to counter the distortion. However, convolu-
tion on the sphere introduces a high computational cost which
limits its practical applications. Inspired by this, we propose
an attention mechanism with very few spherical convolution
layers in this paper to improve the performance of a face
detector in fisheye images.

The focus of this paper is to evolve existing algorithms into
those conquering the geometric distortion. In this paper, spher-
ical features, extracted with low computational complexity, are
used to make up for the insufficiency of traditional planar
convolution. The spherical feature is extracted only by a few
convolutional layers and then combined with planar features
via a spatial attention mechanism. The bi-domain features are
regarded as the full features of the fisheye images, which are
processed by the subsequent network for face detection later.

The main contributions are summarized as follows:
1). A novel face detector for fisheye images is proposed,

which is based on fusing multi-scale and bi-domain features
using feature pyramid and path enhancement.

2). We employ the attention mechanism to fuse the bi-
domain features. To the best of our knowledge, it is the first
work that proposes mixing signals from both the planar and
spherical domains represented by the middle layers of a multi-
scale feature network.



3). Our approach integrates the two stages of rectification
and detection for the face detection task of fisheye images
into one network to alleviate the distortion problem, which
omits the step of capturing prior knowledge of the camera.
It also maintains the state-of-the-art performance in terms of
both accuracy and speed for detecting faces in planar images.

The rest of the paper is organized as follows. Section
II introduces the related work, and Section III presents the
specific structure of the proposed face detector for fisheye
images, the mechanism of the attention block, and the imple-
mentation details of the network. Then Section IV provides
the experimental results, and Section V concludes the paper.

II. RELATED WORK

A. Face Detection

Face detection on planar images has undergone a signifi-
cant evolution from traditional methods [17, 18, 19] towards
the deep-learning-based techniques [20, 21, 22], which have
shown compelling accuracy and speed in recent studies. Row-
ley et al. [17] used multi-layer perception to detect frontal
faces initially. AdaBoost framework based on the ensemble
learning [3, 23] derived the hierarchically cascaded face clas-
sifiers with different types of face features [25]. The two-stage
target detection methods [5, 6] predicted class and coordinates
with higher accuracy, but its speed was on the opposite side.
The one-stage methods [29, 30, 31, 32] benefit from obtaining
not the separate region suggestions but the dense anchors in
multi-scale feature maps. Furthermore, as multi-task learning
[27] was introduced, face recognition, face alignment, and
key point alignment were jointly used as the training target
of the network [26, 28]. In addition, networks with excellent
performance recently [30, 31] used context modules to take
advantage of different ranges of information perception.

The approaches mentioned above were all targeted for
the rectilinear images and obtained superior performance.
However, they are not suitable for fisheye images as they
cannot efficiently deal with geometric distortion. Following
the well-known structure for multi-scale feature extraction [15,
48], we propose a face detector that not only integrates the low
and high-level information but also combines two-dimension
features from both the planar and spherical domains of fisheye
images.

B. Countermeasures for Distortion in 360-degree Image

The field of view (FOV) of the fisheye lens is greater than
180 degrees, which is beneficial to generating images with
more information than the traditional rectilinear ones, but this
causes the images to suffer geometric distortion. The distortion
becomes more severe from the center to the periphery of the
images. Research that aims to solve the distortion problem
is currently underway. The most direct way is to correct
distorted images to represent characteristics consistent with
flat images. The framework in [12] classifies faces according
to the degrees of distortion through CNN and then sends
them to three networks with different weights for rectification
and detection. Though this paper obtained the improved face

rectification performance, it ignored the face detection process
in the actual recognition application. Moreover, it only divided
the image into three discrete distortion-level regions, which did
not perfectly reflect the continuity of the degree of distortion
with position changing.

Another way to deal with fisheye image distortion is by
improving the adaptability of the algorithms directly. In kernel
transformer networks [34], based on position information
of ERP (equirectangular projection) image, the convolution
kernel is modified by an adaptive branch. However, according
to the specific network structure, adjustments must be made,
which means poor portability that the original network cannot
be applied to omnidirectional images of other projection
formats (i.e., fisheye images). Su et al. [13] designed the kernel
with different shapes according to varying latitudes of pixels,
while other works [33, 35] adjusted the kernel on the sphere
and performed re-sampling or projected the feature to the
tangent plane. Nevertheless, interpolating the planar 2D ERP
image while defining the feature on the sphere is irrational
[34]. Besides, all of these methods cannot learn the actual
geometric-invariant characteristics of fisheye images only by
optimizing linear convolution. Cohen et al. [36] extended con-
volution to the spectral domain, guided by rotation-invariant
characteristics extracted by spherical CNNs. Although the
convolution speedup benefits from the fast Fourier transform, it
is still considered computationally expensive since point mul-
tiplication itself is a complicated operation in the frequency
domain.

C. Attention Mechanism

Since its introduction, the attention mechanism was gradu-
ally developed so as to deal with image-related tasks, which
leads networks to focus on the specific position in an image
while ignoring the unimportant information. Jaderberg et al.
[41] used the affine transformation learned by the convolution
module to simulate the rotation characteristics of the image,
leading to a network that possesses transformation invariance.
This method essentially exploited the spatial attention mecha-
nism. The study in [42] focused on using the channel attention
information in the image, and CBAM[43] combined both
channel and space attention in a cascade structure to extract
features, which encoded the space and channel information
as the weights for position or channels, respectively. Diverse
weights of convolution kernels in [44] were used for different
images, while different types of attention were concentrated
through multi-layer attention in [45]. It is worth noting that
the long-range dependence in space was captured through the
self-attention mechanism and non-local operation operators
in [46]. The attention mechanism in these pioneering works
has achieved significant advancements, but it has not been
applied to mitigate the geometric distortion of fisheye images.
Our network, which pulls together feature distributions from
both spherical and planar domains employing the attention
mechanism, is able to focus on the distorted region.



Fig. 1. An overview of the proposed face detector for fisheye images. The flow direction of the features from two domains of fisheye images is shown. The
solid orange line denotes the planar feature from the backbone network, and the dotted blue line indicates the spherical domain feature after the attention
block. Planar feature maps of middle layers fuse with the spherical-domain features from middle layers and then are added to other layers through path
enhancement and up-sampling. Enhanced by the optimized context module, the detector finally carries out the multi-task learning.

III. FACE DETECTOR FOR FISHEYE IMAGE

This section presents the overall architecture of the proposed
face detector for fisheye images.

A. Network Structure

Our goal is to design the face detection algorithm for fisheye
images, aiming to capture truly spherical representations of
fisheye images at a low cost. Fig. 1 shows the architecture of
the proposed detector.

Feature Extraction Structure. To extract more accurate
features, referring to [27], we use Resnet [7] as the backbone
of the detector and extract {c5, c4, c3, c2} layers as the multi-
scale features of images. We set the scaling step to 2 (that
is, the stride of the last layer of each block is 2) and obtain
the feature maps of different sizes via successive convolution
layers. The output of the middle layers is led straight into
an attention block to extract the features from the spherical
domain. We finally simulate the multi-scale Feature Pyramid
Network (FPN) [48] network by up-sampling the feature map
to complete the feature extraction of the fisheye image.

During the experiment, we found that the medium-sized
feature map has a more vital perception of distorted faces
in fisheye images, which is more conducive to focus on the
position-based distortion: More advanced feature map, with
richer semantic information, has a more robust capability to
encode semantic information; On the contrary, feature maps of
a larger size learn more content information, such as contours
and edges, and the ability of which to learn distortion is worse
than those of a smaller size. Based on the above observations,
considering path enhancement has been used as a feature
enhancement method [15] [47] for detecting objects, we add it
to the feature pyramid network to get features among middle
levels (including the planar and spherical domain information)
propagated to features of upper layers. It obviously short-
ens the message path among layers. More importantly, path
enhancement avoids the repetitive spherical convolution for
high-level feature maps, reducing the amount of calculation
and forcing the training pace. At the same time, up-sampling
also transfers the middle-layer information to the bottom-layer

feature maps to achieve information sharing. Then the multi-
layer features are sent to the context module to be enhanced.

Context Network Module. We use feature extraction
branches with kernels in 3x3 and 5x5 scales, as shown in
Fig. 1, to improve the ability to extract contextual informa-
tion through receptive fields of different sizes. One of the
main concerns of face detection is to improve the detection
accuracy of smaller faces. Consequently, we do not adopt
7x7 or even larger convolution kernels in consideration of
reducing the complexity of the network since large-scale
convolution contributes little to detecting tiny faces. To reduce
the number of parameters, we also adopt the same idea as
[30], converting the 5x5 convolution into two concatenated
3x3 convolutions layers. In addition, we perform convolu-
tion operations in the frequency domain and spatial domain
separately as MobileNetV2 [49]. First, feature maps of each
channel are convolved separately, then 1x1 feature extraction is
performed on the feature maps across these channels. Besides,
the 3x3 convolution kernel is further divided into two, 1x3 and
3x1, maintaining the same receiving field while minimizing
the number of parameters and computational complexity. The
context module processes the feature map of each layer
and finally sends them to the detection module, predicting
the coordinates and categories after bounding box head and
regression head (1x1 convolution layer).

B. Attention Block based on Spherical Convolution

In the attention block, shown in Fig. 2, the planar feature
map is sent to the spherical convolution network, then the
extracted feature map and the input are fused to derive the
bi-level feature map computed by the pairwise function f .

The spatial attention operation in the spherical convolution
block is defined as

yi = softmax
∑
∀j
f(xi, xj)g(xj), (1)

where xi, xj represent the planar image feature map for the
point i and the spherical feature map for point j, and yi
denotes the planar feature map based on spherical attention,
with the same size as xi. We adopt a single-layer convolution:
g(xj) = W

T
g xj instead of linear embedding, where WT

g is the



weight vector that encodes a planar image as the representation
of input signal. Furthermore, we use the concatenation version
of function f described in [46], which captures the long-
distance dependence of the specific point xi in the planar
feature map with all other points. Note that the other points be-
long to the feature maps extracted from spherical convolution,
which contains distortion information. Hence:

f(xi, xj) = LeakyReLU(WT
f [θ(xi), ϕ(xj)]) (2)

As the spherical convolution manages the rotation-invariant
signals on the spherical domain, we denote spherical CNNs as
ϕ(xj) to catch the attention of the spherical signal, which em-
ploys two consecutive layers of spherical convolution as shown
in Fig. 2. By focusing on the trade-off between the amount of
calculation and the performance, this block only employs two
layers of the spherical convolution, transforming the feature
map into S2 and SO(3) domains for convolution operation.
The first convolution layer is carried out on spherical domain,
with the H×W feature map in the plane coordinate system
converted to that in size of α× β in the spherical coordinate
system. In the second layer, the conversion to the SO(3)
domain with an α×β×γ output is performed on the spherical
domain. θ(xi)= WT

θ xi represents a layer of traditional planar

Fig. 2. Attention block based on spherical convolution. X , Y , and Z denotes
input, planar feature map enhanced by spherical information, and spherical
feature map. ⊗ denotes matrix multiplication, and © denotes concatenation
in the channel direction. C, H, and W characterize the feature maps on the
planar domain while α, β, γ denotes those on the spherical domain.

convolution; LeakyReLU serves as the activation function to
achieve improved smoothness.

In terms of self-attention, ϕ(xj) here is considered to be
the query, which is extracted by spherical convolution, and
θ(xi) here is regarded as the key for distortion degrees. By
calculating the similarity of the query and the key, we can
make the point i perceive the area with similar distortion
characteristics at the pixel level. Furthermore, the direction and
degree of distortion at different positions are determined. The
object will show a particular law of deformation at a specific
position. Spherical convolution is used to capture the distorted
area related to position i and express the relevant information

in the form of weights, which is used to generate yi through
multiplication with g(xi). Then we concatenate yi and θ(xi)
along the channel direction to get the final bi-domain output.

In the implementation, as presented in Subsection A, the
distortion is mainly concentrated in the middle feature layers
while the higher and lower layers contribute less. Our attention
block only extracts feature maps from the intermediate layers
as input, as shown in Fig. 1, and then merges them with that
from other layers through path enhancement and up-sampling.

C. Training

Implementation Details. In the feature extraction network,
we use Resnet50 pre-trained in Imagenet-11k as the backbone.
Similar to Single-stage headless (SSH) face detector [30], we
use step sizes of {4, 8, 16, 32, 64} to detect faces with different
scales on the feature maps with the sizes set to {160, 80, 40,
20, 10}. For all the anchors generated by the network, 1:1 is
used as the aspect ratio, and 0.5 is set as the positive threshold;
that is, an anchor will be judged as a positive sample when
its intersection over union (IOU) with the certain ground truth
is greater than this value. Correspondingly, the threshold of
negative samples is set to 0.3. In loss head (1x1 convolution
layer), the weights of the network are shared among the feature
layers of multiple scales {p5, p4, p3, p2}.

Loss Function. The loss function adopts the usual face
detection loss function, multi-task loss, including classification
and regression.

L =
∑
∀i

Lcls(pi, p
∗
i ) + λ

∑
∀i

I(p∗i = 1)Lbox(ti, t
∗
i ) (3)

where i represents each possible anchor predicted under
multiple scales. Regarding the classification loss Lcls(pi, p∗i ),
pi denotes the predicted probability of the anchor i, and p∗i
has two values {0, 1}, corresponding to anchor i whether
being positive or negative. Since face detection belongs to
the class of binary classification problems, we use SoftMax
as the loss function. Correspondingly, coordinate prediction
is a numerical regression problem, so we adopt SmoothL1
Loss as the loss function Lbox(ti, t

∗
i ). I(·) is a conditional

judgment function, which indicates the predicted coordinate
value, that will only be regressed when the anchor is positive.
We parameterize the coordinates of the left-top point as well
as both length and width of the anchor, then convert them
to log-space. ti = {tx, ty, tw, th} and t∗i = {t∗x, t∗y, t∗w, t∗h}
respectively denote the predicted value and the ground truth
of the coordinate towards the specific positive anchors. λ is
a loss parameter used to weaken the imbalance between the
number of positive and negative anchors.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the proposed
face detector on fisheye images.

A. Experimental Settings

The network is trained on four NVIDIA Tesla P40 (24G)
GPUs with the batch size of 4x8. We use stochastic gradient



descent with momentum set to 0.9 as the optimization method
for the entire network. In different training stages, we use a
gradually decayed (set to 5e−4) learning rate to update the
weights. The learning rate is initialized as 1e−3 and descends
by a factor of 10 after {190, 220} epochs for Mobilenet and
{70, 90} epochs for Resnet. The training process terminates
at 250 epochs for Mobilenet and 100 epochs for Resnet.

B. Datasets

We train the network with the training set of Wider-360 and
use the full set of FDDB-360 and the test set of Wider-360 as
the basis for evaluating network performance. The test method
is the same as that of the planar image dataset. We also use
the original Wider Face [8] to assess the performance of our
network on planar images.

FDDB-360 Dataset. This dataset includes a collection of
images from the face detection dataset and benchmark (FDDB)
that have been processed to look like fisheye images from a
typical 360-degree camera [11]. It consists of 17052 images
with 26640 faces.

Wider-360 Dataset. This dataset is created by post-
processing the planar rectilinear images collected from the
well-known dataset Wider Face, using a projection model [37]
that maps planar rectilinear images to fisheye ones. It contains
63897 fisheye images, of which the training set occupies
50982, and the test set occupies 12915. Unlike the traditional
image dataset version, all of its data are not divided into three
subsets (easy, medium, and hard), but merged into one dataset.
Hence, its detection difficulty is approximately equivalent to
that of the medium set of a Wider Face. This dataset can not
only show the detector’s ability to capture distorted faces but
also bring out the network’s effectiveness for small faces.

C. Ablation Study

Effectiveness of Attention Block and Context Module.
As shown in Table I, we evaluate the performance of the
proposed network under different settings on the Wider-360
validation set and the FDDB-360 dataset. It can be seen
that the accuracy of the network with attention block on
the Wider-360 dataset significantly improves the face box
average precision (AP) 3.85% by the use of Resnet and 1.93%
by the use of Mobile-net, suggesting that attention block is
indispensable for detecting distorted faces. The contribution
to the accuracy of the FDDB dataset is numerically smaller
due to the dataset is relatively easy to detect. However, the
attention block still improves the performance in the case of
the two backbones, with the AP value of 99.1% for Resnet and
98.1% for Mobile-net. We should emphasize that our test on
the FDDB-360 dataset uses the model trained on Wider-360,
so the results indicate the excellent generalization ability of
the model. Nevertheless, adding a context module can further
improve the AP on Wider-360 by 0.44% for Resnet and 0.41%
for Mobile-net compared to adding the attention block only.

Fig. 3 shows several detection examples. The red box marks
the faces detected by the network. Larger and more regular
faces closer to the middle of the image are detected by

TABLE I
ABLATION STUDY FOR ATTENTION BLOCK (AB) AND CONTEXT

MODULE (CM).

Method Backbone FDDB-360 Wider-360
FPN Mobile-net 97.8% 55.43%

FPN+AB Mobile-net 98.1% 57.36%
FPN+CM Mobile-net 97.8% 55.92%

FPN+AB+CM Mobile-net 98.2% 57.77%
FPN Resnet 98.5% 64.34%

FPN+AB Resnet 99.1% 68.19%
FPN+CM Resnet 98.7% 64.87%

FPN+AB+CM Resnet 99.1% 68.63%

both detectors. In areas with a large degree of distortion, our
network (Fig. 3 right) always has a better detection effect for
more severely distorted faces and can maintain the same effect
when the size of the face is small. It should be noted that the
spatial distribution of the network we designed (Fig. 4 right)
is more uniform, which further shows that our network pays
more attention to the distortion characteristics of the sphere,
while the traditional network has a higher error rate in severely
distorted positions.

Fig. 3. Fisheye image face detector results by FPN (left) and FPN+Attention
Block (right).

D. Effectiveness of the Proposed Network

Since Wider-360 does not provide the standard evaluation
protocol, we reproduced several current state-of-the-art face
detection networks, namely SSH [30], Retinaface [27], S3FD
[31], to test their performance on the planar dataset Wider
Face and fisheye dataset Wider-360 in the same experimental
environment. Like the original dataset, Wider-360 contains
plenty of tiny faces, many of which are concentrated in
severe-distorted areas, so the detection task on Wider-360 is
considerably more difficult.



Fig. 4. False negative distribution for using attention block (right) or not
(left)

TABLE II
COMPARISON OF THE DETECTORS

method Wider-360 Wider Face

Hard Medium Easy
SSH [30] 62.77% 81.45% 88.97% 91.88%

Retinaface [27] 64.34% 83.57% 90.44% 93.52%
S3FD [31] 65.72% 84.16% 90.53% 93.49%

Ours 70.19% 85.72% 90.56% 93.67%

Table II shows that our approach outperforms other methods
on fisheye images with all networks trained on Wider-360.
More specifically, the proposed network produces the best
AP value of 70.19% for Wider-360, 4.47% higher than S3FD
with the best results in other planar networks. At the same
time, the performance of the proposed approach for the planar
dataset is slightly better, with the AP of 93.67% on the easy
subset and 85.72% on the hard subset, which indicates the
attention mechanism in our network can also capture some
of the rotation features in the planar image. As shown in
Fig. 5, on the simpler FDDB-360 dataset, our method (blue
curve) also shows better Precision-Recall performance than
other networks.

Fig. 5. Comparison of our network on the FDDB-360 with other networks.

Time. In terms of operating efficiency, spherical convolution
suffers high complexity, so we need to evaluate the inference
speed of the network. The test environment uses Tesla P40

and cuDNN v7.6.3 as well as Intel(R) Xeon(R) CPU E5-2630
v4 @ 2.20GHz. Our detector runs at 30 FPS and achieves
real-time detection performance.

V. CONCLUSION

In this work, we proposed a face detector for fisheye
images, which alleviates fisheye image distortion and improves
detection accuracy. We propose to utilize spherical convolu-
tion to extract the rotation-invariance features of the fisheye
image on the spherical domain and fuse it with the planar
features through the attention mechanism. The path enhance-
ment and up-sampling strategy can fuse the spherical and
planar information between feature maps of different scales.
In addition, our context awareness module also enhances the
feature extraction effect of the detector. Experimental results
show that, while maintaining the accuracy and inference speed
of traditional algorithms, the proposed face detector achieves
better performance than traditional networks in face detection
tasks for both fisheye and planar images.
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