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Abstract

In this work we are concerned with the problem of esti-
mating the AoA of MIMO transmitters when their antennas
exhibit spatial correlation. The problem is of interest in
passive RADAR applications where a receiver that is not
part of the nominal communication link wants to estimate
the AoA. We explore the conditions under which we we can
calculate correctly the number of AoAs, allowing us correct
application of the high resolution MUSIC algorithm. Our
results in indicate that for spatially correlated channels we
must know the degree of spatial correlation before we can
calculate the AoAs.

1 Introduction

Modern communication systems may be needed to be capa-
ble of both efficient communication and RADAR function-
ality. This is possible since wireless digitally modulated
signals always convey additional information besides the
data itself. However, the problem is more challenging in
passive systems where a receiver is not part of the nominal
communication link and the signal has not been designed
to support RADAR. For such a system one type of informa-
tion that we can extract is the angle-of-arrival (AoA) of the
signal at a particular unauthorized receiver (URx).

Estimating the AoA can be accomplished in several differ-
ent ways all of which use the received signal vector at an
array of antennas (Eve in Fig. 1). One of the most popular
class of techniques, referred to as subspace methods, ex-
ploit the structure of the received signal covariance matrix
and offer very high angular resolution. The multiple signal
classification (MUSIC) [1] algorithm, and ESPRIT [2], be-
long to this class of techniques. Besides subspace methods,
techniques like the Bartlett and Capon/MVDR beamform-
ers can also be used for AoA estimation at the cost of lower
angular resolution. It is interesting that a pre-requisite for
solving the AoA estimation problem with MUSIC is the
knowledge of the number of AoAs.

In this paper, under the assumption of a receiver that con-
sists of a uniform linear array (ULA), and a Rayleigh fading
channel, we identify first the conditions when the number
of AoAs can be correctly estimated. Next, we show that the

. . .

Figure 1. The wireless communication system with MIMO
transmitters with a ULA deployed at an unauthorized Rx.

situation is more perplexed when a more realistic MIMO
channel experiences spatial correlation across the antenna
elements. Spatial correlation across antenna elements at the
Tx and/or Rx is a typical concern of every practical MIMO
system that hampers performance in practical scenarios.

2 System Model

The system model in Fig. 1 consists of a number of multi-
antenna transmitters (just two are illustrated in Fig. 1)
that may communicate with each other or another receiver
which is not presented since it is irrelevant to our study.
One or more transmitters, with potentially several anten-
nas, transmit simultaneously a signal of bandwidth B Hz
over the same time-frequency slot depending on the chan-
nel allocation scheme. The data modulated signals are as-
sumed to be narrow-band, that is B << fc where fc is the
carrier frequency. The model also includes a ULA, which
not part of the nominal communication system, hence an
unauthorized receiver (URx), that calculates the number of
AoAs with the AIC metric before AoA execution. There-
fore, our subsequent discussions on the signal models and
the estimation algorithms concern the ULA.

Baseband Model with spatial correlation: The ULA at
the URx consists of NRx elements spaced d meters apart.
The impinging waves at the ULA are assumed to be spec-
ular plane waves (arriving in parallel). We also assume
a static Rayleigh flat fading channel, with complex fad-
ing coefficient h. Hence, for one path between the Tx
and the URx the overall complex baseband channel gain



is hexp( jη(ϕ ,θ)), where ϕ ,θ are the AoA and AoD re-
spectively. Here, without loosing generality we consider
only the AoA. In the model we separate the two elements
of the baseband channel gain into the Rayleigh complex
gain and the steering vector of the ULA as described next.
The baseband modulated signals from all the MIMO trans-
mitters in our model are packed in the vector x1, and are all
assumed to be uncorrelated making the covariance matrix
Cx=E[xxH ] full rank.

We use the Kronecker model to describe the spatially corre-
lated MIMO channel (even though our overall methodology
does not preclude the use of other models). With this model
if CTx and CRx are the spatial correlation matrices between
the antenna elements at the transmitters and the URx, then
the channel matrix becomes:

H = C1/2
Rx Hiid(C

1/2
Tx )H (1)

Hiid (Nx×NTx) contains the iid samples of the Rayleigh fad-
ing channel. Since we consider spatial correlation at the
Rx only the previous model is simplified to H = C1/2

Rx Hiid.
Regarding the specific structure of the correlation matrices
again we selected a popular representation of them that is
also not a necessity. We adopt the clustered spatial corre-
lation model where the correlation matrix can be modeled
as the Hadamard product (element-wise multiplication) of
matrix A and a second matrix B, where the later captures
the precise spatial correlation [3]:

C1/2
Rx = A(ϕ)⊙B(ϕ ,σϕ ) (2)

In the above σ2
ϕ is the variance of the stochastic spatial

correlation model at the Tx [3]. Higher σ2
ϕ corresponds

to higher spatial correlation. A is the unknown NRx×NTx
steering matrix since the transmitted signal x spans in an
NTx-dimensional space. Each column of A contains the
steering vector that captures the phase difference between
the received signal at each element of the ULA that origi-
nates from the i-th AoA/source:

aT (ϕi) = [1 e j2π fc
d cosϕi

c ... e j2π fc
(NRx−1)d cosϕi

c ]

In this model d cos(ϕi)/c is the additional time required for
the RF signal to travel between two antenna elements of
the ULA (Fig. 1 clearly illustrates the geometry). Conse-
quently, if we assume we have M AoAs this NRx×NTx ma-
trix is:

A =


1 .. 1

e j2π fc
d cosϕ1

c .. e j2π fc
d cosϕM

c

... ... ...

e j2π fc
(NRx−1)d cosϕ1

c .. e j2π fc
(NRx−1)d cosϕM

c

 (3)

It is evident that if we have more than one antennas at a
single transmitter i then the column vector a(ϕi) is repeated
accordingly in this matrix.

1Note that were are not interested in decoding data, hence all modu-
lated source signals are packed in the same vector x.

Based on the previous discussion the final baseband model
becomes:

y = (A⊙B)Hiidx+w (4)

where w is the AWGN vector.

This expression is critical in the overall discussion of this
paper since it shows that the beamsteering matrix in now
A⊙B.

3 The AIC metric

If the spatial correlation matrix B is equal to I, i.e. no
spatial correlation across the antennas and no ULA at
the Rx, then the model is simplified and we have the
well-known i.i.d. MIMO channel y = Hiidx + w. For
Hiid it is rank(Hiid)=min(NRx,NTx). The NRx×NRx sig-
nal covariance matrix is Cs=HiidCxHH

iid. It will also be
rank(Cs)=min(NRx,NTx). Hence, if NRx ≥ NTx the rank
gives us the number of simultaneously transmitting anten-
nas [4]. This is the basic principle that was used for solving
the problem of finding the number of single antenna sources
described by Kailath [5] with AIC. A practical concern is
that we only have access to an estimate of Cy, namely Ĉy,
and not to Cs. In [5] the authors considered this impact of
AWGN in the AIC metric. Hence, for the iid channel the
AIC metric can be used for estimating the number of AoAs
when NRx ≥ NTx. However, the same is not possible for our
channel model since we are now concerned about the rank
of (A⊙B) which depends on spatial correlation.

4 AoA Estimation with MUSIC

A ULA Rx can calculate the AoA of wireless signals that
are linearly superposed by exploiting the difference in the
angle of arrival of the signals at different antennas spaced at
known locations (Fig. 1), that is it exploits the beamsteering
vector aT (ϕ). Subspace processing methods like the MU-
SIC algorithm have been used in the literature for extracting
the AoA from different types of wireless signals [?, 1, 2, 6]
including WiFi. This class of methods are based on the spe-
cial structure of the covariance matrix of the received sig-
nal. Essential information for MUSIC to work is the knowl-
edge of the number of AoAs which is something that can be
accomplished with AIC.

Although the basic step of MUSIC is to perform Eigenvalue
Decomposition (EVD) on Ĉy, we delve a little deeper into it
next. At the Rx the covariance matrix of the received signal
y is:

Cy = E[(y−E[y])(y−E[y])H ] = AHiidCxHH
iidAH +Cw

= AHiidCxHH
iidAH +C2I (5)

The covariance matrix of the signal component is Cs =
AHiidCxHH

iidAH . For MUSIC we want M < NRx which
makes Cs singular, i.e. non-invertible:

det(AHiidCxHH
iidAH) = det(Cy −C2I) = 0



From linear algebra we know that for a matrix Cs there are
dim(Cs)− rank(Cs) vectors that satisfy:

AHiidCxHH
iidAHqm = 0, (6)

i.e. these vectors are the solution set of the previous lin-
ear system. But this also means that qm is an eigen-
vector of AHiidCxHH

iidAH for the zero-eigenvalue (i.e.,
AHiidCxHH

iidAHqm = 0×qm). Furthermore from (5), (6):

AHiidCxHH
iidAHqm = (Cy −σ2I)qm = 0

Hence, the zero-value eigenvectors qm are also eigenvec-
tors of Cy and they all have the same eigenvalue σ2 (this
is the noise subspace). Regarding the remaining non-zero
eigenvalue eigenvectors of Cs let us assume that they satisfy
AHiidCxHH

iidAHqm = λmqm. To calculate all the eigenvec-
tors of Cy we proceed based on the last expression:

AHiidCxHH
iidAHqm = λmqm ⇒ (7)

AHiidCxHH
iidAHqm +σ2Iqm = λmqm +σ2Iqm

(5)⇒
Cyqm = (λm +σ2I)qm (8)

The last derivation indicates that matrix Cs shares all its
non-zero-eigenvalue eigenvectors qm (as captured by (7)),
with the ones of Cy while their eigenvalues differ by σ2.

Next, we perform EVD of Ĉy
2 from which we obtain the

two categories of eigenvectors qm for the signal and noise
sub-spaces that we discussed in the last paragraph. Re-
call that we assume that there are M AoAs we want to
resolve, so the matrices that contain the eigenvectors are
Q1=[q1, ...,qM], while the eigenvectors for the zero-value
eigenvalues are contained in Q2=[qM+1, ...,qNRx ]. So Q2 is
a space spanned by the zero-value eigenvectors.

The basic observation is that the noise sub-space is orthog-
onal to signal space, i.e. aH(ϕ)Q2=0. This allows us to
calculate the MUSIC pseudo-spectrum:

PMUSIC(ϕ) =
1

aH(ϕ)QH
2 Q2a(ϕ)

(9)

The peaks in PMUSIC(ϕ) contain the AoAs.

5 AIC and MUSIC Limitations

Based on our discussions until now we can draw easily the
first conclusion for the signal model. It is already clear that
the number of AoAs is not always equal to the rank of Cs
since this matrix is now affected by the number of AoAs
in (A⊙B). More precisely, rank((A⊙B)HiidCxHiid(A⊙
B)H) is affected mainly by three matrices (since Hiid is full
rank). Clearly, its rank depends on the number of uncor-
related source signals in the vector x and the number of

2Note that as a covariance matrix Cx is Hermitian ⇒ Cs is also a co-
variance matrix, hence Hermitian, since s is the result of linear processing
of x. For uncorrelated sources Cx is diagonal, full rank, and consequently
ACxAH is already a valid diagonalization of Cs.

0 0.5 1 1.5
1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

(a) ϕ1=30, NTx=2
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Figure 2. Number of Antennas Estimation Results.

AoAs in (A⊙B). The beamsteering matrix is now (A⊙B).
Hence, the original Vandermonde structure of A is compro-
mised for this channel captured in (4). Spatial smoothing
algorithms [7], that separate the ULA into L subarrays, are
not helpful in this scenario. With spatial smoothing the ob-
jective is to restore the rank of Cs. The smoothed estimate
for L subarrays is:

C̄(L)
y = (A⊙B)HiidC̄(L)

x HH
iid(A⊙B)H +C2I (10)

This means that even if smoothing restores the rank of the
source covariance matrix, the rank of A⊙B is not affected.
Of course when the sources in x are uncorrelated spatial
smoothing is unnecessary. Overall the use of AIC for esti-
mating the number of AoAs is more challenging to analyze
in this case and that is why we resort to simulations.

AIC Failure: There is situation where AIC fails to estimate
both the number of antennas and AoAs (hence MUSIC also
fails) even when there is no spatial correlation (i.e. B = I)
This happens when rank(Cx)<rank(A) (indicating that I
have more AoAs than actual uncorrelated wireless signals),
allowing us thus to detect only a number of rank(Cx) AoAs
(the total number of actual AoAs is rank(A)). This can also
be seen by noticing that now the number of NRx −M solu-
tions (dimension of the noise subspace) of the linear sys-
tem in (6) will be higher than it should be, which means
more zero-value eigenvectors, i.e. more solutions for the
noise subspace. In real life this happens when rank(Cx) is
reduced due to the source signals being correlated (e.g. re-
ceiving a reflection of the original signal), requiring thus
a smoothing algorithm [7] to make Cx full rank. Without
smoothing, MUSIC will estimate the average AoA between
correlated sources.

5.1 Channels With Spatial Correlation

6 Simulations & Verification

We configured a ULA with d=λ/2 (a necessary require-
ment for MUSIC), used a WiFi 5GHz carrier, and consid-
ered different number of antennas NRx. We also assumed
we had access to 10 snapshots of y for estimating the co-
variance matrix.
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Figure 3. AoA estimation error for one source/AoA with
two antennas (a,b), that is M=1 and NT x=2, and two sources
with two AoAs (c,d), that is M=2 and NT x=2).

Regarding the estimate of AoAs we explored two cases.
First when we have one source/AoA with 2 antennas the
results can be seen in Fig. 2(a). For 0 spatial correlation
AIC can find the rank of A⊙B which is equal to the num-
ber of AoAs. But when the spatial correlation is slightly in-
creased AIC fails quickly and does not give the number of
AoAs. Surprisingly, AIC estimates correctly now M since
the structure of A ⊙ B is compromised but becomes full
rank (so does (A⊙B)Cx(A⊙B)H ). For very high spatial
correlation the rank approaches 1 again which means that
it can be used now for AoA estimation. With one MIMO
transmitter the AIC method may now either reveal the num-
ber of AoAs or the number of actual wireless sources which
are two different things depending on level of antenna spa-
tial correlation. For 2 users/AoAs with 3 antennas each the
results in Fig. 2(b) we see that AIC only finds the AoAs for
0 spatial correlation but fails for higher values of it.

We next examine the estimation accuracy for a single
AoA/source but with two antennas, i.e. in our model NTx=2.
Recall that as σ2

θ is increased there is higher spatial corre-
lation across the antenna elements leading to a deviation of
the beamsteering matrix from the ideal form given in A.
Our results in Fig. 3(a),3(b) indicate that for every level of
spatial correlation both the MVDR and Bartlett beamform-
ers perform better. The reason behind this is that they esti-
mate the angle for which the power of the incoming signal
is maximized. On the other hand MUSIC is based on eigen-
decomposition that fails more easily when the channel ma-
trix is not Vandermonde. To understand this even better
we note that the performance of MUSIC with a genie-aided
estimate of M, indicated as MUSIC*, performs the same
as the two beamformers. But regardless of the used algo-

rithm, spatial correlation reduces performance for all sys-
tems since it affects the rank of Cy.

When two sources with AoAs π/3,π/6 are present, our re-
sults in Fig. 3(c) and Fig. 3(d) show that both beamform-
ers perform the worst since they estimate the bearing which
has the highest power and this is the average AoA between
π/3,π/6. MUSIC performs substantially better. It is inter-
esting that in low SNR conditions the best performance is
not achieved for the lowest spatial correlation (with σ2

θ =0).
The reason is the poor estimate of M from AIC due to the
low SNR, which coincides to give an accurate estimate for
M for σ2

θ =0.2. For 20dB in Fig. 3(d) M is estimated suffi-
ciently well and the reason behind the poor performance at
this point in spatial correlation as σ2

θ is increased.

7 Conclusions

Estimating the number of antennas and AoAs is not trivial
with AIC since the produced result represents the correct in-
formation in certain cases while in some it does not. Overall
we notice that for the model of an iid channel and a ULA,
AIC provides the number of AoAs and antennas only when
we have one antenna/user, but when we have more it pro-
vides only the AoAs. For correlated channels the problem
is more complicated and the level of spatial correlation is
a crucial metric that helps in choosing whether to use AIC
for the two considered estimation problems. It is clear that
there is a need for more robust schemes for estimating the
number of antennas and AoAs with and without the pres-
ence of spatial correlation.
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