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Abstract—Object detection methods for perspective images
have proven increasingly efficient, but the techniques for equirect-
angular projection (ERP) panoramas from inherently spherical
imaging cannot still achieve satisfactory performance. Due to the
various degrees of distortion at different pixel locations, current
algorithms cannot adapt to the changes in shape and contour
caused by stretching, which results in performance degradation
when migrating them from perspective images to spherical
ones. In this paper, we improve the network for panorama
object detection and introduce the cube-domain information with
discontinuity but low distortion to correct the panorama features.
Unlike previous works, we consider the impact of semantic dis-
continuity from all tangent planes instead of overlaying features
when needed. Considering the six facets as unified, i.e., six-to-
one for extraction, the proposed Facet-Link module enhances the
long-range sensing capability at the facet level in the frequency
domain. Moreover, the position alignment packs different facets,
i.e., six-to-one for calibration, to preserve more global signals
during the correction stage, which establishes semantic pathways
for feature interactions between panorama and cubemap in the
two dimensions, facet-facet and cube-pano, respectively. Extensive
experiments on synthetic and real-world datasets verify the
effectiveness and robustness of our proposed method.

Index Terms—panorama, feature calibration, cubemap, object
detection

I. INTRODUCTION

Object detection for flat images has undergone a long
development. The introduction of the Region with Convolu-
tional Neural Network (RCNN) [1] pioneered the two-stage
framework. Then the emergence of YOLO [2] puts the end-
to-end detection framework on the runway by splitting the
image into multiple patches and pre-setting the anchor which
is optimized in the loss function for prediction. The original
target of these neural networks is traditional perspective im-
ages. The “proposal” of two-stage networks and the “anchor”
of single-stage networks are both designed under the rule of
pinhole imaging. Thus, these previous methods have limited
applicability for the images from spherical imaging patterns.

Spherical images provide a wider field-of-view (FoV) than
traditional images, thus accommodating more spatial and
semantic information. They have played an important role
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in application scenarios such as autonomous driving [3] and
mixed reality [4]. Due to the images being spherical in origin,
the distortion of planar format is obviously severe, and the
semantic representation is not intuitive. Therefore, directly ap-
plying existing networks limits the performance, especially in
high latitude regions. One approach [5] provides convolution
filters with different shapes for different levels of distortion.
However, this method is similar to manual configurations and
insufficient to capture position-based distortion characteristics.
Other methods directly transform the convolutional kernel on
the sphere [6], SO(3) domain [7] , and icosahedral mesh [8],
which achieve a more suitable feature extraction by converting
the planar format to these alternative expressions. But these
methods, usually in the spherical domain or an even higher
dimensional space, suffer from greater computational volume
and usage costs that increase with the resolution of images.
As an alternative format of spherical images, the cubemap [9]
represents features of different perspectives in sub-maps with
fewer distortion, which is undoubtedly a booster for improving
the performance of panorama networks. Bifuse [10] fuses
features from the cube-domain and pano-domain to predict
depth. However, it is not sensible to simply superimpose
features to contribute different views to the pano-domain with
the same weight because cubemap and panorama undergo
utterly different projection patterns. The spherical padding
only “physically connects™ different facets, and the semantic
information cannot effectively interact.

In this paper, we optimize an end-to-end object detection
framework suitable for 360° images, which is based on intro-
ducing cubemap format together with panorama as inputs to
the network. We extract the global features in the frequency
domain to deal with the applicable position embeddings among
multiple facets and also capture the spatial domain features
to track the fine-grained and short-range signals by the low
distortion within the facets. Not only physically but also
semantically, we align and pack the six facets into one feature
unit to rectify the panorama stream by structuring attention at
the facet level.

The main contributions of this paper are summarized as
follows:

o The proposed feature calibration for end-to-end panorama

object detection, uniting six facets of cubemap into one
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Fig. 1. The proposed framework. The network takes cubemap and panorama as inputs to predict categories and bounding boxes. The cubemaps of each layer
link six facets to offset the discontinuity ("Facet-L”) and are packed to calibrate the corresponding panorama ("FA-C”). Then the corrected features participate

in the pyramid and head network.

semantically, attenuates the side effects of distortion to
improve the performance of the network.

o We utilize both the global and local features from the
cubemap stream. Placing the six facets in the same
frequency range involves all features in extraction, which
makes up for the discontinuities from different facets.

e We embed a facet-aware calibration module into the
multi-scale information fusion flow. We aggregate and
pack facets for position registration and then propose the
FACA operator for adaptive feature correction guided by
the cubemap domain.

II. RELATED WORK
A. Object Detection for Perspective Images

Object detection technology for perspective images has
been gradually improving. The convenience brought by CNNs
constitutes the two-stage network represented by RCNN [1]
and the single-stage network represented by YOLO [2] good
foundations for achieving impressive accuracy and speed. As
the mainstream backbone networks, the residual network [11]
and the spatial channel separable Inception-net [12] have
become the primary modality for feature extraction in a
number of studies and have shown promising performance
and generalizability. At the neck layer, the feature pyramid
network [13] bridges the gap between different convolutional
layers of the backbone network and becomes the beginning
of multi-scale detection techniques. The advent of CenterNET
[14] frees the network from the constraints of anchors. To
break the limitations of local perception of CNNs, Wang et
al. [15] adopts a self-attention mechanism to unlock the long-
distance dependence of the network. SENet [16] and CBAM
[17] employ channel and spatial attention to capture the
importance of each partition. The low complexity of traditional
convolutional networks is well suited for vision tasks. The rich
selection of backbone, multi-scale prediction, and attention
mechanisms are essential guides for the detection task of the
panorama. However, due to the non-negligible distortion, these

methods require a series of optimizations to perform better for
spherical images.

B. Object Detection for Panorama

The most straightforward approach to combating distortion
is to directly correct the distorted signal for the follow-
ing downstream tasks, as [18] investigates stereo correction
strategies using 3D geometry. However, correction in the 2D
plane inevitably loses the information initially contained in
the image, which naturally affects the effectiveness of object
detection. Detecting panorama objects by 2D convolution, Su
et al. [5] modify the shape of the convolution kernel along the
meridional direction for panoramas. Yang et al. [19] project
the image to multiple views for object detection separately,
which is regarded as a rudimentary but effective approach.
Spherenet [6] projects the filtered region onto the tangent plane
to adapt the filter to a specific position. Unlike 2D conventional
convolutional networks, based on the isomorphism between
the rotation of the sphere in 3D space and the 3D rotation
group SO(3), Cohen et al. [7] convert the image from the
2D plane to the SO(3) domain to perform the correlation
operation on the hypersphere space. SpherePHD [8] applies
CNN s to icosahedral mesh and proposes triangular filters that
take into account orientation with their corresponding pooling
layers. Recent studies have started to develop suitable evalu-
ation metrics [20] and detect objects [21] based on spherical
coordinates. Still, extending these methods to more datasets
and corresponding applications is problematic because getting
more spherically labeled data for training in real scenarios is
costly. As multiple information branches, 3D target detection
and depth are used to strengthen the semantic perception of
the network in [22]. Bifuse [10] improves the accuracy of
panorama depth estimation by means of a cubemap branch
with the benefit of low distortion and edge padding. However,
their feature extraction for cubemap does not consider the
semantic connection between the facets, and each facet of the
cubemap has the same influence factor on the equirectangular



projection (ERP) panorama branch, which will be discounted
in detection performance.

III. METHOD

In this section, we detail the object detection architecture for
panorama. We first introduce the general framework, followed
by Facet-Link Block and facet-aware calibration in order.

A. Framework

We show the basic framework of the feature extraction in
Fig. 1. The initial stage consists of two branches guided by
panorama and cubemap, respectively. The final head network
deduces the results based on the corrected panorama stream.
The feature extraction mainly includes four building blocks:
(1) backbone network stream of panorama; (2) backbone
network stream of cubemap; (3) Facet-Link block that unifies
the facets of cube-domain; (4) Facet-aware calibration that
packages individual facets and performs weighted fusion with
panorama. The panorama and cubemap branches use the
classic ResNet [11] to extract the raw signals (including edges,
contours, etc.) of the image and express them in a high-
dimensional space.

Since objects in the panorama are usually stretched, espe-
cially at high latitudes, a more flexible prediction scale leads to
better performance. FPN [13] enables the network to predict at
multiple scales. It opens up the information transmission paths
of the backbone network at different stages and combines the
high-level rich semantics with all other scales by a top-down
architecture. We build the pyramid structure by extracting
each feature map f| € {res2/2,res3/s,resd/5,resb/2} of
the ResNet-101, and their stride gets progressively larger as
{4, 8,16, 32}. The generated corresponding pyramid structure
of the extracted feature map {F5, F3, Fyy, F5} builds pathways
to enrich semantic information.

Unlike the original design in FPN, the panorama stream
of our network, followed by the skip-connection structure, is
rectified by cubemap with lower distortion. To counter the
inherent discontinuity among facets, the Facet-Link block,
abbreviated as Vp, links the features of the cubemap as a
whole. It captures the position dependence over long distances
and enhances the local features within the frequency and
spatial domains, respectively. Furthermore, we fully consider
the position alignment of the multiple facets of cubemap with
the single one of panorama in the facet-aware calibration
block V¢, making the features adaptable to different positions
for the following proposed calibration operator FACA. We
formalize the pattern of these components being embedded
in the network as:

fei =Ve(fe, Vi(fe)) (1)

where fc; and fe; denote feature maps in cube stream and
panorama stream, respectively. Note that these proposals are
structured in the multi-layers pyramid, and the panorama
feature maps are corrected in different scales. Mathematically,
the pyramid fusion is represented in the form of:

fei' = fei -0(feiriie) + fei @
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Fig. 2. Facet-Link Block. Signals are extracted by conventional 2D convo-
lution in the local stream. In the global stream, FFT transforms them into a
spectrum with learnable parameters for long-range perception.

where fe; ;1 denotes the previous layer of fe; in the panorama
stream with a larger size. §(-) denotes 1 x 1 convolution
operation and e is the corresponding parameters.

The objects on panoramas, especially at high-latitude posi-
tions, are usually wider than those on traditional flat images.
To get a larger receptive field for larger bounding boxes, we
extend Ps for the two deeper layers {Ps, Pr} to get the final
features {P,, P3, Py, Ps, Ps, P;} for the subsequent steps of
anchor selection and detection head network.

The cubemap branch also uses ResNet-101 for the initial
feature extraction, which acts more like an auxiliary reinforce-
ment branch, so it does not use the top-down pathway for
feature enhancement. To maintain the corresponding coordi-
nation with the panorama stream in size, we also extract layers
ranging from 2 to 5 as the ingredients of feature calibration.

B. Facet-Link Block

The cube stream is only limited to simple feature extraction
in the former panorama image processing methods enhanced
by cubemap. Cubemap can complement panorama feature
extraction due to its less distortion within each facet. The
downside is that the six disconnected facets cause signal
boundary discontinuities and impair the performance of feature
extraction networks. So our method treats the six facets as
a whole, i.e., six-to-one, to capture facet-to-facet positional
dependencies and make the information semantically related
to each other.

To maximize the benefits of low distortion, we propose
a cube-domain stream that integrates different facets based
on both global and local branches, as shown in Fig. 2.
Mathematically, we formalize the output from the backbone
network as the cube features CM; € RTXWxCr  where H
and W represent the length and width of the tangent maps.
C't denotes the number of channels included in each facet ¢,
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Fig. 3. Cubemaps weight and pack the features at the facet level (shown in the
yellow region) to establish position alignment; the panorama is corrected on
a facet-by-facet scale (shown in the blue region). The dashed circle indicates
the association between different parts of the feature maps, where the yellow
triangles indicate the facets of the cubemap and the blue square represents
the panorama.

1 € {B,D,F,L,R,U} representing the six directions of the
spherical projection, back, down, front, left, right, and up. We
feed it into the local branch for fine-grained spatial perception
and note that “local” here indicates feature extraction within
the channel. Since planar CNNs can share weights among
various kernels and the feature map presents local sensory
fields, the conventional convolution can be competent for this
task to get CM, jocqr- In the global stream, we transfer the
cubemap to the frequency domain through 2D Discrete Fourier
Transform (DFT) W for pixel [k, ],

H-1W-1

Uk, 1] HWZthw’”” hrwe) o (3)

h=0 w=0

where 0 < h < H—1and 0 <w < W — 1. In practice, we
adopt the Fast Fourier Transform (FFT) by decomposing the
DFT matrix into the product of sparse (mostly zero) factors
to speed up the calculation. It reduces the complexity of
calculating the DFT from O(N?) required to calculate only the
DFT definition to O(N log N), depending on the image size
N. As demonstrated by Rao et al. [23], the frequency domain
convolution operation is equivalent to a global round-trip
convolution between channels. By constructing a frequency
domain convolution kernel of the same size W; € RHFXWxCr
we will finish cubemap feature extraction in the spectrum:

CM; =W;0U(CM,),i € {B,D,F,L,R,U} ()

where o represents the entry-wise product (also known as
the element-wise product). After rendered to the frequency
domain, the facets from the perspective domain of different
projection angles enjoy the same frequency interval. That is,

the domain switching aligns the six facets ¢ to be extracted
for semantic signals to the same scale. And using different
parameters W; separately ensures the weight sharing of the
convolution, which guarantees to retain the uniformity among
the features with a reduced number of parameters.

The frequency-domain cubemap features are then converted
back to the spatial domain by the inverse Fast Fourier
Transform (IFFT), and the ones from the local stream are
concatenated with them:

CMi_link - ]:[CMi_local . ‘I’_l(E—VM)] (5)

In the above, the function F[| indicates that the feature
maps are concatenated in the channel direction followed by
a 1 x 1 convolution layer. It should be mentioned that the final
convolution reduces the number of channels to be consistent
with the ones in the panorama stream.

C. Facet-aware Calibration

In this section, we detail feature alignment and packing for
facets, i.e., six-to-one, at the semantic level, followed by a
calibration operator. As shown in Fig. 3, we develop semantic
links between facet and facet as well as that between panorama
and cubemap.

The cubemap format has multiply-disconnected but low
distorted facets rendering different tangent planes separately.
When invested into the panorama branch as corrective signals,
these facets equally affect all positions of the target features by
regular addition or multiplication, which does not correspond
to the actual situation. Our proposed calibration module en-
codes the features from Facet-Link at the facet level so that
each rectified feature can be adaptive to the specific position.

We use the most classic channel substructure [16] for
the position registration. First, the feature map undergoes a
global pooling Fy, operation. It is worth emphasizing that
to highlight the characteristics within the individual facets of
cubemap, we split the channel into facet units (6 partitions)
and pool all channels C; involved in each portion. More
strictly, the pooled pixel value p’, € RE>*WX6 jg the average
result derived by compressing the previous feature layer in
units of size H x W x Cf:

H W Cp

HxWxC, 222 plinik) (©

=1 j=1 k=1

Pe=Fppe) =

We achieve the mining of facet dependencies by employing
facet-level pooling, and the results are fed as descriptors into a
Multi-layer Perception (MLP) layer. We formalize the gating
mechanism as follows:

G= U(Wngp(CMi_link)) @)

where W), € RC#/mxCs 1 is the reduction ratio and o denotes
the sigmoid function. Then we weight the facets by element-
wise multiplication,

6
CM =G &CM;_tink o
i=1 ()

i€{B,D,F,L,R,U}



TABLE I
PERFORMANCE COMPARISON ON VOC-360 AND 360-INDOOR DATASETS. (P/S) DENOTES THE SOURCE NETWORK DESIGNED FOR PERSPECTIVE OR
SPHERICAL IMAGES. (*) DENOTES THE DETECTION RESULTS ARE DERIVED FROM SPHERICAL COORDINATES. THE BOLD NUMBERS REPRESENT THE
BEST PERFORMANCE IN EACH CASE.

360-Indoor VOC-360
Method Backb
etho ackbone | ype (PIS) | \p 4y AP (%)  APrs (%) | AP (%)  APso (%)  APrs (%)

Faster-RCNN [26] | ResNet-101 p 183 38.7 14.1 55.2 65.7 49.8
CenterNET [14] | ResNet-101 P 18.0 37.9 133 58.5 73.5 53.6
YOLOVS5 [2] DarkNet-53 p 17.9 38.4 13.4 49.2 59.8 029
S2CNN [7] ResNet-101 S 10.0 25.7 7.9 26.1 28.1 20.3

Rep-RCNN [21] | ResNet-101 S 5.0% 15.3% 1.9% - - -

Dai et al. [20] ResNet-101 S 10.0% 24.8% 6.0% - - -
SphereNet [6] ResNet-101 S 16.7 343 13.8 479 52.1 48.7
OURS | ResNet-101 | s | 215 40.2 196 | 628 67.9 62.7

Furthermore, the ERP single-sided format needs to interact
with the multi-sided information in cubemap to get rectified by
the lower-distortion features without losing the overall image
signals. As shown in the blue area of Fig. 3, we exploit
the soft addressing property of cross attention to make the
fragmented but less distorted semantic information from the
cube-domain correct the global features £ € H x W x C
in the panorama stream. The specific cube facet adaptively
finds the most closely related regions for feature correction
and ignores the unrelated panorama features. To this end, we
propose facet-aware cross-attention (FACA) as follows:

FACA(E) = Softmaz(T(5(CM))®5(E))RT(5(CM)) (9)

where 0(-) denotes a 1 x 1 single layer convolution and
the softmax function normalizes the attention score. T'(-) is
the C2E function that converts cubemap to equirectangular
projection format.

We render the texture to the sphere by orienting the co-
ordinates of the cubemap from {B,D,EL,R,U} six views by
inverse mapping function:

qsi = Rfl *Gci (10)

where Ry, is the rotation matrix in the coordinate system to
the center of the cube, and ¢.; and gs; are the corresponding
points from the tangent plane and sphere, respectively.

Given the longitude ¢ and latitude 6, where 0 < ¢ < 27
and 0 < 6 < 7, we calculate the average of several nearest
neighboring pixels to identify which facet of the cubemap that
gsi € [¢,0] lies on and the specific pixel value of the facet.
Then we get the position (X, Y, Z) on the equirectangular
coordinate by mapping the spherical position (¢,f) to the
panorama domain:

X = cos(0)cos(¢)
Y = sin(0)
Z = —cos(0)sin(¢)
The schematic diagram at the left of Fig. 3 shows that
our proposed calibration strategy considers the connectivity

of different facets of the cubemap and their correlation with
the overall signals (ERP format) at the two successive stages,

(1)

which performs adaptive position registration among the facets
under the spherical global scope for the panorama rectification.
Therefore, we compensate for the negative impact of border
discontinuities to enhance the features semantically for the
downstream task.

IV. EXPERIMENTS

In this section, we evaluate the proposed method by com-
paring it with the advanced object detection networks; then
show the ablation study results.

Datasets. To demonstrate the performance and generaliza-
tion ability of the model more comprehensively, we adopt both
real-world and synthetic datasets.

360-Indoor [24]: An open-source panorama object detec-
tion dataset. It collects and annotates objects in complex
indoor scenes with 37 categories, consisting of 3k images
and the corresponding total of 90k annotations. After pro-
jecting the panorama onto the spherical tangent plane, we
use mapping functions to convert the bounding FoV from a
spherical rectangle (0, ¢, a, /) to the regular bounding box
(TminsYmin>Tmaz Ymaz) as input to the network.

VOC-360: A synthetic dataset based on the PASCAL VOC
2012 [25] with 20 classes. We randomly project the perspective
images onto the sphere along the longitudinal direction as {0°,
36°,54°,72°} and subsequently expand them into panorama as
the input to the network. Each image is attached to only one
object, and the regions outside the target are filled with zero
values. 18k training images, 6k validation images, and 3k test
images are available in VOC-360.

Experimental Settings. The network takes 1920x960 as
the size of the input, including the training and testing stage.
We use stochastic gradient descent (SDG) as the optimization
method with momentum set to 0.9. The learning rate is
initialized as 5e~2 and gradually decays by e~* to update
the weights on both 360-indoor and VOC-360. The network
is trained on two NVIDIA Tesla P40 (24G) GPUs with the
batch size of 2 x 8.

Augmentation. Since different positions of equirectangular
projection suffer from various degrees of distortion, stitching
across longitudes on the panorama format causes inconsistency
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Fig. 5. The mAP comparison of each network at different latitudes and their
respective trends on the VOC-360 dataset.

between distortion and patch. To improve the generalization
ability of our model, we rotate the panorama along the yaw
axis by 90°. For indoor datasets, each category has a different
distribution in different latitudes, and radical changes may
affect the realism of the dataset. Therefore, we do not change
the polar position of the objects.

A. Performance Comparison

Baselines. We compare the accuracy of the proposed net-
work with the traditional planar and spherical methods.

Planar methods. We chose Faster-RCNN [26], YOLOv5
[2], and CenterNET [14] as they represent networks for the
three most classic planar detection architectures: two-stage,
one-stage, and anchor-free. Objects in panorama have a larger

(b) Faster-RCNN

rate (top), and the scatter plot shows the mAP

size and different aspect ratio, so we modify the size of the
anchor box to be 2.3 times larger than the COCO dataset in
all networks. We use ResNet-101 pre-trained on COCO as
the backbone to get better results. Since the YOLO model
with ResNet suffers a poor performance, we choose the more
suitable Darknet-53 as an alternative.

Spherical methods. We choose SphereNet [6], S2CNN [7],
Rep-RCNN [21], and Dai et al. [20] since they are both “tailor-
made” methods for spherical images. Regarding the methods
based on spherical coordinates that differ from ours in terms
of detection rules, e.g., IOU calculation, we just include the
detection results of Rep-RCNN and Zhao et al [20]. since their
codes are not publicly available. S2CNN maps images to the
SO(3) domain and a complete application in the backbone will
inevitably lead to a severe memory crisis, so we only replace
the 2D convolution with S2CNN for the last two layers.

Metrics. We use the same evaluation metrics as MS COCO
[27] to obtain AP@[.5:.05:.95] with IoU threshold ranging
from 0.5 to 0.95 with the step size of 0.05.

The performance comparison is presented in Table I. It
can be seen that in both datasets, our proposed network
performs better. In the real-world 360-indoor dataset, our
method outperforms the Faster-RCNN by 3.2% in terms of
mAP. For the same spherical methods, the proposed method
is four percentage points higher than SphereNet. The results
on VOC-360 have an overall higher accuracy than those on the
real-world one since each image of VOC-360 contains only a
single target. Our model is still 9.1% higher than CenterNET
in APr5. Probably due to the limitation of factors resulting in a
lower benchmark, such as the bounding box settings, spherical
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Fig. 6. Examples of detected results on 360-Indoor and VOC-360.

TABLE II
ABLATION STUDIES ON 360-INDOOR DATASETS. "F-L” AND "CAL”
INDICATE FACET-LINK AND CALIBRATION MODULES, RESPECTIVELY.

360-Indoor

Input Backbone +F-L | +Cal AP APsy  APrs
Pano ResNet-50 | | | 97 232 71
ResNet-50 121 279 938

Pano+Cube | ResNet-50 | v/ 143 301 106
ResNet-50 | v/ v | 166 305 125

Pano ResNet-101 | | | 114 240 109
ResNet-101 137 277 104

Pano+Cube | ResNet-101 v 16.3 31.2 12.0
ResNet-101 | v v | 171 325 139

IOU calculation, etc., the performance of the methods (Rep-
RCNN and Dai et al. [20]) based on spherical coordinates is
relatively poor.

Compared to the planar methods, our APr5 metric has a
higher value because the top facet from the cube domain
provides more cues to the model’s inference semantically, and
the model gives more confidence for highly distorted objects.
CenterNET shows the highest value of AP;59 on the VOC-
360 dataset. Probably not being restricted by anchors, it can
outperform other networks at lower confidence. In addition,
we also notice its instability in the overall performance.

We also compared the accuracy trends among the networks
on VOC-360 at different latitudes, as shown in Fig. 5. The
accuracy of the spherical model is more uniform at different
latitudes. In general, our model has the highest accuracy
in seven latitudes among all methods. On the contrary, the
planar network performs well near the equator but deteriorates
sharply close to the high-latitude positions owing to the
penalty of image distortion, which also implies the robustness
and stability of our model on different datasets.

Fig. 4 shows the log-average miss rate of different networks
in each category, and our proposed network has lower error
rates (even to zero). Note that our method performs worse in
some categories than the planar network. Since the pre-trained
model used for training is based on the planar dataset COCO,
the model designed for spherical images has an inherent
disadvantage for objects with lower distortion. In addition,
some of the categories have a miss rate close to 1.0 among all
models, and we conjecture that these categories have too small
objects (e.g., cup) or a small number (e.g., clock less than 1%),
making it difficult for models to extract features. Overall, our
model performs better in terms of the average results. More
in-depth, our model performs more robustly across different
categories.

The scatter plot in Fig. 4 shows that the mAP values
of our model are more evenly distributed across different
categories. The planar model Faster-RCNN is more biased,
and the accuracy is more differentiated between categories,
while the results of SphereNet are leaner towards low values.
Fig. 6 shows several examples on 360-Indoor and VOC-360
datasets. The VOC-360 image is projected on 72° polar angles.
The planar network Faster-RCNN and the spherical network
SphereNet are involved in the comparison, and the proposed
method detects more distorted objects. Faster-RCNN shows
good performance in regions near the center.

B. Ablation Studies

We performed ablation tests for proposed components on
real-world datasets, as shown in Table. II. To be fair, our
backbones are all pre-trained with ResNet-50/101 from the
COCO dataset without augmentation.

The introduction of the cubemap stream obviously improves
the performance of the network. The addition of the Facet-Link
module alone improves the mAP by more than two percent-
age points. The calibration module has a more remarkable
improvement on the A Py5 metric, indicating that the model is



TABLE III
COMPARISON OF DIFFERENT INTEGRATION STRATEGIES. ‘CONCAT’
DENOTES CONCATENATION, AND ‘@’ AND ‘®’ DENOTE ELEMENT-WISE
ADDITION AND MULTIPLICATION. ‘TOP-X’ DENOTES THE MAP VALUE OF
THE CATEGORY RANKED AT X-TH.

Strategy | mAP (%) | Top-1 (%) | Top-15 (%) | Top-25 (%)

CONCAT | 1666 | 7026 | 3649 | 1041
@ | 1508 | 6451 | 2662 | 260
® | 1664 | 6498 | 3539 | 815

able to detect distorted targets with greater confidence. On the
contrary, we note that the calibration module has a reduced
impact on APsp, probably because the model has a certain
recognition of the distorted objects at low confidence like the
planar ones.

We perform separately different correlation operations in
the feature correction module on the 360-indoor dataset,
namely (a) concatenation followed by a convolutional layer
for dimensionality reduction, (b) element-wise addition, and
(c) element-wise multiplication, as shown in Table. III. We
use ResNet-50 as the backbone and adopt the panorama
features calibrated by the cube ones as the baseline. We can
see that concatenation and element-wise multiplication have
comparable effects, while the latter is faster, which is the
reason we choose it to obtain better performance for the
architecture.

V. CONCLUSION

In this paper, we propose a cubemap-guided panorama fea-
ture rectification method to improve object detection accuracy.
The panorama suffers progressively more distortion from the
equator to the poles, which the cubemap compensates at the
cost of discontinuities. To eliminate discontinuities and form
associations between signals, we first link up the semantics
between different facets of the cube-domain through the Facet-
Link module to capture long-range dependencies as well as
the fine-grained features and then pack them for location
registration to correct the panorama at the facet level. The
experimental results on both real-world and synthetic datasets
verify that our method achieves higher accuracy and performs
more uniformly and robustly across various categories.
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