Power-Efficient Deceptive Wireless Beamforming Against Eavesdroppers

Georgios Chrysanidis, Antonios Argyriou (Univ. of Thessaly) Le-Nam Tran (UCD), Yanming Zhang (CUHK), Yanwei Liu (CAS).

March 25th, 2025, IEEE WCNC, Milan

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Beamforming: Array Response

When we have an array of anntennas (Tx/Rx) we may steer the signal to a preferred direction

Relative power of the transmitted signal for different spatial directions.

Eavesdropping & Beamforming

Figure: A transmitter has to face two receivers that eavesdrop (Eve 1 & 3) besides the legitimate receiver (Com 2).

How do we tackle eavesdroppers with Beamforming (1) Array Response with Transmit Beamforming & Nulling

Array response when doing transmit beamforming with an optimization method. Nulling with $\theta_c = 80^\circ$, $\theta_{eav} = \{30^\circ, 50^\circ\}$.

More advanced techniques like injecting artificial noise towards the direction of the eavesdroppers have been explored in [LCMC11].

- More advanced techniques like injecting artificial noise towards the direction of the eavesdroppers have been explored in [LCMC11].
- A similar idea is Directional Modulation (DM) which enables secure communication with phased arrays and beamforming [DB09].

- More advanced techniques like injecting artificial noise towards the direction of the eavesdroppers have been explored in [LCMC11].
- A similar idea is Directional Modulation (DM) which enables secure communication with phased arrays and beamforming [DB09].
- Multi-Function RF (MFRF) systems have proposed the joint design of a signal for communications, RADAR, and electronic RF jamming but without considering eavesdropping [TS22].

- More advanced techniques like injecting artificial noise towards the direction of the eavesdroppers have been explored in [LCMC11].
- A similar idea is Directional Modulation (DM) which enables secure communication with phased arrays and beamforming [DB09].
- Multi-Function RF (MFRF) systems have proposed the joint design of a signal for communications, RADAR, and electronic RF jamming but without considering eavesdropping [TS22].
- Al alternative is to inject deceptive signals that spoof some parameters of the signal emiitted in the direction of the eavesdroppers [Arg23].

Eavesdropping & Beamforming Deception

A transmitter has to face two receivers that eavesdrop (Eve 1 & 3): We propose to send a deceptive signal with our method (Eve 3) instead of nulling.

Eavesdropping & Beamforming Deception

- ▶ A transmitter has to face two receivers that eavesdrop (Eve 1 & 3): We propose to send a deceptive signal with our method (Eve 3) instead of nulling.
- Deception of what?

Eavesdropping & Beamforming Deception

- A transmitter has to face two receivers that eavesdrop (Eve 1 & 3): We propose to send a deceptive signal with our method (Eve 3) instead of nulling.
- Deception of what?
- Spoofed relative distance and velocity

ヘロン 不同 とくほど 不良とう

Communication Model

• We consider the OFDM is used for the nominal communication: \mathbf{x}_i are the QAM symbols, \mathbf{F}^H the IDFT matrix.

Communication Model

- We consider the OFDM is used for the nominal communication: \mathbf{x}_i are the QAM symbols, \mathbf{F}^H the IDFT matrix.
- Consider the *i*-th eavesdropper.

$$\mathbf{y}_i = \mathbf{H}_i^{\text{circ}} \mathbf{F}^H \mathbf{x}_i + \mathbf{n}.$$
 (1)

 $\mathbf{H}_i^{\text{circ}}$ is the circulant channel matrix that includes the effects of the OFDM cyclic prefix.

Communication Model

- We consider the OFDM is used for the nominal communication: \mathbf{x}_i are the QAM symbols, \mathbf{F}^H the IDFT matrix.
- Consider the *i*-th eavesdropper.

$$\mathbf{y}_i = \mathbf{H}_i^{\text{circ}} \mathbf{F}^H \mathbf{x}_i + \mathbf{n}.$$
(1)

 $\mathbf{H}_{i}^{\text{circ}}$ is the circulant channel matrix that includes the effects of the OFDM cyclic prefix.

For each OFDM symbol, the OFDM receiver at the *i*-th eavesdropper first performs the typical OFDM processing. That is it applies a DFT to the *L* samples of the OFDM symbol in y_i to obtain the frequency-domain (FD) signal:

$$\tilde{\mathbf{y}}_i = \mathbf{F} \mathbf{y}_i = \mathbf{F} \mathbf{H}_i^{\text{circ}} \mathbf{F}^{\text{H}} \mathbf{x}_i + \tilde{\mathbf{n}} = \tilde{\mathbf{H}}_i \mathbf{x}_i + \tilde{\mathbf{n}}.$$
(2)

▶ We send $\tilde{\mathbf{H}}_{sp}\mathbf{x}_{e,i}$ instead of $\mathbf{x}_{e,i}$.

• We send $\tilde{\mathbf{H}}_{sp}\mathbf{x}_{e,i}$ instead of $\mathbf{x}_{e,i}$.

▶ Repeating the derivation in (2) now for the eavesdropper we have:

$$\tilde{\mathbf{y}}_{e,i} = \mathbf{F}\mathbf{y} = \mathbf{F}\mathbf{H}_i \mathbf{F}^{\mathbf{H}} \tilde{\mathbf{H}}_{sp} \mathbf{x}_{e,i} + \tilde{\mathbf{n}} = \tilde{\mathbf{H}}_i \tilde{\mathbf{H}}_{sp} \mathbf{x}_{e,i} + \tilde{\mathbf{n}}.$$
(3)

• We send $\tilde{\mathbf{H}}_{sp}\mathbf{x}_{e,i}$ instead of $\mathbf{x}_{e,i}$.

▶ Repeating the derivation in (2) now for the eavesdropper we have:

$$\tilde{\mathbf{y}}_{e,i} = \mathbf{F}\mathbf{y} = \mathbf{F}\mathbf{H}_i \mathbf{F}^{\mathbf{H}} \tilde{\mathbf{H}}_{sp} \mathbf{x}_{e,i} + \tilde{\mathbf{n}} = \tilde{\mathbf{H}}_i \tilde{\mathbf{H}}_{sp} \mathbf{x}_{e,i} + \tilde{\mathbf{n}}.$$
(3)

• The above expression allows us to understand how \tilde{H}_{sp} should be created: The collective impact of the perceived channel is now $\tilde{H}_i \tilde{H}_{sp}$ for the *i*-th user.

• We send $\tilde{\mathbf{H}}_{sp}\mathbf{x}_{e,i}$ instead of $\mathbf{x}_{e,i}$.

▶ Repeating the derivation in (2) now for the eavesdropper we have:

$$\tilde{\mathbf{y}}_{e,i} = \mathbf{F}\mathbf{y} = \mathbf{F}\mathbf{H}_i \mathbf{F}^{\mathbf{H}} \tilde{\mathbf{H}}_{sp} \mathbf{x}_{e,i} + \tilde{\mathbf{n}} = \tilde{\mathbf{H}}_i \tilde{\mathbf{H}}_{sp} \mathbf{x}_{e,i} + \tilde{\mathbf{n}}.$$
(3)

- The above expression allows us to understand how H_{sp} should be created: The collective impact of the perceived channel is now $\tilde{H}_i \tilde{H}_{sp}$ for the *i*-th user.
- The ℓ -th entry in the vector $\mathbf{x}_{e,i}$ indicates the symbol that is transmitted in the ℓ -th subcarrier.

• We send $\tilde{\mathbf{H}}_{sp}\mathbf{x}_{e,i}$ instead of $\mathbf{x}_{e,i}$.

▶ Repeating the derivation in (2) now for the eavesdropper we have:

$$\tilde{\mathbf{y}}_{e,i} = \mathbf{F}\mathbf{y} = \mathbf{F}\mathbf{H}_i \mathbf{F}^{\mathbf{H}} \tilde{\mathbf{H}}_{sp} \mathbf{x}_{e,i} + \tilde{\mathbf{n}} = \tilde{\mathbf{H}}_i \tilde{\mathbf{H}}_{sp} \mathbf{x}_{e,i} + \tilde{\mathbf{n}}.$$
(3)

- The above expression allows us to understand how H_{sp} should be created: The collective impact of the perceived channel is now $\tilde{H}_i \tilde{H}_{sp}$ for the *i*-th user.
- The ℓ -th entry in the vector $\mathbf{x}_{e,i}$ indicates the symbol that is transmitted in the ℓ -th subcarrier.
- ▶ If f_{ℓ} is the frequency of the ℓ -th subcarrier we populate this matrix as:

$$[\tilde{\mathbf{H}}_{\rm sp}]_{\ell,\ell} = \exp(-j2\pi f_\ell \frac{R_{\rm sp}}{c}) \exp(j2\pi f_{\rm sp} m T_L).$$
(4)

(ロ) (回) (E) (E) (E)

Optimization Problem

- $A(\theta_e), A(\theta_c)$ contain the steering vectors towards the eavesdroppers and comms receivers respectively.
- ▶ The deceptive wireless beamforming (DWB) problem is:

$$\min_{\mathbf{s}, \mathbf{X}_e} \mathbf{s}^{\mathsf{H}} \mathbf{s} \quad \text{s.t.} \ \mathbf{A}(\boldsymbol{\theta}_e) \mathbf{S} = \mathbf{F}^{\mathsf{H}} \tilde{\mathbf{H}}_{\mathsf{sp}} \mathbf{X}_e \tag{5}$$
$$\mathbf{A}(\boldsymbol{\theta}_e) \mathbf{S} = \mathbf{D}_e.$$

- ▶ The first constraint states that the OFDM signal can consist of any combination of valid QAM symbols X_e that will be spoofed with \tilde{H}_{sp} and fed into the IDFT F^H to produce a deceiving OFDM symbol.
- ▶ The second constraint corresponds is an under-determined system of linear equations (when $N_T > N_c$).

イロン 不同 とくほう 不良 とうほ

Simulations

- Uniform Linear Array of N_T elements
- We consider the Tx and various combinations of wireless receivers (eavedropping and com- munication) that were uniformly distributed at random spatial directions in the range [0,180] degrees, and random distances in the range of [1,100] meters.
- We present average power consumption results at the Tx for 1000 random topology configurations using 64-QAM

Results - Beampattern

Figure: Array responses for the nulling techniques in (a), (b), and DWB (c).

Results - Transmit Power (1)

Results - Transmit Power (2)

Results - Transmit Power (3)

(c) $N_e = 4$ and different N_c and SNR.

In this paper we proposed the concept of deceptive wireless beamforming (DWB) to tackle eavesdroppers in OFDM wireless communication systems.

- In this paper we proposed the concept of deceptive wireless beamforming (DWB) to tackle eavesdroppers in OFDM wireless communication systems.
- DWB deceives the eavesdroppers in terms of range and Doppler (velocity) instead of nulling the signal towards them.

- In this paper we proposed the concept of deceptive wireless beamforming (DWB) to tackle eavesdroppers in OFDM wireless communication systems.
- DWB deceives the eavesdroppers in terms of range and Doppler (velocity) instead of nulling the signal towards them.
- The beamformer is designed by solving a relaxed QP.

- In this paper we proposed the concept of deceptive wireless beamforming (DWB) to tackle eavesdroppers in OFDM wireless communication systems.
- DWB deceives the eavesdroppers in terms of range and Doppler (velocity) instead of nulling the signal towards them.
- The beamformer is designed by solving a relaxed QP.
- Simulation results indicate that DWB can lead to a beamformer design that achieves very low transmission power, preserves the beam shape, and ensures the privacy of two location parameters of the Tx.

References

Antonios Argyriou.

Range-Doppler Spoofing in OFDM Signals for Preventing Wireless Passive Emitter Tracking. In IEEE Radar Conference (RadarConf23), San Antonio, Texas, 2023.

Michael P. Daly and Jennifer T. Bernhard.

Directional Modulation Technique for Phased Arrays. IEEE Transactions on Antennas and Propagation, 57(9):2633–2640, 2009.

Wei-Cheng Liao, Tsung-Hui Chang, Wing-Kin Ma, and Chong-Yung Chi.

QoS-Based Transmit Beamforming in the Presence of Eavesdroppers: An Optimized Artificial-Noise-Aided Approach. IEEE Transactions on Signal Processing, 59(3):1202–1216, 2011.

Bo Tang and Petre Stoica.

MIMO Multifunction RF Systems: Detection Performance and Waveform Design. IEEE Transactions on Signal Processing, 70:4381–4394, 2022.