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Abstract—With the proliferation of edge intelligence and the
breakthroughs in machine learning, Federated Learning (FL)
is capable of learning a shared model across several edge
devices by preserving their private data from being exposed
to external adversaries. However, the distributed architecture
of FL naturally introduces communication between the central
parameter server and the distributed learning nodes. The huge
communication cost poses a challenge to practical FL, especially
for FL in mobile edge computing (MEC) networks. Existing
communication-efficient FL systems predominantly optimize
their intrinsic learning process and are not concerned with the
implications on the network. In this paper we propose a FL
scheme that leverages Device-to-Device (D2D) communication
(hence called D2D-FedAvg) and is suitable for mobile edge
networks. D2D-FedAvg creates a two-tier learning model where
D2D learning groups communicate their results as a single entity
to the MEC server leading to traffic reduction. We propose the
schemes for D2D grouping, master UE selection, and also D2D
exit in the learning process and then form a complete D2D-
assisted federated averaging algorithm. Via extensive simula-
tions on the Federated Extended MNIST dataset, the feasibility
and convergence of D2D-FedAvg scheme are evaluated. Our
results show that D2D-FedAvg lowers the communication cost
relative to the typical Federated Averaging (FedAvg) in cellular
networks as the number of users is increased (for 100 cellular
users 37% traffic reduction), while keeping the same learning
accuracy with FedAvg across the board.

Index Terms—Edge Intelligence, Federated Learning, D2D,
MEC

I. INTRODUCTION

Nowadays, different types of user equipment (UE), such as
mobile phones, autonomous vehicles and wearable devices,
generate a huge amount of data that continues to grow
exponentially [1]. The applications used in these devices
require access to the cloud for real-time processing. However,
due to the volume of produced data at the UEs, it is
impractical to send all the data to the cloud. In addition,
the data privacy requirements for user data require local data
processing whenever possible. The newly defined 5G mobile
networks embrace this paradigm shift in mobile computing,
where the move is from centralized cloud computing towards
mobile edge computing (MEC) [2].

To support the required processing at large scale, MEC
systems usually require cooperation between the UEs and

This work was supported in part by National Natural Science Foundation
of China under Grant 61771469 and Ningbo Natural Science Foundation
under Grant 2019A610109.

Corresponding Author.

edge server. Since this cooperation is instrumental in MEC
systems, Edge Intelligence [3][4] has attracted significant re-
search efforts [5]. Traditionally, the MEC framework assumes
that all data is transmitted from smart devices to MEC servers
via a cellular network to perform their tasks. However, these
devices are owned by individuals, and they are generally
unwilling to share data due to privacy issues. Thus, in the
context of edge intelligence, Federated Learning (FL) [6]
plays an important role for exploiting the knowledge that is
contained in data scattered across the users.

The FL paradigm aims to distribute the training of a
machine learning model in multiple end nodes of MEC
networks and execute any machine learning algorithm at
the end nodes under the supervision of the edge server [7].
FL has been proposed by McMahan et al. [8] to enable
collaborative machine learning over a large number of edge
devices without central training. Serving as an enabling
technology in mobile edge intelligence [9], FL learns a shared
model by aggregating locally-computed updates. The globally
shared model is updated by averaging a local stochastic
gradient descent (SGD). During model aggregation, a large
number of parameters are communicated between edge server
(parameter server) and the UEs.

As the number of end nodes increases and the dimension
of the artificial intelligence model increases, the updating
and conversion process of the learning model parameters
will lead to a heavy communication overhead. Moreover,
mobile communication resources are limited in mobile edge
networks, and the edge services face the problem of high
traffic demand which often occurs in some areas. In such
cases, it is challenging for edge servers to effectively manage
the traffic load, and meet the traffic demand necessary for
timely communication in FL. This of course impacts FL
efficiency. Hence, reducing the communication overhead for
FL is critical for edge intelligent applications [10].

There are two types of approaches for reducing com-
munication overhead in FL. One suggests the reduction of
participants in FL. Nishio et al. [11] proposed a FedCS
framework that controls the number of participants based on
their computational capabilities and consequently reduces the
communication overhead. The second class of works com-
presses the bits of the transmitted parameters [12] or reduces
the number of communication rounds [13] between the edge
server and the end node. In [14], the authors proposed to add
the fog node, a middleware platform between cloud and edge



device, to reduce the backhaul communication to the cloud.
Similarly, [15] proposed a client-edge-cloud hierarchical FL
system to reduce communication overhead. CMFL [10] pro-
vides clients with feedback information regarding the need
for global updates of the model so as to reduce unnecessary
updates. These approaches can achieve a trade-off between
learning robustness and communication efficiency by opti-
mizing an internal parameter of FL. However, these works
did not consider communication resource optimization that
is dedicated for FL in mobile networks. Recently, FL. with a
particular focus on wireless communications has been studied
in [16]. Nevertheless, to the best of our knowledge, the
existing literature [17][18] of merging the device-to-device
(D2D) communication into FL not consider reducing the
communication overhead of FL. The D2D grouping can be
exploited to optimize the communication process in FL.

D2D communication was proposed as a mechanism that
enhances spectrum utilization in cellular systems [19]. As the
name suggests, a communication link is established directly
between the devices for data transmission instead of relaying
data through a base station, an approach that greatly reduces
the network traffic to the base station. Compared with the
other pass-through technologies that do not rely on the
network infrastructure, D2D is more flexible, enabling both
connection and resource allocation under the control of the
base station. In the meanwhile, D2D communication uses
the authorized frequency band of telecom operators, with
controllable interference environment and high reliability of
data transmission.

With the development of MEC in 5G networks, D2D
in MEC networks went a step further [19]. In a MEC
system combined with D2D, two or more devices in mutual
proximity establish direct local short range links and bypass
the base station, and these links allow user’s processing to be
offloaded to a nearby device with more available computing
resources. Since FL in MEC networks introduces naturally a
communication between multiple UEs and the MEC server
(as the parameter server), it is possible to combine D2D with
FL to offload a part of FL's communication traffic from the
MEC server to the local links between UEs.

Inspired by the D2D paradigm, we propose to adopt D2D
communication into FL so as to reduce the communication
overhead between the edge server and the end nodes. Specif-
ically in this paper, we propose a D2D-assisted hierarchi-
cal FL scheme that is suitable for mobile edge networks.
Nevertheless it is far from trivial to decide how this will
be accomplished, requiring thus a new system model and a
set of algorithms for distributed D2D-based FL. To this aim
we introduce first the notion of the D2D-assisted learning
group, where a master learning UE (MUE) acts as a client that
communicates with the edge server for updating the model
parameters of the D2D group. The remaining devices in the
same D2D group act as the slave learning UEs (SUEs) that
participate in collaborative learning with the MUE. Thus,
the D2D group can be considered as a new tier in FL. To
ensure smooth integration of D2D communication into FL,

novel algorithms are proposed for FL-oriented D2D grouping,
MUE selection, and also D2D exit. During the D2D learning
group formation, we solve the MUE selection problem by
a multiple objective optimization approach with considering
the tradeoff between D2D link quality (in terms of effective
transmit power) and the expended compensation cost.

The rest of the paper is organized as follows. In Section II,
the proposed D2D-assisted FL scheme is described. Section
IIT analyzes the convergence of the proposed FL scheme.
Simulation results are provided in Section IV while Section
V concludes the paper.

II. D2D-ASSISTED HIERARCHICAL FEDERATED
LEARNING SYSTEM

In this section, we present the proposed D2D-assisted
hierarchical FL system, called D2D-FedAvg, which integrates
D2D with FL. As illustrated in Fig.1, the proposed system
consists of a two-tier learning process. The first tier is the
D2D learning group that transfers the learning parameters
over D2D links. In the D2D learning group, the MUE assumes
the role of the parameter server for modeling the aggregation
of SUEs in the group. Another tier in the D2D-FedAvg system
is the MEC server (edge server) learning group. The MEC
server learning group takes charge of the whole learning
process. The MEC server is usually deployed near the base
station. In this tier, the MEC server is responsible for model
aggregation of all the MUEs and also the independent UEs
(called CUEs) who do not belong to any D2D groups in
the cellular network. During model aggregation, the model
parameters are communicated over the cellular network links.
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Fig. 1. D2D-assisted hierarchical federated learning system.

A. Problem Formulation for D2D-FedAvg

We focus on supervised FL in D2D-FedAvg. We define
the training dataset as {x;,y; }Lill, where the total number
of training samples is | D|, the vector x; is the j-th input of the
D2D-FedAvg model, and the scalar y; is the corresponding
label. Furthermore, the loss function of the j-th data sample
that is defined as f(z;, y;,w), is abbreviated further as f;(w).
This loss function captures the error of the model for the
Jj-th data sample. The loss function f;(w) depends on the
FL model which can be convex, e.g., logistic regression, or



non-convex, e.g., convolutional neural networks. Now assume
that the D2D-FedAvg system includes No CUEs and Npsop
D2D groups. The CUEs are with local datasets {D;}X and
Zf\fl |D;| = |D¢|, where | D¢ | denotes the complete dataset
for CUEs who participate in FL. Similarly, for the n-th D2D
group i{} the FL. system, there are N7, UEs with local datasets
{D:}}5, and 5,75 |Ds| = |Dipyp|, where [D3y, | denotes
the overall dataset for n-th D2D group in the FL system.

For the ¢-th CUE in the FL system, the local training
process requires the minimizing the empirical loss function
F;(w) based on the training dataset as,

ZjeD,-, fi(w)
|D;]

Similarly for the nth D2D group, the model training process
is formulated as the minimization of the local loss function

Fpop(w),

Fi(w) = ey

S D Fi(w)
[Dpap
After local training, global training at the MEC server tier is

performed based on the following function
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where F'(w) is the global loss function in D2D-FedAvg
system. Finally, the learning problem for D2D-FedAvg is to
minimize F'(w),

w* = arg min F(w) )

Note that there is an inherent complexity of most machine
learning. It is easy to see that we cannot find a closed-
form solution to (5). Consequently, (5) is solved by gradient
descent [20].

B. D2D-assisted Learning Process

For our D2D-FedAvg system, we adopt the adaptive pro-
cess model [13] to reduce the communication rounds nec-
essary for updating the model. We also consider the CUE
as a D2D group that contains only one UE and thus there
are totally L = Npap + N¢ D2D groups with the disjoint
UE sets {U'}},, where U’ denotes the set of UEs in the
l-th gg\(f)up. By including the N. CUEs, there are totally
N = fn NP + Nc UEs in the system. The N UEs are
indexed [_);/ the subscript ¢ and superscript [, with distributed
datasets {D!}V .

For our learning model w!(k) denotes the local model
parameters in the UE after the k-th local update, where k

is the index for the update step. Thus, for the i-th UE in the
system, the update rule is

wi(k —1) = nVF} (wi(k - 1)), k/ky #0
, | B IDi|[wi(k;)”—nvﬂ(wi(k—l))]7 k= 0
Y and k/(k1ky) # 0
N | DHwk (k—1)—nV F} (w! (k-1
iy | DilwiC u)?| AVER D] e k) = 0
(6)

where 7 is the learning rate. Every k; local updates at the
UEs, each MUE aggregates the models of the SUEs, and
every ko MUE aggregations, the MEC server aggregates all
the models from the MUEs. The number of total rounds of
the local updates for each UE in one learning iteration is
denoted as 7', which is an integer multiple of ki ks.

In this paper, we assume that the D2D communication
utilizes the frequency division multiple access protocol to
avoid mutual interference between different UEs. For the
proposed D2D-FedAvg scheme, the key problem is how to
coordinate the D2D communication with the model updating
procedures of FL. and make them work harmoniously. To
achieve this, we designed the following procedures: global
model configuration, D2D learning group formation, MUE
model aggregation, and edge server model aggregation.

Step 1: Global model configuration. During the initializa-
tion step of D2D-FedAvg or after the edge server completes
the global aggregation operation, the edge server broadcasts
the global model weights and training programs to the UEs
in the learning system. In particular, each UE has different
data resources, device battery, computing capabilities, and
wireless channel conditions. If these heterogeneities among
devices are not considered, the entire training process will
be inefficient. To alleviate the affection of the heterogeneous
client devices on D2D-FedAvg performance, we use the
FedCS [11] protocol to select client devices that participate
in learning.

Step 2: D2D learning group formation. Before initiating
D2D-FedAvg, the D2D learning group is formed as follows.

a) D2D grouping. The Proximity Service function is used
to determine whether a UE is authorized to act as a D2D-
UE. For better characterization, an available discovery list for
each UE is created. Each row in the discovery list contains
the groupid and the role of the UE with | indicating the UE
be a MUE, 0 indicating a SUE, and -1 indicating a CUE.
Assume that all UEs are initially qualified as D2D-UE, and
the maximum distance between MUE and SUE creating one
D2D pair iS dy,q,- Taking the coordinate of the edge server as
the origin in world space, the edge server records and updates
the coordinates of the UEs.

Since link quality is mainly affected by the communication
distance, the Euclidean distance between two UEs is utilized
as the metric for D2D grouping. At the start, each UE forms
a group. After that, if the distance between two UEs is
d < dpqq, they form a new group. In this process, some
UEs may belong to more than one group. We compute the
distance between two UEs that are furthest apart in the group,



and the middle position of these two UEs is defined as the
center position of the group. When the distance d between
two groups is larger than 2d,,,., the UE is assigned to the
group closest to it. When d is no more than 2d,,,,, the two
groups are merged to form a new group. In the new group,
for the two UEs whose distance is larger than d,;,,., they are
removed from the group and enter the next round of grouping.
During this process, the edge server records the number of
UE:s for each group, and updates the groupid in the discovery
list. Once all UEs have formed the groups and each UE has
a unique groupid, the edge server takes the UE as a CUE
for a group with only one UE. For the [-th group with more
than one UE, the edge server also records the distance dﬁ’ j
between i-th UE and j-th UE in the group.

b) MUE selection. Since the MUE plays an important role
of linking the edge server and the SUE for the learning
process, it has to be selected carefully. The MUE will
consume more energy for training the model in D2D group.
To encourage a UE who wants to be a MUE, there is an
incentive mechanism where the MEC service provider pays
the MUE a compensation. The compensation cost is deter-
mined in terms of the MUE’s contribution to the reduction
of the communication resources required for learning in the
cellular network. Therefore, it is particularly important to
select a MUE with high effective transmit power but little
compensation cost in the overall D2D group.

The FL training process involves a large number of param-
eter interactions. Moreover, when the D2D communication
broadcasts messages over wireless channels, D2D communi-
cation is vulnerable to diverse attacks due to the broadcast na-
ture of wireless communication [21]. For example, an attacker
can be much easier to gain critical or private information by
secretly listening to the broadcast communication frequently
among devices. Thus, we adopt the way of unicast D2D
communication for FL in this paper. For the i-th UE u! in
the I-th D2D group, its transmit power towards j-th UE ué-
is subject to a power control scheme and usually computed

as
Py(ul,ul) |dB = min{ Puax |dB ,101g(M,) + Py |dB

+p - PL(d} ;/1000) |dB + Arp + q(k)}

Z’ ]

(1)

where Pp.x |dB denotes the maximum power that one UE
can transmit, and M, denotes the number of resource blocks
allocated to ul. PL denotes the path loss components of the
D2D link channel fading model [22], that is

PL(d) = 148.1 4 401g(d[km]). 8)

where Py, p, Arp and q(k) are user-specific configuration pa-
rameters, indicating the spectral power density, the path-loss
compensation factor, a UE-specific parameter depending on
the applied Modulation Coding Scheme (MCS), and a higher-
layer closed-loop command to increase/decrease power level
respectively.

Generally there is an attenuation of the MUE transmit
power over the link from MUE to SUE. Let us denote the

total attenuation experienced by the signal from uﬁ to ué

as A(uz,u]) PL(dl :/1000). Given the transmit power
and the attenuation factor the effective transmit power at
MUE ! (also the useful power received at SUE u; Ly is

1 1 _ Pd(u u)
Plug, uj) = Alulul)
effective transmit power among all D2D links from MUE u!

to SUE u]( 14 7)1

In the [-th D2D group, the minimal

P(u!)=  min P(ulL,ué) )
ul, ulEUl JAFET

Usually, a larger P(u!) indicates that MUE u! can work bet-

ter for model training over D2D links in the [- th D2D group.

However, different MUEs have different service capabilities

depending on their positions in the D2D group. Consequently,

different MUEs will demand different compensation costs for
learning.

Assume the transmission rate for one link from ! to e (e

is the j-th UE uﬁ in the [-th D2D group or edge server) is

R(ul,e) = walogy (1 +v(ul,€)), (10)
y(ul,e) = [h(ul, o) P(ul,e) /(I(e) + Ng) (1)

wy 18 the channel bandwidth, Ny is the noise power The
value of y(ul,e) dependq on the specific link. h(ul, ) is the
channel gain from u! to e, P(ul,e) is the transmit power
for ul to e and I(e) is the interference power received from
e by affecting the transmission. The time for transmitting z
bits via the link from u! to e is 7"(z) = z/R(ul,e). The
compensation cost of the MUE is defined as a scaled square
of the transmission time,

52
plule)
where ¢4 is the compenbatron adjustment factor for ul,
and ¢(ule) = (R(ul, e)) /cq is the type parameter. To
estimate the compensation cost when uﬁ is taken as MUE, its
contribution that is characterized by z needs to be estimated
first.

Every k; local updates, the MUE performs the aggregation
step. Once u! is selected as a MUE, it does not upload
parameters via the D2D link for the MUE aggregation pro-
cess. Thus, there is no compensation cost during upload.
When downloading parameters, if u! is a SUE, it only
needs to download the parameters through the D2D link.
Similarly, if it is a MUE, it is not necessary to download
the model parameters, but the aggregated parameters need to
be transmitted to other SUEs in the group, which increases
the cost of parameter distribution. Now let us assume that the
required data for parameter transfer in a update or a download
process between two UEs is b bits. For a group where u! is the
MUE, and the model training requires 7'/ k; UE aggregations,
the compensation cost for MUE aggregation is estimated as

Ol e) = ca- {T'(2)} (12)

(T/k1) Z C’(ul, 1J) where |U'| is the UE number of

the I-th’ D2D group
Every ko MUE aggregations, a global aggregation in the
edge server is needed. Regardless of whether u! is a MUE



or a SUE, uﬁ needs to download the parameters from the
edge server. There is almost no additional cost during the
download process. During the upload process, if ul is a
MUE, it needs to upload b bits worth of parameters. In
one global aggregation, the model requires 7'/ (k1ke) MUE
aggregations and consequently the compensation cost for
global aggregation is estimated as (T'/(k1k2))C (ul, s), where
s is the edge server and C(ul,s) is obtained in terms of
Eq.(12) by substituting the parameters related to e with those
of edge server s.

Thus, the overall compensation cost for u} as MUE in its
group is

|Ut

>, Cluu))+

J=1,j#1

C(u) = (T/kx) (T/(k1kz))C(ul, s)

(13)
From the above analysis, it can be seen that MUE selection

is a multi-objective optimization problem that requires the
highest effective transmit power for the group but the least
compensation cost. For this class of problems, near-optimal
solutions can be found within a bounded amount of time. To
find a trade-off between the effective transmit power and the
compensation cost for selecting the MUE, the multi-objective
optimization problem can be converted into a single objective
optimization problem by a weighting factor A,

Ilnelnl{p( + (1= NC(u)} (14)
where A € [0, 1] is utilized to weight the effective transmit
power and the compensation cost into the decision making at
the same time. By solving (14) with a searching algorithm,
the appropriate MUE can be selected in each D2D group.

¢) D2D session establishment. When the MUE selection is
completed, the D2D links among devices will be established.
There are two ways for establishing the D2D communi-
cation session: one is the centralized way and another is
the distributed way. The centralized mode is to establish a
D2D communication session under the full control of the
base station. Comparably, the distributed mode is that D2D
users autonomously control the establishment, maintenance
and release of communication. Since the centralized mode can
give full play to the advantages of D2D communication, it is
convenient to control and manage resources and interference.
Therefore, this paper adopts the centralized control scheme.
We set up the D2D connection according to the discovery list
of each device, that is, the UE with the role O in the discovery
list needs to be connected to the MUE with the role 1 under
the same group.

d) UE exit scheme. The UEs may change their locations
dynamically, and consequently the MUE may be replaced.
We design a D2D-UE exit scheme. In each group, when
the SUE exits, it needs to send an exit request to the MUE
to which it belongs. After receiving the request, the MUE
disconnects from the SUE and reassigns the role of UE. When
the MUE exits, the MUE re-selection process is performed,
and then reassign it the UE role by updating the D2D

discovery list. Since FL allows UE to exit the training process
without significantly lowering the learning performance [11],
MUE re-selection will not introduce additional performance
overhead.

Step 3: MUE model aggregation. After receiving the local
model parameters of all SUEs, the MUE averages the results.
In wireless communication, D2D is susceptible to a number of
security attacks so that some devices may become untrusted.
Consequently, data sharing between D2D pairs puts the data
privacy at risk. To protect the user data privacy, differential
privacy protection is used for communication of the gradient.

At each step of the mini-batch SGD, a batch B of random
examples is formed and the gradients for a group of examples
M (M = B) are computed. After that, each gradient g (z;)
is clipped by (15), where C'is a clipping threshold.

gk (7))
1, Lol

max(1,

Ir(z;) = 15)

1 M
G = M(ijﬁk(ay)) + N(0,0%C?1) (16)

where N(0,02C?I) is the normal (Gaussian) distribution
with mean 0 and standard deviation cC'. We choose ¢C =

2log 125 /e for (e,8)—differentially private by standard
arguments [23] with the M samples. Specifically, the noise is
added to the gradients of the M samples to realize differential
privacy protection of the gradients, and the model parameter
w is updated on the opposite direction of the averaged noisy
gradient gy.

Step 4: Edge server model aggregation. After receiving
the model parameters uploaded by all MUEs and CUEs for
the FL, the edge server creates a weighted average of all the
model parameters to obtain the new global model parameters.
During the model aggregation, differential privacy protection
is also used for processing the gradient.

For easily understanding, the key model aggregation pro-
cedures of D2D-FedAvg are summarized in Algorithm 1.

III. CONVERGENCE ANALYSIS OF D2D-FEDAVG

The proposed D2D-FedAvg utilizes D2D networking to
partly offload the communication overhead that is generated
by FL in cellular networks. The D2D group forms a sub-group
for FL. The D2D sub-group is essentially a UE clustering
process. The model aggregation process in D2D-FedAvg is
divided into two subsequent procedures: MUE aggregation
in the D2D subgroup, and edge aggregation in the MEC
server. This type of two-tier model aggregation structure is
similar to a modular process that was used for robust FL
in heterogeneous environment [24]. The convergence of the
modular learning algorithm has been proven theoretically in
[24]. Hence, the proposed D2D-FedAvg is also a FL scheme
that converges. Simulation results in Section IV also verified
this.



Algorithm 1 D2D-Assisted Federated Averaging

I: Initialize selected clients with parameter woy,learning rate
n,noise scale o, group size M, gradient norm bound C'
2: for k=1,2,...7T do

3 Form the D2D learning group

4 for each UE ¢ = 1,2,..., N in parallel do

5 Add noise using Eq.(16)

6: Descent w' (k) « w!(k —1) — ngx_1

7: end for

8: if £ is an integer multiple of k1 then

9: if |U'| > 2 then

10: Select MUE for each group using Eq.(14)
11: end if

12: Establish the communication session

13: for each MUE [ = 1, ..., L in parallel do

14: w' (k) « perform MUE aggregation in Step 3
15: if k is not an integer multiple of kqk2 then
16: for each UE i € U' in parallel do

17: wh(k) « w'(k)

18: end for

19: end if
20: end for
21: end if
22: if k£ is an integer multiple of ki k> then
23: if |U'| > 2 and UE exit then
24: Re-select MUE for each group using Eq.(14)
25: end if
26: w(k) < perform edge aggregation in Step 4
27: for each UE ¢ = 1... N in parallel do
28: wh(k) « w(k)
29: end for
30: end if
31: end for

IV. SIMULATIONS

We simulated D2D-FedAvg using the network simulation
platform NS-3 [25] and PySyft [26]. We implemented a
generic interface between NS-3 and PySyft. D2D networking
is simulated in NS-3 and with a callback of FL execution for
model training in PySyft via the interface. For our evaluation,
the typical Federated Averaging (FedAvg) [6] with adaptive
model updates [13] is used as the reference scheme for
comparison.

A. Simulation Setup

For our simulation topology we considered a MEC server
which is located in the center of an area with a size of
1000mx 1000m. The D2D-FedAvg system was tested in this
area with a number of 50 UEs that meet FedCS, including 7
MUE groups, that each consists of a number of UEs varying
from 3 to 7, and also 12 CUEs. The simulation area was
divided into seven sectors. For each sector, the positions
of CUEs, SUEs and MUEs are randomly deployed with a
uniform distribution. The specific parameters used for the
D2D networking simulation are presented in Table I.

The simulations were verified on the FEMNIST [27]
dataset. Every UE is assigned an equally sized random subset
of the total training data. We used a simple feedforward
neural network with ReLU units and softmax of 62 classes
(corresponding to 62 digits) with negative log likelihood
(NLL) loss and an optional MaxPool2d input layer. We

TABLE I
SIMULATION PARAMETERS OF D2D NETWORKING
Parameter Value
Max.UE’s transmit power Pmax |dB 23dBm
Noise power Level -174dBm/Hz
Egde Server’s transmit power 43dBm
Maximum distance between MUE and SUE d; a4 30m
Spectral power density Pp |dB -70dBm
Path-loss compensation factor p 0.7
UE-specific parameter A p 0
Weighting factor A 0.5

adopted the mini-batch SGD with a mini-batch size of 64,
and an initial learning rate of 0.01. To avoid model overfitting,
weight_decay was set to 0.0001.

—— D2D-FedAvg
2.0 —-- FedAvg

»
5

2
3

®
3

Accuracy(%)
%

75 —— D2D-FedAvg
I —-- FedAvg

0 1 20 30 0 250 500 750 1000 1250

0
Epoch Mini batch x 250

(a) (b
Fig. 2. (a) The accuracies of the D2D-FedAvg and FedAvg schemes. (b)
The training loss for every 250 mini-batches per epoch.
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Fig. 3. (a) Communication overhead in MEC network for increasing UEs.
(b) Energy consumption of MUEs in D2D-FedAvg and FedAvg systems.

B. Simulation Results

We first assess the convergence and accuracy of D2D-
FedAvg. Fig.2(a) shows the learning accuracy of the proposed
D2D-FedAvg compared to that of the traditional FedAvg. It
can be seen from Fig.2(a) that the proposed D2D-FedAvg
converges after 25 training epochs. It shows that at least
8 epochs of training are needed so that the D2D-FedAvg
scheme achieves an accuracy above 95% and it can achieve
accuracy 98.46% finally. Using the same number of training
epochs, D2D-FedAvg achieves almost the same accuracy with
FedAvg. This is also validated in Fig.2(b). Fig.2(b) shows
that, similar to the FedAvg scheme, the proposed D2D-
FedAvg scheme finally achieves a training loss close to 0.

The number of necessary communication rounds of the
parameters in the MEC network for the two schemes are
summarized in Table II. It can be seen from Table II that
the communication overhead over the cellular link required
by FedAvg is about 33 times that of D2D-FedAvg. Recall
that in our simulation the maximum number of total UEs was
set to 100. Fig.3(a) shows the learning communication traffic



in the cellular network for the two schemes. It can be seen
from Fig.3(a) that the communication traffic of the proposed
scheme is significantly lower than that of the FedAvg scheme.
With an increasing number of UEs (e.g., beyond 50 in our
case), the gap of cellular link traffic between the two schemes
is gradually increasing. This is because the number of D2D
UE:s is also dynamically increased along with the increase of
the total number of UEs.

TABLE 1T
COMMUNICATION OVERHEAD

Scheme Accuracy (%) | Epoch | Communication rounds
95.92 8 17920
D2D-FedAvg 98.46 30 252002
95.60 8 582406
FedAvg 98.16 30 8190032

Besides the communication overhead, we also investigated
another critical quantity in training process, namely, the
energy consumption of MUEs. We recorded the energy con-
sumption of MUESs in 100 simulation rounds. Fig.3(b) shows
the experimental cumulative distribution function curves
(CDF) of the energy consumption of the MUEs (UEs in
FedAvg) in the D2D-FedAvg and FedAvg systems. It can
be seen from Fig.3(b) that, approximately 60% of MUEs
consume energy lower than 33.5 Joules in the two systems.
Though the MUE in D2D-FedAvg consumes more energy
than in FedAvg, the increased energy consumption for each
MUE is less than 2 Joules in D2D-FedAvg when compared
to FedAvg, which is usually acceptable in FL applications.
The MUE can give up its master role at any time, and when
the energy consumption is larger than its expectation, it will
select to quit the role of MUE. Thus on average, the increment
of energy consumption of MUE in D2D-FedAvg is not very
much.

V. CONCLUSION

In this paper, we proposed a D2D-assisted Federated Learn-
ing (FL) scheme over MEC networks for edge intelligent
applications. The proposed scheme exploits the benefits of
D2D communication in FL for reducing the communication
cost in the cellular network. D2D communication was em-
bedded into a FL system by introducing new algorithms for
D2D grouping, MUE selection, and D2D exit. The proposed
scheme allows for low-cost integration of FL into mobile
edge networks for a plethora of applications. The proposed
D2D-FedAvg system was implemented over a MEC network
and the simulation results showed that the proposed learning
scheme can reduce significantly the traffic load while keeping
the same model accuracy with the traditional FL. scheme.
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