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Abstract

We provide an analytical study of the impact of packet skipping and oppor-
tunistic network coding on the timely communication of messages through a
single network element. In a first step, we consider a single-server queueing
system with Poisson arrivals, exponential service times, and a single buffer
position. Packets arriving at a network node have a fixed deadline before
which they should reach the destination. To preserve server capacity, we
introduce a thresholding policy, based on remaining time until deadline expi-
ration, to decide whether to serve a packet or skip its service. The obtained
goodput improvement of the system is derived, as well as the operating con-
ditions under which thresholding can enhance performance. Subsequently,
we focus our analysis on a system that supports network coding instead of
thresholding. We characterize the impact of network coding at a router node
on the delivery of packets associated with deadlines. We model the router
node as a queueing system where packets arrive from two independent Pois-
son flows and undergo opportunistic coding operations. We obtain an exact
expression for the goodput of the system and study the achievable gain. Fi-
nally, we provide an analytical model that considers both network coding and
packet skipping, capturing their joint performance. A comparative analysis
between the aforementioned approaches is provided.

Keywords: Queueing model, network coding, packet skipping, real-time
traffic, packet deadlines
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1. Introduction

One way to interpret real-time communication is the assignment of par-
ticular importance to information flows in the time domain. In this case,
the efficacy of data transfer is not measured in terms of raw communication
throughput but it becomes dependent on the time instant the information
is delivered. The increased interest in real-time communication comes at a
time when the Internet becomes a carrier of more time-sensitive information
and a new generation of systems such as wireless sensor networks are de-
ployed for the monitoring of time-critical physical environments. High data
rate applications like video-on-demand and high quality interactive video
communications also require timeliness guarantees.

In this paper, we investigate the communication of real-time messages
through a queueing theory -based analysis. We aim at modeling the achiev-
able timeliness benefits when packet skipping and network coding are em-
ployed at a router node. We initially model a network node, where data
packets have to be serviced (transmitted) within a certain deadline, as a
single-server queue. The queueing system is assumed to have an overwrite-
buffer with space for one packet; when a new packet bearing more recent
data arrives to the queueing system, the buffered packet, if any, is discarded
and the new packet is stored in the buffer. Including the buffer space at the
server, the system represents an M/M/1/2 queue with deadlines.

The model we consider provides significant insights into the impact of
local decisions on the timeliness performance of simple networks. In particu-
lar, we show that the real-time goodput of the queueing system is improved
when the system employs a policy where buffered packets are only served if
the remaining time until their deadline (i.e. their lead-time) is larger than
a certain threshold θ. The intuition behind this policy is that server ca-
pacity is not wasted on packets that have a low probability of being served
before their deadline expires. By skipping service of the currently stored
packet, and waiting for a new packet arrival instead, goodput benefits are
obtained because a newly arriving packet has a higher probability of meeting
its deadline.

Under the assumption that the service times of the single-server system
are exponentially distributed, we derive an exact analytic expression for the
goodput of the system with this thresholding policy. The exact goodput
expression allows us to compute the optimal threshold, which gives insight
into the maximum performance gain, as well as the parameter ranges for
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which the threshold policy provides effective performance benefits. In the
second part of the paper, the M/M/1/2 queueing system is extended with the
ability to algebraically code packets; with network coding, two data packets
are transformed into one by a simple algebraic XOR-operation. The coded
packet is transmitted and the original native packets can be retrieved at
their respective destination nodes through a similar XOR-operation [1]. The
idea of network coding has gained a lot of interest because of its potential
to radically affect the way networks operate. When packets with timeliness
restrictions undergo network coding, key QoS parameters might be improved
but also compromised. Therefore, additional insight into the performance of
systems with coding capability in the presence of timeliness requirements is
needed. More specifically, it is critical to understand what is the impact
of coding on packet delays and the interplay with the system goodput. In
this part of the paper, we model a router node to which packets from two
flows arrive and must be forwarded. We provide a detailed derivation and
exact expressions for the stationary real-time goodput of the router node
in the presence of network coding. The analytical results obtained in this
paper can be related qualitatively to our recent simulation-based study of the
network coding and thresholding policy [2]. Later, we will discuss aspects of
these simulation results that can be related to this paper.

The rest of this paper is organized as follows. Section 2 provides back-
ground information on service models and the different types of deadlines
that can be associated with real-time information. Related work is presented
in Section 3. The system model adopted in this paper is presented in Sec-
tion 4. The analysis for packet skipping based on lead-time thresholding is
described in Section 5. Subsequently, the goodput analysis for a system with
network-coded communication is developed in Section 6. Section 7 looks
at the joint modeling of skipping and network coding. Finally, Section 8
presents our conclusions and possible directions for future work.

2. Service Models and Types of Deadlines

In queueing systems where packets are associated with deadlines, a ser-
vice must usually either begin or end before a specific point in time. In the
first case, services are usually non-preemptive (i.e., a service that has begun
must be completed), while in the latter case, services are usually preemptive
(i.e., a service that has begun can be aborted). In our case, the deadlines
are to the end of service, but services are non-preemptive; indeed, the in-
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formation contained in a packet needs to be completely transmitted before
the receiver node can decode the packet and use the information, thus the
end-of-service nature of the deadlines. Additionally, serving a packet in the
context of wireless network communication consists of possibly contending
for wireless channel access, and subsequent transmission of the packet bits.
Due to the layered communication architecture adopted in wireless networks,
little control can be exerted on the channel contention mechanism once it is
activated. The same holds for the physical transmission once it is started.

Kruk et al. [3] furthermore consider three types of deadlines: Hard, firm,
and soft. With hard deadlines, a single packet that is not served before its
deadline makes all other packets useless as well. With this type of deadlines
all packets must thus be served before their deadlines, which requires a worst-
case analysis. With firm deadlines, every packet that is not served before
its deadline is useless, whereas with soft deadlines lateness is permitted and
packets can still be used afterwards. We consider the case of firm deadlines, a
natural choice that arises when looking at back-end applications requirements
in systems such as sensor networks, where conclusions should be based on
non-expired data but deadline misses can be tolerated.

3. Related Work

Barrer [4, 5] was one of the first to analyze a queue with deadlines. He
studied anM/M/1 queue with deterministic deadlines. This analysis was ex-
tended to systems with state-dependent arrival and service rates, and more
general deadlines by Brandt and Brandt [6, 7] and by Movaghar [8]. These
studies all deal with non-preemptive systems with deadlines to service be-
ginnings, but in [9], Movaghar considers deadlines to service endings with
preemption. Movaghar and Kargahi [10, 11] have devised an approximation
for an M/M/1 queue with the earliest-deadline-first (EDF) discipline, which
is known to stochastically maximise the fraction of packets served before
their deadline (see, e.g., [12]).

Lehoczky [13] analyzed an M/M/1 queue with deadlines to service end-
ings and the EDF-policy in heavy traffic. He argued that, since the deadlines
of all stored packets have to be taken into account, this queue gives rise to a
Markov process on a statespace of infinite dimension. Lehoczky shows that
the Markov process collapses to a tractable one-dimensional process in heavy
traffic. Lehozcky later used these results to analyze control policies in [14],
and extended his analysis to Jackson networks in [15]. Doytchinov et al. [16]
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extended this analysis to a GI/G/1 queue with deadlines, and Kruk et al. [3]
to networks of such queues.

Delay sensitive traffic in the presence of network coding was studied by
Parag et al. in [17]. The authors adopted a statistical QoS measure that
expresses the decay rate of the buffer at the middle node in a butterfly
network. This router node is the bottleneck in the butterfly case, which
explains the reasons why the authors focus on its buffer behavior. Although
this metric is enough for approximating the delivered QoS per flow, it does
not express it directly in terms of the achieved packet error rate and goodput.
Shah et al. [18] start with the goal of minimizing the backlog of coded packets
at receiving nodes. They design an online algorithm so that the linear packet
combinations that are generated, are chosen in such a way that their actual
span excludes any linear combination that is already known to the receivers.

Eryilmaz et al. [19] studied the delay benefits of network coding in wire-
less multicast and multiple unicast scenarios. They presented a model that
considers only a single-hop transmission and the random coding across pack-
ets from the same flow (intra-session network coding). Online network coding
and delay minimization was more recently presented in [20]. A precise model
is not presented in that work, although a simple delay analysis for the wireless
channel with Bernoulli erasures is performed. Another interesting modeling
work can be found in [21] where the authors used stochastic network calculus
for calculating the throughput in a coded butterfly network. Nevertheless,
the model does not cover delay and timeliness aspects. A recent work from
Goseling et al. [22] aims at modeling the performance of coded queueing sys-
tems. Instead of focusing on providing exact expressions, the authors provide
bounds on the performance of a coded tandem queuing network with two in-
dependent flows. Nevertheless, the extension of this work to packets with
deadline requirements is not straightforward.

4. System Model

For the analysis of packet skipping, we consider the single server queueing
system depicted in Fig. 1. Packets arrive according to a Poisson process with
parameter λ and have exponentially distributed service times with parameter
µ. The system has an ‘overwrite’ buffer with one buffer position (not counting
the packet in service, if there is one). If a packet arrives when there is
already a packet in the buffer, the latter is overwritten (i.e., replaced) by the
newly arriving packet. The result is thus a modified version of an M/M/1/2
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queueing system (note that, in an M/M/1/K system, the K refers to the
number of buffer positions, including the one in service).

The same M/M/1/K system is adopted for the analysis of network cod-
ing; Two input processes with parameters λ1 and λ2 are considered, as de-
picted in Fig. 2. The overall arrival process here is also a Poisson process
with parameter λ = λ1 + λ2. In the network coding case, when a packet is
waiting in the buffer, a second packet arriving to the system is algebraically
coded with the waiting packet instead of overwriting it, in case they belong
to different flows. Overwriting takes place when waiting packet and arriv-
ing packet belong to same flow, or when the buffer is already occupied by a
coded packet. With network coding the coded packet is transmitted and the
original native packets can be retrieved at their respective destination nodes
through a similar algebraic XOR operation [1]. We provide two scenarios
where the above is possible. In the case of multicast transmission if each
node has one of the two desired packets, they can both recover the other
packet after the reception of the single XOR-coded packet [1]. Also a similar
situation arises in the wireless bidirectional relay network where both nodes
want to transmit to each other a packet they already have through an inter-
mediate relay node [2]. In this case similarly, if the two nodes have packets
a and b, with the transmission of a single coded packet a⊕ b from the relay
they could both decode the opposite packet. The broadcast nature of the
wireless medium allows this operation.

A packet service is considered successful if it is completed within d time
units after the arrival of the packet to the queue, i.e., if a packet arrives at
time t, its service must end before its global deadline t + d, with d being
a fixed relative deadline. Services are non-preemptive, which means that if
a packet starts service, its service has to be completed, before service on
another packet can be started. We define the goodput of the system as
the number of packets that are served successfully, i.e. within the deadline
requirement, per unit of time.

In the packet skipping case, we introduce a threshold θ such that the
packet in the buffer may only start service if its lead-time, i.e. the remaining
time until its absolute deadline, is larger than θ. If the time until the deadline
of the packet becomes smaller than θ, the packet is removed from the buffer.
The idea behind this threshold is that if the deadline of a packet will be
exceeded shortly, there is a large probability that the packet is not served
in time. Thus, the goodput of the system might be improved by waiting for
another packet that has a higher probability of being served successfully.
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Figure 1: A schematic representation of the model for a node adopting packet
skipping.

λ1

λ2

µ

Figure 2: A schematic representation of the model with the router exercising
network coding.

A packet whose deadline has expired is not served, both in the system that
employs packet skipping and in the system that employs network coding. A
coded packet is considered to be expired if the deadlines of both its underlying
native packets are expired. This is implemented by setting the expiration
deadline of a coded packet to that of the largest among the absolute deadlines
of the underlying native packets that were coded together. Note that the
individual deadlines of the native packets are still the ones considered when
calculating the goodput. Therefore, a coded packet that completes service
before its expiration deadline does not necessarily mean that the underlying
native packet with the smallest deadline has been served on-time. Also a
packet that arrives to an empty system is always served. Indeed, with fixed
deadlines, for packet skipping, there is no gain in not serving packets arriving
to an empty system and waiting for the next packet. After all, the next packet
will have the same deadline, and hence the same probability of being served
successfully. Delaying the service of a packet arriving to an empty system
might be proved to provide additional benefits in the network coding case,
but was not considered in this work due to the additional analysis complexity
it would engender.

5. Performance Analysis of Packet Skipping

5.1. Goodput Analysis

In this section, we compute the goodput of the system in the presence of
packet skipping. It will be convenient to view the goodput as a function of
the threshold θ, and we denote it by γ(θ). Furthermore, we denote by L the
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number of packets present in the system (including the server) immediately
before a packet arrival.

A packet arriving to the system will find the latter in one of the following
three states:

• Empty (L = 0): The server is available, and there is no packet occu-
pying the waiting buffer.

• Busy Server (L = 1): The server is servicing a packet, but the waiting
buffer is free.

• Full, (L = 2): the server is busy and the waiting buffer is occupied. In
that case, the arriving packet overwrites the buffered one.

Theorem 1. The goodput γ(θ) is given by

γ(θ) =λ P(L = 0)(1− e−µd)

+λ (1− P(L = 0))
[ µ

λ+ µ

(

1− e−(λ+µ)(d−θ)
)

−
µe−µd

λ

(

1− e−λ(d−θ)
)

]

,

(1)

where

P(L = 0) = 1−
λ2 + λµ

µ2 + λµe−(λ+µ)(d−θ) + λ2 + λµ
(2)

is the probability that an arbitrary packet arrives at an empty system.

Proof. The goodput γ(θ) is by definition equal to the arrival rate times the
probability that the service of an arbitrary packet is successful. To compute
this probability, we condition on whether a packet arrives at an empty system
or not. Denoting by B the service time that the arriving packet would
experience, we have:

γ(θ) =λ P(L = 0)P(B ≤ d)

+λ (1− P(L = 0))

d−θ
∫

0

µe−µt
P(B ≤ d− t)e−λtdt

(3)

Evaluating the probabilities and the integral indeed yields (1).
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Idle time Idle time
busy period

L = 1

L = 2 L = 2

L = 1 L = 1

…

Packet arrivals
First arrival, 

begins a 

clearance period

L = 0 L = 0
clearance period (CP) CP

new cycle 

beginscycle

Figure 3: A cycle consisting of idle time and busy period.

The rationale behind Eq. (3) is as follows: If an arbitrary packet P ar-
rives at an empty system, its service is successful if its service time B is less
than d. This explains the term P(L = 0)P(B ≤ d). If P arrives at a non-
empty system (L = 1 or L = 2), we condition on the length of the remaining
(residual) service time t of the packet in service. The residual service time is
exponentially distributed, so its density is µe−µt. Moreover, given that the
residual service time is t, the service of P is successful if the following three
conditions are all met: First, the time until the deadline is larger than θ
when the residual service ends, i.e., d− t ≥ θ. This is taken into account in
the integration region of Eq. (3). Second, the service time is less than t− d,
which explains the factor P(B ≤ t− d). Third, there were no other arrivals
during t time units, which explains the term e−λt.

In order to determine P(L = 0), we introduce the concept of cycle time,
which we define as the time between two consecutive moments at which the
system becomes empty. The cycle time C consists of two parts: A part
during which the system is empty, the ‘idle time’, and a part during which
the system serves packets until it becomes empty again, the ‘busy period’.
An illustration of a cycle is presented in Fig. 3.

The busy period spreads throughout the time that the system is not in
a state L = 0. It consists of a collection of consecutive states characterized
by L = 1 or L = 2. We shall refer to the case where L = 2 during a busy
period as clearance period (CP ), which is the amount of time the buffer is
continuously occupied. A clearance period ends when the buffer is cleared,
i.e. when either a dispatch to the server occurs, or when the stored packet
is denied service and removed from the system following the thresholding
procedure.
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The idle time lasts until a packet arrives, so the mean idle time is 1/λ.
Denoting the busy period by BP , we have:

E[C] =
1

λ
+ E[BP ].

The PASTA-property (Poisson Arrivals See Time Averages, see [23]) im-
plies that the probability that a packet arrives at an empty system, P (L = 0),
is given by the probability that the system is empty at an arbitrary time. A
standard argument from renewal theory implies that the latter probability is
given by the mean idle time divided by the mean cycle time:

P(L = 0) =
1/λ

E[C]
=

1/λ

1/λ+ E[BP ]
. (4)

The mean busy period is given by the following equation:

E[BP ] =
1

λ+ µ
+

µ

λ+ µ
· 0 +

λ

λ+ µ
(E[T ] + E[BP ]) , (5)

where E[T ] is the mean buffer clearance period. We will derive E[T ] next.
Eq. (5) follows from a probabilistic argument: The busy period starts

when a packet arrives to an empty system. After this, the expected time until
the first event (an arrival or service completion) is 1/(λ+ µ). Furthermore,
with probability µ/(λ + µ), the first event is a service completion, and the
busy period ends after 0 additional time units. With probability λ/(λ+ µ),
the first event is an arrival. In this case, the arriving packet is stored in
the buffer and the buffer has to be cleared, which takes in expectation an
additional E[T ] time units. Once the buffer has been cleared, the expected
time before the system becomes empty is again equal to E[BP ] due to the
memorylessness of service times. Evaluating (5) yields

E[BP ] =
1

µ
+

λ

µ
E[T ]. (6)

It thus remains to determine E[T ], the expected length of the buffer clear-
ance period. Without loss of generality, we assume that the buffer clearance
period starts at time 0. We condition on t, the time at which the next event
(arrival or service completion) occurs. Because the time until the next event
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is exponentially distributed with parameter λ+ µ, we obtain:

E[T ] =

∞
∫

d−θ

(λ+ µ)e−(λ+µ)t(d− θ)dt

+

d−θ
∫

0

µ

λ+ µ
(λ+ µ)e−(λ+µ)ttdt

+

d−θ
∫

0

λ

λ+ µ
(λ+ µ)e−(λ+µ)t(t+ E[T ])dt.

The three integrals (from left to right) cover the following three possibilities:
First, if there are no events before time d − θ, the buffer is cleared at time
d − θ because the deadline of the buffered packet becomes smaller than θ.
Second, if the first event occurs at time t < d − θ, and the first event is a
service completion, the buffer is cleared at time t because the buffered packet
enters service. Third, if the first event occurs at time t < d−θ and is a packet
arrival, the arriving packet overwrites the buffered packet, and a new buffer
clearance period begins.

After rewriting and evaluating the integrals (the rightmost two using
partial integration), we obtain:

E[T ] =
1− e−(λ+µ)(d−θ)

µ+ λe−(λ+µ)(d−θ)
. (7)

Combining Eqs. (4), (6), and (7) yields Eq. (2).

Remark 1. If d → ∞, deadlines become irrelevant and two special cases
occur for specific values of θ. If θ = 0, packets in the buffer are always served,
regardless of the time until their deadline. The goodput of the system is thus
equal to that in an M/M/1/2 queue, namely λ(1 − 1

1+ρ+ρ2
), with ρ = λ/µ

(see e.g., [24, Section 5.7] or [25, Section 3.6]). If θ = d → ∞, packets in
the buffer are never served. Only packets arriving to an empty system are.
In this case, the goodput is equal to that in an M/M/1/1 queue, namely
λ(1− 1

1+ρ
). By substituting d and θ, these values follow from Eq. (1) as well.
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Figure 4: The goodput as a function of θ, with µ = λ = d = 1.

5.2. Numerical results

In this section, we study the goodput numerically. In Fig. 4, we present
γ(θ) for various values of θ, with µ = λ = d = 1. We clearly see that the
goodput of the system is indeed increased by the threshold θ, as long as θ is
chosen appropriately.

Having established that an appropriately chosen threshold increases good-
put, we study how much the goodput can be increased by this threshold.
Note that γ(0) is the goodput of the system without threshold. We define
θ∗ as the threshold that maximizes the relative increase in goodput, i.e., we
define

θ∗ = arg max

{

γ(θ)− γ(0)

γ(0)
: 0 ≤ θ ≤ d

}

.

We define the maximal goodput gain as the maximal relative increase in
goodput, i.e., as (γ(θ∗)− γ(0))/γ(0).

In the sequel, we fix µ = 1. We can make this assumption without loss
of generality; all parameters are relative to each other, so for any set of
parameters, we can scale time in such a way that µ = 1 without changing
the goodput of the system.

In Fig. 5 we display the maximal goodput gain for d between 0 and 2, and
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Figure 5: The maximal goodput gain for 0 ≤ λ ≤ 5.

λ between 0 and 5. Fig 5 implies that, in this parameter region, we can obtain
an increase of up to 15% in goodput by setting the threshold to its optimal
value. Furthermore, we see that the relative increase in goodput is maximal if
d ≈ 0.3, but even for larger values of d there can be a goodput enhancement.
In addition to this, the maximal goodput gain grows as λ grows, so the
goodput policy is especially beneficial if the system is overloaded.

Likewise, in Fig. 6 we show the maximal goodput gain for λ up to 10. In
this region, the increase in goodput can be as much as 30%. Furthermore, the
value of d with the largest relative increase in goodput, as well as the range
of d for which gain is achieved become smaller. This is conveyed by Fig. 7,
which plots the gain for three increasing values of λ, equal to 3, 4 and 6. The
narrower range of d where gain is achieved is explained by a shorter sojourn
time of buffered packets that later enter service, due to more frequent buffer
overwriting for an increasing arrival rate. The shorter sojourn time reflects
itself in a larger lead-time when the buffered packet is assessed, by the packet
skipping component, for dispatch to the server. This in turns presents itself
in a decrease of the upper value of d for which packet skipping still results in
service denials for some packets, and as such, still results in goodput gain.

Finally, we show values of the gain for specific values of λ and d in Table 1.
We clearly see that, for this parameter region, the maximal goodput increase
grows as λ becomes larger. Furthermore, for a fixed λ, the maximal gain
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Figure 6: The maximal goodput gain for 0 ≤ λ ≤ 10.

Gain (%)
d

0.1 0.2 0.3 0.4 0.5

λ

0.5 0.23 0.37 0.45 0.48 0.48
1 1.04 1.71 2.07 2.21 2.18
2 1.036 5.90 6.91 7.05 6.64
4 10.07 14.69 15.30 13.78 11.49
8 21.36 24.20 19.61 14.31 10.08

Table 1: The maximal goodput gain for specific values of λ and d.

increases up to a certain value of d, and decreases beyond that value.

6. Performance Analysis of Network Coding

In this part of the paper we focus our analysis on a router element R, to
which two flows of packets arrive and need to be routed. The system model is
depicted in Fig. 2. The router node is capable of opportunistically coding two
native (un-coded) packets belonging to different flows, and transmitting the
resulting coded packet instead of two native transmissions. For convenience,
we refer to packets of the first flow as type-1 packets, while those of the
second flow are type-2 packets. A coded packet is referred to as type-3. The
sum of the two arrival rates λ1 and λ2 is denoted by λ.
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Figure 7: Goodput gain for λ values equal to 3, 4 and 6.

We shall restrict the analysis to one relative deadline d value for both
flows. This restriction neither impacts the quality nor the representativeness
of the analysis. It is merely used to simplify the underlying presentation. The
extension of our analysis to different deadline distribution is straightforward.

6.1. Goodput Analysis

We define the goodput of a flow as the number of packets of that flow that
are served by the router within their deadline requirement, per unit of time.
Given the symmetry of the problem, we will concentrate our analysis on the
goodput of type-1 packets. The analysis for packets of type-2 is identical.

The state of the queueing system at the router is fully conveyed through
the characterization of the status of its waiting buffer and the status of its
server. Two variables will be used to keep track of the system state: L,
already introduced in Section 5.1, that defines the current number of packets
in the system (including a packet being served), and N , that defines the type
of the packet residing in the buffer, if any. Knowledge of the type of a packet
when it is in service is not required for the analysis.

Variable L can take one of three values: 0, 1, or 2. Note that a coded
packet is counted as a single packet in the system. Variable N can take one
of three values: 1 (packet in buffer is of type-1), 2 (packet in buffer is of
type-2), or 3 (packet in buffer is a coded packet, type-3).

A packet of type-1 arriving to the system can find it in one of five states:

• Empty (L = 0): The server is available, and there is no packet occu-
pying the waiting buffer.
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• Busy Server (L = 1): The server is servicing a packet, but the waiting
buffer is free.

• Full, type-1 packet in buffer (L = 2, N = 1): the server is busy. The
waiting buffer is occupied by a type-1 packet.

• Full, type-2 packet in buffer (L = 2, N = 2): the server is busy. The
waiting buffer is occupied by a type-2 packet.

• Full, type-3 packet in buffer (L = 2, N = 3): the server is busy. The
waiting buffer is occupied by a coded packet.

Theorem 2. The goodput of type-1 packets is given by the following expres-
sion:

γ1 = λ1

∑

a,b

P(L = a,N = b)P(success|L = a,N = b), (8)

where P(L = a,N = b) is the probability that the system is in state (L =
a,N = b) and P(success|L = a,N = b) is the probability that an arbitrary
type-1 packet arriving to the system in state (L = a, N = b) meets its deadline.

Proof. Follows a similar reasoning as the proof of Theorem 1; The goodput
γ1 of type-1 packets is by definition equal to the probability that the service
of an arbitrary packet of flow 1 is successful, i.e. meets its deadline. By
the PASTA property [23], the probability that an arbitrary type-1 packet
arrives to the system in state (L = a,N = b) is equal to the steady-state
probability that the system is in state (L = a,N = b). The overall service
success probability is therefore given by summing, over the entire state space,
the probability that the system is in state (L = a,N = b) times the success
probability conditioned on the occurrence of this state.

Finding γ1 amounts to finding the success probabilities per system state,
P(success|L = a,N = b), and the different state probabilities P(L = a,N =
b). We derive these probabilities in the following two subsections.

Success Probability per System State

We start by finding the probabilities P(success|L = a,N = b) that a
packet of type-1 arriving to the system when it is in state (L = a,N = b) is
served by the router server and completes its service before the expiration of
its deadline. The arrival of the packet is considered as time origin. Therefore,
the absolute deadline of the packet is equal to its relative deadline.
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Case 1: Arrival to an Empty System (L = 0)

A packet arriving to an empty system directly enters service. Its success
probability is equal to:

P(success|L = 0) = (1− e−µd), (9)

which is equal to the probability that the service time it experiences is smaller
than its deadline d.

Case 2: Arrival to a Busy Server (L = 1) or Full System (L = 2) with N =
1 or 3

Due to the overwrite property of the waiting buffer, an arrival of a type-1
packet to a Busy Server state is identical to an arrival when the system is
full and the buffered packet is of type-1 or type-3. Indeed, in all three cases,
the newly arriving packet will occupy (or overwrite) the buffer and wait to
be serviced. Therefore P(success|L = 2, N = 1) and P(success|L = 2, N = 3)
are both equal to P(success|L = 1), given by:

P(success|L = 1) =

d
∫

0

µe−µte−λ1t(1 + λ2t)e
−λ2t

× (1− e−µ(d−t))dt.

(10)

To derive Eq. (10), we first condition on the length of the residual service
time t of the current packet in the server. Being exponentially distributed,
this residual service time has a density equal to µe−µt. Given that the residual
service time is t, a buffered packet is successfully serviced if all following
conditions are met:

1. The server becomes free before the deadline expiration of the buffered
packet, i.e., t ≤ d.

2. The packet is not overwritten while waiting in the buffer.

3. The service time of the packet is smaller than the remaining time the
packet has until deadline expiration.

Condition 1 is accounted for in the integration region (0 to d). Condition
2 is met if and only if, starting from the arrival moment 0 of the buffered
packet until the residual service time t is completed, no new type-1 packet
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arrives and at most one arrival of type-2 occurs. Indeed, the first arrival of
a type-2 packet will not result in overwriting the buffered packet, since it
will be coded with it (resulting in a type-3 packet). Any arrival of type-1 is
not tolerated since it overwrites both a type-1 and a type-3 buffered packet.
The term e−λ1t gives the probability that no type-1 arrivals occur during t.
The term (1+ λ2t)e

−λ2t gives the probability that at most one type-2 arrival
occurs.

Finally, condition 3 is met if the service time experienced by the packet
is at most equal to the remaining time (d− t) until deadline expiration. The
term (1− e−µ(d−t)) is equal to the probability that the service time is smaller
than d− t.

6.1.1. Case 3: Arrival to a Full System with Buffered Type-2 Packet (L = 2,
N = 2)

If the type-1 packet arrives to a system where the waiting buffer is oc-
cupied by a type-2 packet, both packets will be coded together, resulting in
a type-3 buffered packet. The success probability of the arriving packet is
therefore equal to the probability that the resulting type-3 packet is served
before the deadline d of the arriving packet is expired. It is given by:

P(success|L = 2, N = 2) =

d
∫

0

µe−µte−λ1te−λ2t

× (1− e−µ(d−t))dt.

(11)

Eq. (11) differs from Eq. (10) in that no arrival of type-2 is allowed at all,
throughout the whole sojourn time of the coded packet in the buffer. Indeed,
any type-2 arrival will overwrite the coded packet. This arrival restriction
on type-2 packets is reflected in Eq. (11) through the term e−λ2t.

System State Probabilities

In order to determine the probabilities P(L = a,N = b) of finding the
system in a particular state (L = a,N = b), we again make use of the notion
of cycle time. For additional clarity of the following analysis, the reader is
referred to Fig. 3.

The arrival that causes a state change from L = 1 to L = 2 (i.e. that
starts a clearance period) is referred to as first arrival. As a busy period
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might comprise multiple clearance periods, there can be multiple first arrivals
during a busy period. Note that the notion of a type-3 packet as first arrival
is abstract in the sense that it does not occur in practice, but is introduced
for analysis purposes.

The idle time lasts from the moment the system becomes empty until the
arrival of a packet of either type-1 or type-2. Therefore, the mean idle time
is equal to 1/(λ1 + λ2). The mean busy period is the same as that given in
Eq. (6), with λ equal to the sum of λ1 and λ2. Similarly, the expected length
of the buffer clearance period, E[T ], is obtained from Eq. (7) by setting θ to
0. The mean cycle time E[C] is obtained as the sum of the mean idle time
and the mean busy period.

As standard argument from renewal theory, the probability that the sys-
tem is in a certain state is given by the mean time the system spends in this
state during a cycle, divided by the mean cycle time. Let Ci be the total time
the system has a packet of type i in the buffer during a cycle time. In other
words, Ci is the total amount of time the system is in state (L = 2, N = i)
during a cycle. The system state probabilities are then obtained using:

P(L = 0) =
E[I]

E[C]
, (12)

P(L = 2, N = i) =
E[Ci]

E[C]
, and (13)

P(L = 1) = 1− P (L = 0)−

3
∑

i=1

P (L = 2, N = i). (14)

To find E[Ci], we define Ti,j as the cumulative amount of time that the
buffer is occupied by type-i packets during a clearance period, given that the
first arrival of that clearance period was a type-j packet. The expected value
of Ci is given by simply summing up the two different cases of packet types
for the first arrival:

E[Ci] =

2
∑

j=1

λj

λ+ µ
(E[Ti,j ] + E[Ci])

=
2

∑

j=1

λj

µ
(E[Ti,j ]). (15)
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It now finally remains to find the expected values of the different Ti,j .
The expected value of T1,1 is given by:

E[T1,1] =

d
∫

0

(λ+ µ)e−(λ+µ)t

[

µ

λ+ µ
t+

λ1

λ+ µ
(E[T1,1] + t)

+
λ2

λ+ µ
(E[T1,3] + t)

]

dt+ de−(λ+µ)d.

(16)

Eq. (16) conveys the following: After the first arrival an event is bound to
occur: either a service completion, or a new arrival. We condition on t, the
time at which the next event occurs. Because of the memorylessness of the
system, t has density (λ + µ)e−(λ+µ)t. With probability µ

λ+µ
, this event is a

service completion, and the clearance period is equal to t. With probability
λ2

λ+µ
, the first event is a type-2 arrival. Due to memorylessness, this can

be seen as the beginning of a new clearance period with a type-3 arrival as
first arrival, i.e., with expectation E[T1,3]. However, up to time t, there was
a type-1 packet in the buffer, so the expected cumulative amount of time
type-1 packets spend in the buffer is given by t + E[T1,3]. With probability
λ1

λ+µ
, the first event is a type-1 arrival. Likewise, this can be seen as a new

clearance period with a type-1 arrival as a first arrival, i.e., with expectation
E[T1,1] and cumulative amount of time equal to t + E[T1,1]. Finally, with
probability e−(λ+µ)d, no event happens prior to the deadline expiration and
subsequent removal of the type-1 first arrival. In that case, the buffer would
have been occupied by this type-1 packet for an amount of time equal to d.

Likewise, the expected values of T1,2 and that of T1,3 are respectively given
by:

E[T1,2] =

d
∫

0

(λ+ µ)e−(λ+µ)t

[

λ1

λ+ µ
E[T1,3] +

λ2

λ+ µ
E[T1,2]

]

dt,

(17)
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E[T1,3] =

d
∫

0

(λ+ µ)e−(λ+µ)t

[

λ1

λ+ µ
E[T1,1] +

λ2

λ+ µ
E[T1,2]

]

dt.

(18)

Let α = 1−e−(λ+µ)d. The upper set of integrals results in the following set
of three equations with three unknowns, which can be solved to find E[T1,1],
E[T1,2] and E[T1,3]:

E[T1,1] = α

[

1

λ+ µ
+

λ1

λ+ µ
E[T1,1] +

λ2

λ+ µ
E[T1,3]

]

(19)

E[T1,2] = α

[

λ1

λ+ µ
E[T1,3] +

λ2

λ+ µ
E[T1,2]

]

(20)

E[T1,3] = α

[

λ1

λ+ µ
E[T1,1] +

λ2

λ+ µ
E[T1,2]

]

(21)

Following a similar reasoning,

E[T2,1] = α

[

λ1

λ+ µ
E[T2,1] +

λ2

λ+ µ
E[T2,3]

]

(22)

E[T2,2] = α

[

1

λ+ µ
+

λ1

λ+ µ
E[T2,3] +

λ2

λ+ µ
E[T2,2]

]

(23)

E[T2,3] = α

[

λ1

λ+ µ
E[T2,1] +

λ2

λ+ µ
E[T2,2]

]

(24)

and

E[T3,1] = α

[

λ1

λ+ µ
E[T3,1] +

λ2

λ+ µ
E[T3,3]

]

(25)

E[T3,2] = α

[

λ1

λ+ µ
E[T3,3] +

λ2

λ+ µ
E[T3,2]

]

(26)

E[T3,3] = α

[

1

λ+ µ
+

λ1

λ+ µ
E[T3,1] +

λ2

λ+ µ
E[T3,2]

]

(27)
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Figure 8: Goodput gain (%), function of λ1 and λ2 when d = 1.

Once the different E[Ti,j ] are found, they are used in Eq. (13) to find the
state probabilities P(L = 2, N = i). Replacing the result of Eqs. (12), (13),
and (14) along with the different conditional success probabilities (Eqs. (9)-
(11)) into Eq. (8) yields the type-1 goodput of the system, which is a function
of λ1, λ2, µ and d.

6.2. Numerical Results

In this section, we study numerically the goodput gain of network cod-
ing relative to the no-coding base case. We are particularly interested in
finding how much the goodput of real-time packets flows can be increased
by applying network coding. We define γbase as the total goodput of the
router without coding, and γcoding as the total goodput of the router with
coding. An important remark to be made here is that γbase can be found
using Eq. (8), by considering the existence of a single arriving flow instead
of two, with parameter λ = λ1 + λ2. In other words,

γbase {λ1, λ2, µ, d} = γ1 {λ1 + λ2, 0, µ, d} . (28)

We define the goodput gain as the relative increase in goodput, i.e., as
(γcoding − γbase)/γbase.

In the sequel, we fix µ = 1. Fig. 8 provides the goodput gain as a function
of the arrival rates λ1 and λ2, for d equal to 1. A major conclusion to be
drawn here is that the gain provided by network coding is always maximized
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Figure 9: Goodput gain (%) for values of λ between 0 and 5 and values of d
between 0 and 5.

when λ1 is equal to λ2. This result is logical, since equal arrival rates provide
the most opportunities for coding.

Fig. 9 provides the maximal goodput gain for d between 0 and 5, and λ
between 0 and 5. Similarly, Fig. 10 provides the maximal goodput gain for
the same range of deadlines and larger values of λ, between 5 and 15.

For a fixed arrival rate λ, the gain increases for an increasing deadline
value. A larger deadline provides a higher probability of success for coded
packets, hence a positive return on applying network coding. Similarly, for a
fixed deadline d, the gain increases for an increasing arrival rate; This can be
explained by the more efficient buffer usage that network coding provides; In
the base case, every arrival overwrites the buffer. The higher the arrival rate,
the more frequent such overwritings occur. On the other hand, with network
coding, an arrival of type-1 when the buffer is occupied by a type-2 packet,
or vice-versa, does not result in an overwriting, but in a coding operation
which maintains both packets. As shown in Fig. 9, the gain provided by
network coding remains limited in the operating region (λ < 2, d < 1), where
low arrival rates limit the opportunities of coding, and the short deadlines
causes most of the coded packets to miss their timeliness requirement anyway.
Finally, as conveyed in Fig. 10, the gain of network coding for high arrival
rates and large deadlines can reach up to 30%, a substantial improvement
compared to the base case scenario. This result is important for highlighting
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Figure 10: Goodput gain (%) for values of λ between 5 and 15.

the applicability of the proposed approach in more general networks. When
the same network coding algorithm was employed for the transmission of real-
time packets in a wireless multihop sensor network, the simulation results also
showed a maximum performance of 30% for higher values of the traffic load
and higher deadlines [2].

A reasoning along the lines of buffer usage efficiency also explains the
difference in performance between packet skipping and network coding when
the deadline value is increased. As already shown in Fig. 5 and Fig. 6, the gain
of packet skipping is limited to the smallest range of deadlines (d < 1). In
contrast, network coding provides increasing gain for an increasing deadline
value, up to reaching a saturation value of 30%. For higher deadlines, lead-
time thresholding basically allows any buffered packet to be serviced, thus
providing no improvement in buffer usage. On the other hand, the efficient
usage of the buffer is maintained in the case of network coding, since coding
operations are deadline-oblivious.

7. Joint Coding-Skipping Model

7.1. Goodput Analysis

The following section studies the performance benefits obtained when
network coding and packet skipping are concurrently applied. With packet
skipping enabled in a network coding setting, instead of removing a waiting
packet only once its absolute deadline expires, lead-time thresholding with
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threshold θ is applied; if the waiting packet is a native one (a type-1 or
type-2 packet), its lead-time is used in the thresholding procedure. If the
waiting packet is a coded packet, the largest among the lead-times of the two
underlying native packets is used.

The goodput analysis for the joint coding-skipping approach is essentially
identical to the analysis of the network coding goodput in Section 6. A
number of equations are affected by the introduction of θ; E[T ] takes exactly
the expression provided in Eq. (7), in comparison to the simple network
coding case where θ was set to 0. The threshold θ is also introduced in the
equations of P(success|L = 1) and P(success|L = 2, N = 2), resulting in:

P(success|L = 1) =

d−θ
∫

0

µe−µte−λ1t(1 + λ2t)e
−λ2t

× (1− e−µ(d−t))dt.

(29)

P(success|L = 2, N = 2) =

d−θ
∫

0

µe−µte−λ1te−λ2t

× (1− e−µ(d−t))dt.

(30)

Note that the equations giving P(success|L = 2, N = 1) and P(success|L =
2, N = 3) remain identical to Eq. (29).

Finally, the threshold θ should be taken into account in all E[Ti,j] expres-
sions (Eqs. (19)-(27)), by setting α to 1− e−(λ+µ)(d−θ) instead of 1− e−(λ+µ)d.

7.2. Numerical Results

Fig. 11 and Fig. 12 plot the additional gain of combining service skipping
with network coding, relative to the gains enjoyed from network coding alone.
The impact of packet skipping in a joint coding-skipping approach remains
limited to the smallest range of deadlines, in accordance with the results
for which only packet skipping was employed. However, we observe that the
range where the performance of the joint system is noticeable, is smaller than
the one of the packet skipping case. A snapshot of this difference can also
be seen in Fig. 13. This behavior is consistent with our simulation results
in [2] where we observed that the additional gain from packet skipping was
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Figure 11: Additional increase in goodput gain (%), for λ between 0 and 5,
achieved when adding skipping to network coding.

reaching at most 10-12% and for the lower regime of deadline values. This
behavior puzzled us both in our analysis here and also in our simulations.
But careful analysis reveals that when network coding is employed, our sys-
tem naturally removes opportunities for skipping since many native packets,
once coded, are transmitted even if they would have been normally dropped
with thresholding. This situation is even more true for higher arrival rates
since more packets are coded and they are replaced from the buffer faster.
Therefore, the opportunities that occur for efficient use of packet skipping
become less as the arrival rate is increased.

8. Conclusions

In this paper, we developed an analytical model that captures the impact
of packet skipping and network coding on the delivery of real-time packets.
First, we developed a model that considers only packet skipping for packets
that have associated deadlines. We showed through the analytical model,
that an optimal thresholding policy, when applied to the incoming packets
at the router, can lead to goodput gains of up to 30%. Subsequently we
developed a model for the case where the router employs algebraic coding on
the incoming packets. We showed that depending on the operating region,
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the gain of network coding can reach up to 30%. The ultimate objective of
the paper was a router queueing system model that considers jointly network
coding and packet skipping in the presence of per-packet deadlines. We
provided exact expressions for the stationary goodput of the system and
numerical results of the achievable goodput gain. Employing packet skipping
in addition to network coding adds up to 15% gain over the collected gains
obtained from employing network coding exclusively.

In addition to the novel approach that looks at network coding and packet
skipping from a real-time perspective, our work intends to be a stepping stone
for future research. Among the topics we foresee as interesting are the qual-
itative and quantitative studies of network coding and packet skipping in
more complex network topologies. Furthermore, we will seek ways to trans-
late some of the results and conclusions of this work to heuristic optimization
algorithms for real-life wireless networks.
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