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Abstract

Detecting the number of sources from which the signal of
a single wireless transmitter has originated, as well as es-
timating its angle-of-arrival (AoA), are critical parameters
for a plethora of remote sensing applications (e.g. military,
localization, radio-astronomy, etc.). A rather interesting ob-
servation is that these two problems are inter-twined since
the most popular solution is based on eigenvalue decompo-
sition (EGD) of the correlation matrix of the received sig-
nal. The Akaike information criterio (AIC) has been used in
conjunction with EGD for detecting the number of sources
or the number of AoAs (the later is a pre-requisite for AoA
estimation). In this work we present an algorithm for a two-
step application of AIC so that we can detect simultane-
ously the number of sources and AoAs for a MIMO trans-
mitter that operates in a multipath environment. Results
indicate the good performance of the proposed scheme for
different multipath topologies and system configurations.

1 Introduction

Wireless digitally modulated signals always convey infor-
mation beyond the data. If we limit the scope of our discus-
sion to one transmitter, information that can be conveyed
includes the number of independent sources that constitute
the wireless signal, and the angle-of-arrival (AoA) of the
signal at a receiver (Rx) of interest. It is interesting that
the two problems are intertwined: A pre-requisite for solv-
ing the AoA estimation problem is the knowledge of the
number of AoAs. Under certain cirumstances determining
the number of involved wireless sources coincides with the
number of AoAs which means that solving the first problem
provides an input to solve the second. As we will see the
later is not always the case which means that the number of
sources and the number of AoAs must be detected indepen-
dently. The question that concerns this paper is how to de-
tect and estimate these two parameters when the signal goes
thought a scattering environment that causes multipath.

The problem of detecting the number of simultaneously
transmitting single-antenna wireless sources by using a lin-
ear combination of their signals was described by Kailath
in [1], where a non-parametric information-theoretic ap-
proach was developed. The method uses the eigenvalues

of the sample covariance matrix (without assuming any par-
ticular structure) for cacluating the Akaike Information Cri-
terio (AIC) or the minimum description length (MDL) for
model selection. The same approach, and the same AIC
metric, has been used in Multiple-Input Multiple Output
(MIMO) systems for determining the number of antennas
of a single MIMO transmitter [2], which is essentially the
equivalent problem with the one in [1]. Regarding the sec-
ond problem, estimating the AoA can be accomplished in
several different ways all of which use the received sig-
nal vector at an array of antennas (Eve in Fig. 1). One of
the most popular class of techniques, referred to as sub-
space methods, exploit the structure of the received signal
covariance matrix and offer very high angular resolution.
The multiple signal classification (MUSIC) [3] algorithm,
and ESPRIT [4], belong to this class of techniques. Be-
sides subspace methods, techniques like the Bartlett and
Capon/MVDR beamformers can also be used at the cost
of lower angular resolution [5].

In this paper, under the assumption of a receiver that con-
sists of a uniform linear array (ULA), and a Rayleigh mul-
tipath fading channel, we propose an algorithm for jointly
estimating the number of antennas and the AoA of a sin-
gle multi-source wireless transmitter. The main observation
that drives this paper, and the associated algorithm, is that in
multipath channels the received signal can reveal the num-
ber of antennas before we remove the impact of multipath,
and the number AoAs afterwards. A concrete and extend-
able algorithm that exploits this observation is proposed.

2 System Model

The system model in Fig. 1 consists of a multi-source trans-
mitter and potentially several scatterers (just one is illus-
trated in Fig. 1). Its receiver is not presented since it is
irrelevant to our study. The data modulated signal has band-
width B Hz and is assumed to be narrow-band, that is B≪ fc
where fc is the carrier frequency. The model also includes
a ULA, which not part of the nominal communication sys-
tem, hence an unauthorized receiver (URx). Our subse-
quent discussions on the signal models and the estimation
algorithms concern the ULA.

Baseband Model: The ULA at the URx consists of NRx el-
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Figure 1. The wireless system with a multi-source trans-
mitter and a ULA deployed at an unauthorized Rx.

ements spaced d meters apart. In a real-life setting, the URx
is usually far away from the Tx so that the impinging waves
at the ULA can be approximated with specular plane waves
(arriving in parallel). We also assume a static Rayleigh flat
fading channel, with complex fading coefficient h. Hence,
for one path between the Tx and the URx the overall com-
plex baseband channel gain is hexp( jη(ϕ ,θ)), where ϕ ,θ
are the AoA and AoD respectively. Here, without loosing
generality we consider only the AoA. In the model we sepa-
rate the two elements of the baseband channel gain into the
Rayleigh complex gain and the steering vector of the ULA
as described next. First, the baseband modulated signal of
the multi-source transmitter is captured in the NTx ×1 vec-
tor s while in our model it is replicated M times and packed
in the MNTx ×1 vector x = [sT ... sT ]T , to capture the signal
transmitted across the M paths1. The data in s are the data
across the sources and are all assumed to be uncorrelated.
Note that the MNTx×MNTx covariance matrix Cx=E[xxH ]
has rank NTx, i.e. it is not full rank. Hence, the received
signal vector at the ULA is

y = AHiidx+w, (1)

where Hiid (MNTx×MNTx) is a block diagonal matrix that
contains the iid samples of the Rayleigh fading channel:

Hiid = diag(h1 ... h1︸ ︷︷ ︸
NTx copies

... hM ... hM)

w is the AWGN vector. A is the unknown NRx×MNTx steer-
ing matrix. Each column of A contains the steering vector
that captures the phase difference between the received sig-
nal at each ULA element that originates from the i-th AoA:

aT (ϕi) = [1 e j2π fc
d cosϕi

c ... e j2π fc
(NRx−1)d cosϕi

c ] (2)

In this model d cos(ϕi)/c is the additional time required for
the RF signal to travel between two antenna elements of
the ULA (Fig. 1 clearly illustrates the geometry). Conse-

1Note that were are not interested in decoding data, hence all modu-
lated source signals are packed in the same vector x.

quently, if we assume we have M AoAs this matrix is:

A =


1 .. 1

e j2π fc
d cosϕ1

c .. e j2π fc
d cosϕM

c

... ... ...

e j2π fc
(NRx−1)d cosϕ1

c︸ ︷︷ ︸
NTx copies

.. e j2π fc
(NRx−1)d cosϕM

c

 (3)

It is evident that if we have more than one sources at a sin-
gle transmitter i then the column vector a(ϕi) is repeated
accordingly in this matrix.

3 Number of Antennas and AoAs Estimation

3.1 The AIC/MDL Metrics

AIC in an i.i.d. Channel: If there is no spatial correlation
across the antennas of the ULA at the Rx, then the model
in (1) is simplified and the result is the well-known i.i.d.
MIMO channel:

y = Hiidx+w (4)

For Hiid it is rank(Hiid)=min(NRx,MNTx) because the num-
ber of rows in Hiid is now NRx. The NRx×NRx sig-
nal covariance matrix is Cs=HiidCxHH

iid. It will also
be rank(Cs)=min(NRx,NTx). Hence, if NRx≥NTx the
rank gives us the number of simultaneously transmitting
sources [2]. This is the basic principle that was used for
solving the problem of finding the number of single antenna
sources described by Kailath [1]. A practical concern is that
we only have access to Ĉy

2 and not to Cs. This is a problem
because the eigenvalues of the covariance matrix include
the ones from the noise subspace. In [1] the authors consid-
ered this impact of AWGN by using the eigenvalues of Ĉy
as a definitive metric. So if li indicates the i-th eigenvalue
of the covariance matrix, the AIC is calculated as:

AIC(m) =−2(NRx −m)T log(
∏NRx

i=m+1 l1/(NRx−m)
i

1
NRx−m ∑NRx

i=m+1 li
)

+2m(2NRx −m) (5)

The estimated number of sources is given as the value of
m that minimizes the AIC, i.e. Hence, for the iid channel
the AIC metric can be used for estimating the number of
sources when NRx ≥ NTx.

For our model the signal covariance matrix is
AHiidCxHH

iidAH . Also rank(Cs)=min(NRx,NTx,M).
Hence, if NRx ≥ M > NTx the rank gives us the number of
simultaneously transmitting sources.

2The covariance matrix is estimated as Ĉy from the data with an unbi-
ased estimator.



3.2 Spatial Smoothing

Spatial smoothing algorithms [5] separate the ULA into L
subarrays. With spatial smoothing the objective is to restore
the rank of Cs. The smoothed estimate for L subarrays is:

C̄(L)
y = AHiidC̄(L)

x HH
iidAH +σ2I (6)

This means that even if smoothing restores the rank of the
source covariance matrix to MNTx, the rank M of A is not
affected. This is central to the second step of the algorithm,
which proposes to calculate AIC after spatial smoothing
since we can recover M as the number of AoAs.

4 AoA Estimation with MUSIC

A ULA Rx can calculate the AoA of wireless signals that
are linearly superposed by exploiting the difference in the
AoA of the signals at different antennas spaced at known lo-
cations (Fig. 1). Subspace processing methods like the MU-
SIC algorithm have been used in the literature for extracting
the AoA from different types of wireless signals [3, 6]. Es-
sential information for MUSIC to work is the knowledge of
the number of AoAs which is something that can be accom-
plished with AIC.

Although the basic step of MUSIC is to perform Eigenvalue
Decomposition (EVD) on Ĉy, we delve a little deeper into
it next. The covariance matrix of the received signal y is:

Cy = E[(y−E[y])(y−E[y])H ] = AHiidCxHH
iidAH +Cw

= AHiidCxHH
iidAH +σ2I (7)

The covariance matrix of the signal component is Cs =
AHiidCxHH

iidAH . For MUSIC we want M < NRx which
makes Cs singular, i.e. non-invertible:

det(AHiidCxHH
iidAH) = det(Cy −σ2I) = 0

From linear algebra we know that for a matrix Cs there are
dim(Cs)− rank(Cs) vectors that satisfy:

AHiidCxHH
iidAHqm = 0, (8)

i.e. these vectors are the solution set of the previous lin-
ear system. But this also means that qm is an eigen-
vector of AHiidCxHH

iidAH for the zero-eigenvalue (i.e.,
AHiidCxHH

iidAHqm = 0×qm). Furthermore from (7), (8):

AHiidCxHH
iidAHqm = (Cy −σ2I)qm = 0

Hence, the zero-value eigenvectors qm are also eigenvec-
tors of Cy and they all have the same eigenvalue σ2 (this
is the noise subspace). Regarding the remaining non-zero
eigenvalue eigenvectors of Cs let us assume that they satisfy
AHiidCxHH

iidAHqm = λmqm. To calculate all the eigenvec-
tors of Cy we proceed based on the last expression:

AHiidCxHH
iidAHqm = λmqm ⇒ (9)

AHiidCxHH
iidAHqm +σ2Iqm = λmqm +σ2Iqm

(7)⇒
Cyqm = (λm +σ2I)qm (10)

The last derivation indicates that matrix Cs shares all its
non-zero-eigenvalue eigenvectors qm (as captured by (9)),
with the ones of Cy while their eigenvalues differ by σ2.

Next, we perform EVD of Ĉy
3 from which we obtain the

two categories of eigenvectors qm for the signal and noise
sub-spaces that we discussed in the last paragraph. Re-
call that we assume that there are M AoAs we want to
resolve, so the matrices that contain the eigenvectors are
Q1=[q1, ...,qM], while the eigenvectors for the zero-value
eigenvalues are contained in Q2=[qM+1, ...,qNRx ]. So Q2 is
a space spanned by the zero-value eigenvectors.

The basic observation is that the noise sub-space is orthog-
onal to signal space, i.e. aH(ϕ)Q2=0. This allows us to
calculate the MUSIC pseudo-spectrum:

PMUSIC(ϕ) =
1

aH(ϕ)QH
2 Q2a(ϕ)

(11)

The peaks in PMUSIC(ϕ) contain the AoAs. A more efficient
method is the ESPRIT algorithm that is still based in the
same fundamental steps [4].

5 Discussion & Algorithm

Based on the presentation of the AIC metric and the MU-
SIC algorithm we can reach our first conclusion for the sig-
nal model in (1). It is already clear that the number of si-
multaneously transmitting sources is not always equal to
the rank of Cs since this matrix is now affected by the num-
ber of AoAs in A. More precisely, rank(AHiidCxHH

iidAH)
is affected mainly by two matrices (since Hiid has dimen-
sions MNTx×MNTx and is full rank). Clearly, the rank of
Cs depends on the number of uncorrelated source signals
in the vector x and the number of AoAs in A. Example: If
I have a Tx with 2 sources, over 4 paths (including LOS),
and each source is transmitting an independent bitstream,
then NTx=2, rank(Cx)=2, and rank(AHiidCxHH

iidAH)=2 be-
cause A contains 4 linearly independent columns. That is
rank(Cs)=min(rank(A), rank(Cx)). In this example before
spatial smoothing AIC will give the result 2 since it cal-
culates min(rank(A), rank(Cx)). But even if this is the in-
correct input for MUSIC, the estimation of the number of
sources is correct. Consequently, AIC estimation provides
the number of AoAs and sources only when we have more
paths than sources, and in the opposite case it provides only
the number of AoAs.

The proposed algorithm is summarized next. During the
first steps the covariance matrix is estimated from the data
snapshot, and then the number of sources is estimated with
the AIC metric as N̂tmp according to (5). N̂tmp is a temporary
result since the number of AoAs must also be estimated so
that the algorithm determines whether it can decide on the

3Note that as a covariance matrix Cx is Hermitian ⇒ Cs is also a co-
variance matrix, hence Hermitian, since s is the result of linear processing
of x. For uncorrelated sources Cx is diagonal, full rank, and consequently
ACxAH is already a valid diagonalization of Cs.
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(a) AoA estimation, rank-diff=1
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(b) NTx estimation, rank-diff=1

0 5 10 15 20 25 30
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

(c) AoA estimation, rank-diff=2
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(d) NTx estimation, rank-diff=2

Figure 2. Estimation results.

number of sources (as discussed in the final part of 3.1).
Next, spatial smoothing is performed. For spatial smooth-
ing to work the length of the sub-array L must be higher
than the number of correlated signals which in our case is
equal to the number of paths M (including LOS). But M is
unknown at this stage, so L is set to the maximum value that
it can take for an array of such size which is NRx −2. Next
we recalculate AIC with the smoothed covariance matrix
for estimating M̂, and finally calculate the MUSIC pseudo-
spectrum that provides the actual AoAs in the M×1 vector
θ̂θθ . The algorithm reaches a conclusion for the number of
sources only when the condition N̂tmp < M̂ is satisfied.

6 Simulation Results

To evaluate the performance of our algorithm we config-
ured a ULA with critically spaced antennas, i.e. d=λ/2
(a necessary requirement for MUSIC), and we considered
different number of ULA antenna elements NRx. The trans-
mitted signals of B=1MHz were BPSK and modulated a
5GHz carrier. We also assumed we had access to 10 snap-
shots of y for estimating the covariance matrix (in practice
this means 10 samples of the same symbol and same com-
plex channel gain h). The objective of our evaluation is to
estimate the number of sources and AoAs when the sig-
nal experiences scatterers at different random locations that
cause different AoAs because of multipath. Hence, for each
specific ULA SNR we tested our joint estimator against 100
different transmitters at different AoAs and equipped with
different NTx. The transmitters across each simulation run
were uniformly and randomly distributed so that the AoAs
are also uniformly distributed. In the y axis we plot the es-
timation error relative to the correct value of the parameter
of interest versus different receiver SNR in x axis.

In the first set of results we considered that the actual num-

ber of paths in the randomly generated topologies is on av-
erage 1 more than the number of used sources in each topol-
ogy e.g., 3 paths 2 sources, 5 paths 4 sources, etc. This al-
lows us to evaluate how the performance of the algorithm
depends on the rank of Cs. Our results in Fig. 2(a) indicate
that for increasing SNR and number of antenna elements at
the ULA the AoA estimate with MUSIC is improved as ex-
pected. Regarding the number of sources estimation error
illustrated in Fig. 2(b) SNR does not have significant im-
pact. But note that the performance is already very good
for low SNR. The reason for this is that AIC is robust to
higher noise power (lower SNR) as the metric in (5) in-
dicates (eigenvalues of the noise subspace are easily ex-
cluded).

Next, we examine a rank difference of 2, e.g. real values
M=4 and NTX=2, M=5 and NTx=3, etc. Now MUSIC per-
forms worse but for higher NRx the implications of larger
difference between the number of paths/AoAs and NTX is
not so important. The reason for the worse performance
is purely because of the performance of the smoothing al-
gorithm, since the AIC performance remains the same as
Fig. 2(d) indicates. Smoothing cannot de-correlate the sig-
nals so effectively leading to worse performance for MU-
SIC, but as we said this can be alleviated with more antenna
elements at the ULA.

7 Conclusions

Estimating the number of sources and number of AoAs is
not trivial with methods like AIC since the result correct
only under certain channel conditions. In this paper we
identified certain multipath scenarios (M > NTx) where we
can apply the AIC metric twice allowing us thus to solve
the joint problem of number of sources and AoA estima-
tion with high accuracy.
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