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AbstractEstimating various parameters of a wirelessly trans
mitted informationbearing signal, besides the information itself,
is essential for a number of applications (e.g. military finger
printing, localization, radioastronomy, etc.). In this paper we
are interested in learning the number of antennas from which
a wireless signal originates, and in addition its angleofarrival
(AoA). Recent results from random matrix theory (RMT) allowed
the development of highly efficient methods for detecting the
number of antennas or the number of AoAs. In this paper we
present an algorithm that applies RMT in two steps so that
the receiver can detect simultaneously the number of antennas
and the number of AoAs when a transmitter (Tx) with multiple
antennas is present in an environment with several scatterers.
Our simulations reveal an algorithm with very low estimation
errors for a randomized placement of scatterers.

Index TermsUniform linear array, number of antennas, AoA
estimation, Akaike Information Criterio (AIC), random matrix
theory.

I. Introduction

A wireless communication radio frequency (RF) signal
contains the socalled side information, that is information that
reveals parameters of the transmitter and the user that are in
dependent of the the data. Some examples include the number
of antennas from which the wireless signal was transmitted
and the angleofarrival (AoA) of the RF signal at a particular
receiver (Rx). In this paper we deal with the problem of
estimating these two specific parameters when the transmitted
signal experiences multipath scattering and fading between
itself and the receiver (Fig. 1). To solve this dualobjective
problem we start by employing the most sophisticated upto
date methods for each of these two problems, namely random
matrix theory (RMT) [1] for number of antennas estimation,
and for AoA estimation the superresolution multiple signal
classification (MUSIC) algorithm [2] .
As expected, these two problems have been thoroughly

explored in the literature but always under specific settings.
The problem of estimating how many independent sources
does a signal contain under Gaussian noise was studied in [3].
That algorithm calculates the covariance matrix of the aggre
gate signal, then its eigenvalues, and finally uses the Akaike
Information Criterio (AIC) for estimating the number of
sources through model selection. This has emerged as a classic
nonparametric technique for this problem. The same AIC
metric (or similar ones) can be used for calculating how many
antennas a wireless transmitter uses in MultipleInput Multiple
Output (MIMO) wireless systems when each antenna transmits
data from an independent source [4]. More recent works

improve upon nonparametric estimation by using results from
random matrix theory (RMT) [1]. Detecting the number of
sources in a signal can also be accomplished with paramet
ric methods that have better performance. However, these
methods assume knowledge of the signal model which means
knowledge of the covariance matrix form [5], unlike [3]. These
methods of course fail when the number of sources differs
from the number of antennas. Furthermore, in wireless fading
channels the signal model, and so the covariance matrix of the
receiver baseband signal, depends on the unknown channel
realization making thus the channel coefficients a nuisance
parameter. Hence, nonparametric methods are preferable.
Regarding estimation of the AoA there is a plethora of tech

niques all of which require an array of antennas at the receiver,
as the topology in Fig. 1 illustrates. For achieving high angular
resolution subspace methods focus on the covariance matrix
structure of the received signal. We explore the most widely
used method namely MUSIC [2].
In our recent work [6] we have shown that these two

problems are coupled: The first requirement for estimating
the AoA with the MUSIC algorithm is the need for knowing
the precise number of angles from which the scattered signals
arrive. What we have observed is that since in a multipath
channel the signals over the multiple paths are correlated,
AIC/RMTbased methods are robust to correlation and they
can detect the antenna number. However, the effects of mul
tipath must be removed from the signal before we use the
same methods for estimating the number of AoAs. This now
allows the solution of both problems sequentially [6]. In this
paper, we propose an algorithm that is based first on RMT for
sequential antenna/AoA estimation, and finally on MUSIC for
AoA estimation.

II. System Model
The communication system model is illustrated in Fig. 1

and is based on a multiantenna transmitter, an unknown
number of scatterers (just one is illustrated in Fig. 1), and an
unauthorized receiver (URx) named Eve that uses a uniform
linear arrays (ULA) of antennas. The wireless modulated
signal is narrowband. The goal of Eve is to find the number
of transmitter antennas and the AoA of the incident signal.
Therefore, our discussion concerns the URx.
Signal Model: The ULA consists of NRx elements that are

separated by d meters. One typical assumption is that at the
URx the impinging waves at the ULA are approximated as
specular plane waves that arrive in parallel at the Rx. This
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Fig. 1: System model with a multiantenna transmitter and the
unauthorized receiver with a ULA.

holds when the distance between the Tx/Rx is significant. A
static Rayleigh flat fading channel is also assumed and the
complex fading coefficient of the baseband model is denoted
with h. If we account for the AoA ϕ and AoD θ of the signal
as a single phase term η(ϕ, θ) then for a path between the
Tx and the URx the overall complex baseband channel gain
is h exp(jη(ϕ, θ)). Without loosing generality in our analysis
we consider only the AoA. So in our model we have separated
the two contributing components in the baseband channel gain
first into the Rayleigh complex gain and second in the steering
vector of the ULA as we describe next in more detail. Let
us first model the modulated signal of the transmitter as an
NTx × 1 vector s. The data across the antenna elements are
assumed to be uncorrelated and are contained in s. To capture
the copies of this signal across the M paths this signal is
repeated M times and packed in the MNTx × 1 vector x =
[sT ... sT ]T . Note that the covariance matrix Cx=E[xxH ] has
dimensions MNTx×MNTx and rank NTx, i.e. it is not full
rank. We are now ready to express the signal model at the
ULA receiver as

y = AHiidx+ w, (1)

where Hiid (MNTx×MNTx) is a block diagonal matrix that
models the iid baseband channel samples as a result of
Rayleigh fading:

Hiid = diag(h1 ... h1︸ ︷︷ ︸
NTx copies

... hM ... hM )

Of course w is the vector of AWGN samples that has
power σ2. The ULA steering matrix is A with dimensions
NRx×MNTx. The columns of A contain the steering vectors
that model phase differences between the receiver signal and
the ULA antenna elements. The ith column corresponds to
the ith AoA:

aT (ϕi) = [1 ej2πfc
d cosϕi

c ... ej2πfc
(NRx−1)d cosϕi

c ] (2)

The carrier frequency is fc and the additional time that is
required for the signal to travel between two neighboring
array elements is d cos(ϕi)/c and is easily deduced with
trigonometry from Fig. 1. Consequently, with M AoAs this

NRx×MNTx matrix is:

A =


1 .. 1
... ... ...

ej2πfc
(NRx−1)d cosϕ1

c︸ ︷︷ ︸
NTx copies

.. ej2πfc
(NRx−1)d cosϕM

c

 (3)

It is also clear that as more antennas are added at the ith
transmitter the corresponding ith column is replicated in the
matrix.

III. Antennas and AoA Estimation
Now we proceed to discuss how the number of antennas

NTx and the M multipath AoAs are estimated. The covariance
matrix is calculated from the data with the classic unbiased
estimator Ĉy =

1
#samplesyy

H .

A. AIC/MDT Metrics
Nonparametric methods estimate how many independent

signals exist in the received signal using the covariance matrix,
and more specifically its eigenvalues. In our case the receiver
has only an estimate of Cy, namely Ĉy. This may be an issue
since a subset of the eigenvalues correspond to the noise
subspace. In the first work that studied this problem [3],
the eigenvalues of Ĉy constitute the proposed metric in a
channel experiencing only AWGN. Now let li denote the ith
eigenvalue of Ĉy. Then the AIC is:

AIC(m) = −2(NRx −m)T log(
∏NRx

i=m+1 l
1/(NRx−m)
i

1
NRx−m

∑NRx
i=m+1 li

)

+ 2m(2NRx −m) (4)

The transmit antennas that are estimated is equal to the value
m that minimizes the AIC metric, i.e.

N̂Tx = arg min
m=0,..,NRx

AIC(m) (5)

The minimum distance length (MDL) metric can be calculated
similarly [3] and is not presented due to lack of space.
However, the randomness of Ĉy, and that of its eigenvalues

allows us to use tools from RMT for improving upon estima
tion. The RMT estimator reported in [1] is also adopted here.
The number of antennas or AoAs can be estimated as:

N̂Tx = arg min
i=0,..,NRx

{li < σ2Cth(µ, ξ, α)} − 1 (6)

The threshold constant Cth depends on the centering µ and
scaling ξ parameters of the TracyWidom distribution and α
is a desired false alarm rate [1].
In this paper the AIC/MDT metrics are used for estimating

jointly the number of antennas and AoAs as we describe next.

B. Sequential Estimation Method
To clarify the rationale of our algorithm consider the sim

plest case with zero spatial correlation in the ULA antennas
elements and so (1) is simplified leading to the MIMO i.i.d.
channel:

y = Hiidx+ w (7)



For the matrix Hiid note that its rank is
rank(Hiid)=min(NRx,MNTx) since Hiid has NRx rows.
The covariance matrix of the complete signal Cs=HiidCxHH

iid
is a NRx×NRx matrix. So rank(Cs)=min(NRx, NTx) and in
case NRx≥NTx the rank is equal to the number of transmitter
antennas [4].
However, for our model in (1) the NRx×NRx signal co

variance matrix is AHiidCxHH
iidAH . Recall also that for our

model in (1) Hiid is a diagonal matrix that has dimensions
MNTx×MNTx and is full rank. So it will be rank(Cs)=
min(NRx, NTx,M). When NRx ≥ M > NTx the rank cor
responds to the transmitter antennas. What we propose is to
estimate first the number of antennasNTx, then perform spatial
smoothing so that Cx becomes full rank (equal toMNTx), and
then estimate M from the smoothed matrix which now has
rank(Cs)= min(NRx,MNTx,M). In Table I where we present
the usefulness of our algorithm we see that our idea cannot
estimate NTx when the number of used antennas is larger than
the number of paths.

aaaaaaaa

Antennas per
User < Paths ≥Paths

Algorithm result AoAs,Antennas AoAs

TABLE I: Suitability of the proposed algorithm for number of
antennas and AoA estimation.

C. Spatial Smoothing
The final critical part of the algorithm is the use of spatial

smoothing [7]. Spatial smoothing restores the rank of Cs by
grouping the ULA into L subarrays. The smoothed estimate
for a number of L subarrays is:

C̄(L)
y = AHiidC̄(L)

x HH
iidAH + σ2I (8)

This means that even if this algorithm can create a covariance
matrix with the desired rank MNTx, the rank of A (which
is M ) is not affected. This observation is exploited by our
overall algorithm (as we will soon explain with more details)
that its core principle is to calculate after spatial smoothing
AIC/RMT again so as to get the AoAs M .

IV. AoA Estimation with MUSIC
The receiver at the ULA calculates the AoA of the several

incoming wireless signals that are linearly superposed, by us
ing the phase difference of the signal at different antennas (as
a result of different time of arrival (ToA)). The beamsteering
vector aT (ϕ) in (2) expresses the difference in the phase of
a signal as a result of this ToA difference. By applying the
MUSIC algorithm we can then derive the AoA [2], [8][10].
MUSIC works only if the number of AoAs M is known,
making the use of the algorithms in the last section a necessity.
With MUSIC we use Eigenvalue Decomposition (EVD) for
Ĉy. There are two types of eigenvectors that correspond to
the signal and noise subspaces. There are M AoAs so if
we pack the eigenvectors into matrices we have the first
matrix Q1=[q1, ..., qM ], and the matrix for the eigenvectors

Algorithm 1: Highlevel pseudoalgorithm for joint
antennas estimation and AoA estimation
Input: y, NRx
Output: M̂, N̂Tx, θ̂

1 Estimate Ĉy;
2 Estimate # of ants. with RMT as N̂tmp;
3 Calculate smoothing array size L = NRx − 2;
4 Calculate smoothed cov. matrix Csmooth

y with (8);
5 Estimate # of AoAs with AIC,MDL or RMT as M̂ ;
6 Estimate MUSIC AoAs θ̂ with M̂ sources;
7 if N̂tmp < M̂ then
8 N̂Tx←N̂tmp
9 else
10 Cannot decide on NTx;
11 end

that have eigenvalues with value 0 (zerovalue eigenvectors)
is Q2=[qM+1, ..., qNRx ]. The main idea of MUSIC is that
the noise subspace is orthogonal to signal space, that is
aH(ϕ)Q2=0. Based on this we can define a function that
allows us to calculate the AoAs and is called the MUSIC
pseudospectrum:

PMUSIC(ϕ) =
1

aH(ϕ)QH
2 Q2a(ϕ)

(9)

It is easy to see that the peaks in PMUSIC(ϕ) contain the AoAs.

V. Algorithm
Our proposed algorithm is illustrated in Algorithm 1, and

it effectively summarizes the analysis we did in the previous
sections. The covariance matrix is estimated first from the
data, and then the antennas are estimated with the desired
AIC or MDT metric. This last estimate of NTx is temporary
because we must also calculate the AoA number which will
allow our algorithm to compare the two numbers and decide
on the number of antennas (see the discussion in IIIB). Spatial
smoothing is the next step of the overall algorithm. The length
of the subarray L in the spatial smoothing algorithm has to
be larger than the number of correlated signals (M in our case
including LOS). However, at this point of the algorithm M
is unknown and so we set L to be the maximum value that
it can take namely NRx − 2. After deciding the subarray size
the algorithm executes sequentially the steps for estimating
the smoothed covariance matrix, recalculates the AIC or MDT
metrics for obtaining the estimate M̂ , and also calculates the
MUSIC pseudo spectrum that allows calculation of the AoA
vector θ̂. Finally, the algorithm decides on the number of
antennas when the condition N̂tmp < M̂ is valid.

VI. Simulations
The performance of the proposed algorithm is evaluated

with a straightforward setup that focuses on fundamental
system parameters. The ULA is critically configured, that is
d=λ/2. We explored a different number NRx for the ULA
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(a) NTx estimation error for the AIC and RMT source estimators and
different number of ULA antennas.
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(b) AoA estimation error with MUSIC for the AIC and RMT source
estimators and different number of ULA antennas.

Fig. 2: Results for the estimation error.

antenna elements. The transmitted signal has B=1MHz, it
is BPSK and it is modulated on a WiFi 5GHz carrier. We
assume the availability of 10 data snapshots y that are used
for estimating the covariance matrix. Since our goal is to
derive accurate estimates of the number of antennas and AoAs
when scatterers are at random locations, we tested for each
ULA receiver SNR 100 different transmitter locations leading
to random AoAs. The transmitter location is uniformly and
randomly distributed. The y axis illustrates the estimation error
that is relative to the correct value of the desired parameter for
different receiver SNRs illustrated in the x axis. Furthermore,
we configured the actual number of paths in the random
topologies to be on average 1 more than the number of
transmitter antennas in each topology e.g., 3 paths and 2
antennas, 5 paths and 4 antennas, etc.
Regarding the error for the number of antennas estimation

it is illustrated in Fig. 2(a). As expected the RMT estimator

offers superior performance for the same number of ULA
antennas at the URx. More importantly the combination of
more ULA antennas and the RMT estimator offer even better
performance. But note that our actual interest is how all the pa
rameters M̂, N̂Tx, θ̂ are estimated. Next, M̂ is estimated after
spatial smoothing and finally MUSIC estimates θ̂. Fig. 2(b)
results demonstrate that when the SNR and the number of
ULA antennas is increased this improves the AoA estimate
with MUSIC. Overall we notice that the dual estimation
problem offers better performance with higher SNR/NRx as
desired and RMT is the estimator of choice for estimating the
number of sources/antennas.

VII. Conclusions
Estimating jointly the number of transmitter antennas and

AoAs of a wireless communication transmitter is a challenging
problem even with RMTbased estimators. The reason is that
the result must be interpreted depending on the precise number
of correlated signals and the number of scatterers/paths. In this
paper we focused on identifying multipath scenarios where
these estimators can be safely applied in a specific order
allowing us to solve the joint problem of number of anten
nas and AoA estimation. Our results showed the very good
performance of the proposed twostep RMTbased estimation
algorithm under different conditions.

References
[1] Shira Kritchman and Boaz Nadler, ``Nonparametric detection of the

number of signals: Hypothesis testing and random matrix theory,'' IEEE
Transactions on Signal Processing, vol. 57, no. 10, pp. 39303941,
2009.

[2] R. Schmidt, ``Multiple emitter location and signal parameter estimation,''
IEEE Transactions on Antennas and Propagation, vol. 34, no. 3, pp.
276280, 1986.

[3] M. Wax and T. Kailath, ``Detection of signals by information theoretic
criteria,'' IEEE Transactions on Acoustics, Speech, and Signal Process
ing, vol. 33, no. 2, pp. 387392, 1985.

[4] Oren Somekh, Osvaldo Simeone, Yeheskel BarNess, and Wei Su,
``Detecting the number of transmit antennas with unauthorized or
cognitive receivers in mimo systems,'' in MILCOM 2007IEEE Military
Communications Conference. IEEE, 2007, pp. 15.

[5] Noam Arkind and Boaz Nadler, ``Parametric joint detectionestimation
of the number of sources in array processing,'' in 2010 IEEE Sensor
Array and Multichannel Signal Processing Workshop, 2010, pp. 269
272.

[6] Antonios Argyriou, ``AoA Estimation of Spatially Correlated MIMO
Transmitters in Wireless Passive Radar Applications,'' in 2022 3rd URSI
Atlantic and Asia Pacific Radio Science Meeting (ATAPRASC), 2022.

[7] H.L. Van Trees, Optimum Array Processing, WileyInterscience, 2002.
[8] Antonios Argyriou, ``Number of Sources Detection and AoA Estimation

of a Wireless Transmitter in Multipath Channels,'' in 2022 3rd URSI
Atlantic and Asia Pacific Radio Science Meeting (ATAPRASC), 2022.

[9] R. Roy and T. Kailath, ``Espritestimation of signal parameters via
rotational invariance techniques,'' IEEE Transactions on Acoustics,
Speech, and Signal Processing, vol. 37, no. 7, pp. 984995, 1989.

[10] Masoud Arash, Hamed Mirghasemi, Ivan Stupia, and Luc Vandendorpe,
``Localization efficiency in massive mimo systems,'' Tech. Rep., 03
2020.


