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Abstract—Heterogenous cellular networks (HCN) introduce
small cells within the transmission range of a macrocell. For the
efficient operation of HCNs it is essential that the high power
macrocell shuts off its transmissions for an appropriate amount
of time in order for the low power small cells to transmit. This
is a mechanism that allows time-domain resource partitioning
(TDRP) and is critical to be optimized for maximizing the
throughput of the complete HCN. In this paper, we investigate
video communication in HCNs when TDRP is employed. After
defining a detailed system model for video streaming in such a
HCN, we consider the problem of maximizing the experienced
video quality at all the users, by jointly optimizing the TDRP
for the HCN, the rate allocated to each specific user, and the
selected video quality transmitted to a user. The NP-hard problem
is solved with a primal-dual approximation algorithm that
decomposes the problem into simpler subproblems, making them
amenable to fast well-known solution algorithms. Consequently,
the calculated solution can be enforced in the time scale of
real-life video streaming sessions. This last observation motivates
the enhancement of the proposed framework to support video
delivery with dynamic adaptive streaming over HTTP (DASH).
Our extensive simulation results demonstrate clearly the need
for our holistic approach for improving the video quality and
playback performance of the video streaming users in HCNs.

Index Terms—Heterogeneous cellular networks, small cells,
intra-cell interference, video streaming, video distribution,
DASH, rate allocation, resource allocation, optimization, 5G
wireless networks.

I. INTRODUCTION

NEARLY 50% of the traffic in cellular networks today
is video [1]. Mounting evidence suggests that video will

keep increasing its share of the cellular traffic at an even faster
pace [1]. The reason behind this phenomenon is the explosive
demand for high quality video streaming from mobile devices
(e.g., tablets, smart-phones). The challenge for mobile network
operators (MNOs) is to offer higher data rates that can keep up
with this demand for high quality video. Heterogenous cellular
networks (HCNs), illustrated in Fig. 1, are envisioned to be one
of the solutions to this problem. HCNs introduce low power
base stations (BS) like pico BS (PBS) and femto BS (FBS),
that form around them picocells and femtocells respectively.
Lower transmission power from these small cells reduces the
transmission range and allows improved spatial reuse. Hence,
the first novel feature of HCNs is the higher wireless capacity
they offer to the complete macrocell. The second novel feature
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Fig. 1. The considered HCN consists of single macro and several pico and
femto BSs. Each BS streams videos to a subset of the associated users.

of HCNs is that they can lower the use of the backhaul
capacity by employing caching at the small cell BSs [2], [3].
Caching enables local access of frequently requested videos
and this means lower utilization of the backhaul links between
a BS and the video server. These two features of HCNs
constitute them a central component of the envisioned 5G
cellular network architecture.

Research for video distribution in HCNs has focused pri-
marily on caching, with the objective to reduce the startup
playback delay of the video for each user [2], [3], or lower
the costs for the operator [3]. In this paper we are concerned
with the first novel feature of HCNs which is the higher
wireless capacity. We focus on this topic since HCNs introduce
a new way for sharing the wireless resources. With the time
domain resource partitioning (TDRP) mechanism [4], the MBS
shuts off its transmissions for a fraction η of the available
resources during which the small cells can achieve a higher
data rate (Fig. 2). During the fraction 1− η, there is intra-cell
interference since the MBS transmits simultaneously with the
small cells. This technique was recently standardized through
the concept of almost blank subframes (ABS) and regular
subframes (RS) in 3GPP LTE-A under the more general name
of enhanced inter-cell interference coordination (eICIC) [4].
One important detail is that the LTE-A standard currently
allows the dynamic adaptation of η but it does not specify
how it should be configured. Given the increasing number of
video streaming users in cellular networks, and the necessity
of TDRP, it is of outmost importance to perform optimally
both the configuration of η and the allocation of the wireless
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resources in an HCN. Hence, the specific questions that should
be answered in this case are: What is the optimal η when we
have video traffic? What is the best video quality that each
user should receive? What happens when a subset of the users
receive video? Currently there are no definite answers to these
pressing questions.

Related work. TDRP for HCNs is a topic investigated only
recently because ABS/RS were also very recently standardized
in LTE-A. The authors in [5] derived the optimal fraction from
the available ABS and RS resources that each user should
be allocated (a representative rate allocation is illustrated in
Fig. 2) under a proportionally fair rate allocation (PFRA)
metric. The authors of that work assumed a constant fraction
of ABS η that is configured by the HCN operator. In another
recent work reported in [6], the authors investigated the
joint optimization of TDRP and user association (for traffic
offloading) but with an assumption for equal rate allocation to
the associated users. To the best of our knowledge there is no
work that addresses TDRP in HCNs for video distribution and
streaming. As we already discussed, much of the early research
work for video streaming HCNs has focused on caching [2],
[3], or exploiting particular features like the density of the
small cells [7]. However, these works assumed the availability
of a constant fraction of the resources for the MBS and
the small cells that is effectively translated to a constant
η. On the other hand, multi-user rate allocation for video
streaming has been a topic thoroughly investigated the last few
years for specific types of wireless networks. The works were
primarily motivated from the network utility maximization
(NUM) framework [8]. From the category of works that were
based on NUM, the ones that are more related to this paper
focused on cellular networks and considered more details of
the physical layer (PHY). For example the authors in [9]
investigated scheduling and resource allocation for a downlink
LTE system that employs discrete decisions for optimizing the
selected video streaming quality. The same problem, but for
scalable encoded video, was considered in [10]. Another class
of works focused on optimizing rate/resource allocation with
the objective to improve the playback performance of video
clients [11], [12]. In the last works the authors take into consid-
eration recent standardization developments in streaming and
in particular dynamic adaptive streaming over HTTP (DASH).
However, these works do not target HCNs and assume access
to fixed capacity resources.

Contributions. In this paper, we present contributions on
three fronts. First, we present a comprehensive Joint TDRP,
Rate Allocation, and Video Quality Selection (JTRAVQS)
optimization framework for video streaming in HCNs. The
framework identifies the optimal TDRP η, the rate allocated
to each user, and the video quality description for each user,
so as to maximize the aggregate video quality in the HCN.
Our framework includes additional system-level parameters
like the fraction of users that receive video. The NP-hard
problem is solved with a primal-dual approximation algorithm
that provides an asymptotically optimal solution. Our solution
approach decomposes the problem into simpler subproblems,
making them amenable to fast well-known solution algorithms.
Second, we propose enhancements to the basic optimization
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Fig. 2. Modeling the global time-domain resource partitioning, and local rate
allocation problem in a topology with two PBSs and a MBS.

framework that allow it to support DASH-based video stream-
ing. Additional system parameters like the buffer contents of
individual users, time-dependent user population, and channel
capacity with TCP, are taken into account to optimize the
the playback performance [13]. Third, we present a thorough
performance evaluation our main framework against: a) A
video-unaware system that jointly optimizes the TDRP and
rate allocation under a PFRA metric [5]. b) From the results
of our scheme and that of PFRA, we can infer the performance
of a system that applies optimized rate allocation and video
quality selection (RAVQS) but with a fixed TDRP [14].
Finally, our enhanced system for DASH, that considers the
content of the playback buffer, is compared against a buffer-
aware system that again uses fixed resources.

Main Results. Our results reveal that: i) For video stream-
ing TDRP should be more aggressive in favor of the small cells
when compared to TDRP optimization under a PFRA metric.
In particular even for 4 small cells and 100 users, the optimal
η should be nearly 22.2% higher than the optimal η under
PFRA. Video quality is improved by a factor of 50%-70% for
this scenario. ii) Using a fixed but still optimal TDRP under a
PFRA metric, and then performing a RAVQS optimization as
an afterthought, is still suboptimal. In particular for a popula-
tion of 100 users and 4 small cells, the previous approach leads
to an average video quality loss of 18.6% when compared to
our approach. iii) For a DASH-based system with a fixed, but
again optimal TDRP under PFRA, our optimization has more
significant impact. In particular the rebuffering time/events of
the clients can be reduced by more than 50% for a static
network and 60% for a network with user churn.

Paper Organization. The rest of the paper is organized
in the following sections. Section II describes in detail the
system model. In Section III we present the formulation and
the solution of the optimization problem we introduce in this
paper, while its extension for DASH is presented in Section IV.
Performance evaluation results are presented in Section V, and
finally we conclude in Section VI.

II. SYSTEM MODEL AND ASSUMPTIONS

Network Model. In Fig. 1 we present the network that we
study in this paper and it includes a single macrocell with
a MBS, the PBSs, and the users. Each BS j in the set J
communicates with the set of associated users Nj . We also
denote with Fj ⊆ Nj a subset of the users associated to
BS j that are not optimized in a video-aware fashion. This
parameter allows us to investigate the possibility that a fraction
fj = (|Nj | − |Fj |)/|Nj | of the users are optimized. During
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the fraction η of the ABS resources all the small cells transmit
and interfere with every active user in the network. Thus, we
consider resource reuse across BSs of the same tier (PBSs in
our case) which is one of the main benefits of small cells since
it allows spatial reuse. The aggregate average interference
power that user i receives is denoted as IABS,i. During the
fraction of the non-blanked resources, or regular subframes,
1 − η both the MBS and PBSs transmit and the aggregate
interference power that a user receives is denoted as IRS,i.

User Model. Each BS j transmits with unicast streaming
video i to the similarly denoted user. The users associate
to a BS by using an signal-to-interference plus noise ratio
(SINR) biasing rule [6], i.e., a user is associated to the
small cell j, and not the MBS, if the following is true:
SNRPBSj

+ Bias ≥ SNRMBS. This ensures that users are
offloaded to the small cells [6]. Our primary objective is a
static user population similarly to the literature [2], [9], [11],
[12], since we are interested to optimize the system operation
within the complete playback duration of the video. However,
motivated by recent experimental results that identify slow user
variations in the cell throughout the day [15], we also evaluate
our system for this more dynamic scenario.

Video Streaming and Playback Model. Without loosing
generality we assume that all the BSs are assumed to have
cached the videos for all the users [2], [3].1 Now if the video
representation that is transmitted to user i is indexed by r, the
average bitrate that must be sustained is

Rir =
Sir

Ti +Bi0
bits/sec, (1)

where Sir is the size of the r-th video representation, Ti is
the total playback time of the video and Bi0 is the duration
of playable content received during startup buffering (time
0). This formulation ensures that the average probability
of rebuffering events is zero [12]. In the first part of our
optimization in Section III, this is the condition we adopt since
we are interested to reach a decision once for the duration
of the video streaming session. However, with DASH this
formula is revised in Section IV.

Channel & PHY Model. Nodes use a single omni-
directional half-duplex antenna. The channel from the j-th BS
to the i-th user is denoted as hj,i. The fading coefficients are
independent and hj,i∼CN (PLi,j , 1), i.e., they are complex
Gaussian random variables with unit variance and mean equal
to PLi,j that depends on path loss and shadowing effects
according to the LTE channel model [4]. All the channels are
considered to be block-fading Rayleigh and quasi-stationary,
that is they remain constant for the coherence period of
the channel that is equal to the transmission length of the
complete PHY block. Additive white Gaussian noise (AWGN)
is assumed at every receiver with variance σ2. The transmis-
sion power that the PBS and MBS use is PPBS, and PMBS
respectively.

MCS & CQI. A modulation and coding scheme (MCS)
with m bits/symbol is used by each BS while its value

1Our system can easily accommodate the case that the video stream
originates from a server by considering end-to-end throughput that the network
can deliver.

is determined by each PBS independently and optimally as
we will later explain. The set of available MCSs is M =
{1, ..., 7}, i.e., we assume that the most spectral efficient
quadrature amplitude modulation (QAM) MCS is 128-QAM.
We also assume that users provide only average channel
quality indicator (CQI) feedback to the BSs.

A. Video Quality Model

Modeling the Quality-of-Experience (QoE) of users in video
streaming applications is not easy. QoE is affected both by the
video signal quality and delay [16], [13]. In this subsection, we
define a utility model only for the quality of the video signal
while during the analysis of our optimization framework we
discuss our approach for minimizing the effects of delay. The
main objective of our video quality model is to capture the
rate-distortion (RD) relationship of different representations of
each video stream. This will allow our optimization framework
to allocate resources to videos depending on their quality.

In this paper we assume we have the RD information
information for each frame n that belongs to representation
r of video i and consists of its size Sirn in bits and the
importance of the frame for the overall reconstruction quality
of the video denoted as qirn [17]. In practice, qirn is the
total decrease in the mean square error (MSE) distortion that
will affect the video if the frame is decoded by the video
player [18]. The value of the MSE in qirn includes both the
distortion that is added when frame n is not decoded, and also
the frames that have a decoding dependency with n.2 Hence,
the video quality model considers also the possible drift that
might occur due to the inability to decode a particular video
frame. These values can be obtained easily but only during
the offline encoding of the video as discussed in [19], [20].

Consequently, the aggregate video quality of a group of
video frames indexed by s (also referred to as segment to en-
sure consistency with DASH terminology), that belong to rep-
resentation r of video i, is the average MSE reduction/frame:

qirs =

∑
n qirn

number of frames
(2)

This fraction is the average MSE reduction of the frames
contained in a DASH segment or packet, versus their total
number. This formulation is in line with our initial objective
since it expresses the ”value” for a group of frames. For a
group of segments starting from t-th segment until the end of
the video, we can similarly characterize the video quality as:

Qirt =

∑s=last
s=t qirs

number of remaining segments
(3)

For packet-based video, this RD information associated with
a packet can be contained in each packet header. In the case
of scalable video the information about the importance of a
packet is already embedded in the header since it indicates
the video layer that the packet belongs. For segment-based
DASH streaming a media presentation description (MPD) file
is already used for conveying a subset of this information [21].

2For example q for an I frame includes the q of the P and B frames that
depend on it.



IEEE TRANSACTIONS ON MULTIMEDIA, TO APPEAR, 2015 4

Hence, the model can support packetized non-scalable, scal-
able, and segment-based video. The final result of the previous
discussion is that a single video for user i will be available at
the following discrete set of qualities

Qit = {Qi1t, .., Qirt, ..., } with r ∈ Ri (4)

indicating the set of available representations for each
user/video i. It is important to understand the use of the previ-
ous model in our optimization. In our initial framework, where
the problem is solved for the complete playback duration of
the video, the formulation in (3) is used by setting t=0, i.e.,
we use the average quality of the complete video. However,
for DASH the optimization is solved during a specific time
period t and (3) captures the video quality of the remaining
segments that still need to be communicated.

To complete our discussion, we have to recall that our
optimization targets a heterogeneous user population where
a subset of them do not receive video. When we have elastic
flows, or when the users do not participate in the video-aware
optimization, then rate allocation is exercised with a PFRA
metric [6], i.e., Qirt is generated by taking the logarithm of
the communication rate achievable by user i.

B. Throughput at the Physical Layer

We consider that the BSs optimize independently the PHY
parameters of the point-to-point links, as it is typically done in
wireless communication systems [22]. To estimate the average
communication rate that each user i achieves when it is
associated to BS j we proceed as follows. The BS receives
from each user i the average channel gain E[|hj,i|2], and also
the local estimate of the interference power IABS,i, IRS,i.3

Note that the average channel gains, or the CQI in the LTE
terminology, mentioned above can be transmitted from each
user to the BS with low network overhead since they only
correspond to path loss and shadowing. Hence, during an ABS,
since a user receives the aggregate interference from all the
simultaneously transmitting PBSs, the average SINR between
the PBS and user i is:

E[γABS
i ] =

PPBS E[|hPBS,i|2]

IABS,i + σ2
(5)

During the RS the MBS is also active and so the SINR of
users associated to a PBS and the MBS are

E[γRS
i ] =

PPBS E[|hPBS,i|2]

IRS,i + σ2
, and E[γRS

i ] =
PMBS E[|hMBS,i|2]

IRS,i + σ2
,

respectively. The average SINR expressions allow each BS j
to estimate the resulting average data rate for each associated
user i under MCS m as:

Cim = m · eff · S · (1− Ps)
L/m bits/sec, (6)

where S is the symbol rate, eff is the efficiency of the MCS,
and the probability of symbol error Ps under 2m-QAM is [23]:

Ps = 4(1− 2m/2)Q
(√ 3

2m − 1
E[γi]

)
(7)

In our system the PHY and link-layer system at each BS
selects optimally for the average SINR the MCS that ensures

3LTE Rel. 8 already implements the communication of the power of the
local interference though the high interference indicator (HII).

the highest point to point communication rate [24]. This is
formally written as:

Ci = max
m∈M

Cim (8)

III. PROBLEM FORMULATION AND SOLUTION

Now we are ready to define formally the problem we
address in this paper. For each user i associated to BS j the
HCN must select the video representation with the highest
quality, and the rate allocated to it. For the complete HCN the
globally optimal TDRP must be calculated. First we define
the optimization variables. Let xABS

ir , xRS
ir ∈ {0, 1} indicate

whether user i ∈ Nj∪Fj is served with video representation r
in an ABS and RS respectively. Let also zABS

ir ∈ [0, 1] denote
the fraction of the ABS resources that the PBS allocates to
i ∈ Nj∪Fj for streaming the video representation r. Similarly
for the RS, we define zRS

ir ∈ [0, 1]. Hence, the decisions of each
BS j are: (a) the video quality selection (VQS) vector for all the
associated users, i.e., xj =

(
xABS
ir ≥ 0 : i ∈ Nj ∪Fj , r ∈ Ri),

and (b) the rate allocation (RA) vector for all users, i.e.,
zABS
j =

(
zABS
ir ≥ 0 : i ∈ Nj ∪Fj , r ∈ Ri). Similarly the VQS

and RA vectors for the regular slots. Also the global resource
partitioning decision η. To minimize the notation later in our
solution, we also define different concatenations of the variable
vectors as follows: zj =

(
zABS
j , zRS

j ), z =
(
zj : j ∈ J ), and

similarly for xj ,x.
The objective for the HCN operator is to maximize the

average aggregate delivered video quality captured by:∑
j∈J\{0}

∑
i∈Nj∪Fj

∑
r∈Ri

(xABS
ir +xRS

ir )Qir0+
∑

i∈N0∪F0

∑
r∈Ri

xRS
irQir0 (9)

In the above recall that Qir0 is the average quality of repre-
sentation r for video i. Thus, the objective expresses the video
quality delivered to the complete HCN. In the second term we
have the quality for the users associated to the MBS since they
cannot transmit during an ABS.

For the first set of constraints we have to recall that the
fraction of the blank ABS resources available for the PBSs
(there is resource re-use across the PBSs) is η. This leads to:∑
i∈Nj∪Fj

∑
r∈Ri

zABS
ir ≤ η,∀j ∈ J \{0} (10)

In the above we excluded again the MBS since it cannot
transmit during an ABS. During the RS all the BSs transmit:∑
i∈Nj∪Fj

∑
r∈Ri

zRS
ir ≤ 1− η,∀j ∈ J (11)

When a particular representation r is selected, the average rate
Rir in bits/sec that must be sustained by a user i is less than the
rate that can be achieved during both the ABS and RS. Also
the resources allocated during ABS and RS will determine the
average rate. The above can be formally written as:

xABS
ir Rir ≤ (zABS

ir CABS
i +zRS

ir C
RS
i ),∀r ∈ Ri, i ∈ Nj∪Fj , j ∈ J

(12)

In this section this constraint is based in (1), and in this form
it ensures that the average number of rebuffering time over
the complete video playback is zero. Also, (12) accounts for
the startup delay as specified in (1). We will delve into the
extension for DASH in the next section.
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We also have that resources cannot be allocated to a video
representation r if it is not actually selected:

zABS
ir ≤ xABS

ir ,∀r ∈ Ri, i ∈ Nj ∪ Fj , j ∈ J (13)

zRS
ir ≤ xRS

ir ,∀r ∈ Ri,∀i ∈ Nj ∪ Fj , j ∈ J (14)

We also need the integer constraints according to which only
one video representation r can be used for each user. Thus:∑
r∈Ri

xABS
ir ≤ 1,∀i ∈ Nj ∪ Fj , j ∈ J (15)∑

r∈Ri

xRS
ir ≤ 1,∀i ∈ Nj ∪ Fj , j ∈ J (16)

During the regular slots the PBSs can also transmit together
with the MBS, albeit with lower spectral efficiency. In this
case the rate will be lower. However, we must ensure that
across ABS and RS the same video representation is used:

xABS
ir = xRS

ir ,∀r ∈ Ri,∀i ∈ Nj ∪ Fj , j ∈ J (17)

The last condition comes from the observation that it is not
practical to transmit one video quality during ABS and a
different during the RS, since these two types of resources
alternate at the PHY in the order of milliseconds [4].

A. Hierarchical Primal and Dual Decomposition

This problem formulation clearly constitutes a non-convex
mixed integer linear program (MILP). Hence, it is NP-hard
while it does not map to a well-known structure that can be
solved with fast pseudo-polynomial algorithms (e.g., knapsack
forms). This last aspect can also be seen fairly easily since we
have that η, which is the capacity of the knapsack in (10),(11),
is also an optimization variable. The second issue is the
evident need for distributed computation. These aspects make
the problem computationally challenging. Despite this difficult
challenge at first sight, we notice that at this stage of our
work we are interested to calculate the average rate allocation
and TDRP during the complete streaming session. This means
that in practice the final algorithm does not have to provide
a solution in the order of seconds, but minutes. For this
reason, instead of designing heuristics, we resort to a solution
approach with a primal-dual approximation algorithm that
converges asymptotically to the optimal solution [25].

To solve this problem we apply first primal decomposition
on η. Primal decomposition consists of setting a constant value
to the coupling variable [26]. For a constant value for η we
notice that the original problem is decomposed into a master
problem P0, and several problems denoted as Pj (each one for
each BS j). We use Lagrangian relaxation to solve Pj . The
Lagrangian after relaxing the coupling constraints for Pj is:

Lj =
∑

i∈Nj∪Fj

∑
r∈Ri

(xABS
ir + xRS

ir )Qir0 + λABS
1,j f

ABS
1 (zABS

j )

+ λRS
1,jf

RS
1 (zRS

j ) + η(λRS
1,j − λABS

1,j )− λRS
1,j1 + λ2,jf2(zABS

j )

+ λ2,jf2(zRS
j ) + λ2,jf2(xABS

j ) + λABS
3,j f

ABS
3 (zABS

j )

+ λABS
3,j f

ABS
3 (xABS

j + λRS
3,jf

RS
3 (zRS

j ) + λRS
3,jf

RS
3 (xRS

j )

+ λABS
4,j f

ABS
4 (xABS

j ) + λRS
4,jf

RS
4 (xRS

j )

+ λ5,jf5(xABS
j ) + λ5,jf5(xRS

j ) (18)

In the above fABS
1 ,fRS

1 are constraint vectors (10), (11),
constraint (12) is expressed with vector f2, and (13),(14) are
written as the constraint vectors fABS

3 ,fRS
3 , while fABS

4 ,fRS
4

correspond to (15),(16). Finally f5 corresponds to (17). The
dual variables λ are all in row vector form in order to avoid the
need for a transpose superscript. Now by using this relaxation,
and by packing all the Lagrangian multipliers for PBS j as the
single vector λj , the dual problem can be written as follows:

min
λj

max
zj ,xj

Lj(zj ,xj ,λj) s.t. (10)− (17),λj ≥ 0 (19)

A constant η after primal decomposition has further implica-
tions. In particular the problem in (19) is decomposed into
subproblems for the ABS and RS. We also notice from Lj

that these subproblems can be further decomposed for both
the ABS and the RS. First we have a RA problem PABS-RA

j :

max
zABS
j

(λABS
1,j f

ABS
1 (zABS

j )− ηλABS
1,j + λ2,jf2(zABS

j )

+ λABS
3,j f

ABS
3 (zABS

j )) s.t. (10), (12), (13) (20)

Also a VQS problem, denoted as PABS-VQS
j :

max
xABS

j

(
∑

i∈Nj∪Fj

∑
r∈Ri

xABS
ir Qir0 + λ2,jf2(xABS

j ) + λ3,jf3(xABS
j )

+ λ4,jf4(xABS
j ) + λ5,jf5(xABS

j )) s.t. (12), (13), (15), (17)
(21)

Thus, we have two linear RA and two integer VQS problems
that are solved by each BS as we explain next.

B. Rate Allocation and Video Quality Selection at the BSs

The dual problem is solved in an iterative fashion, using
a primal-dual Lagrange method that can allow us to reach
an asymptotically optimal solution [25], [3]. The central
concept of the primal-dual algorithm is to initialize first
the dual variables to zero, and then to solve subproblems
PABS-RA
j ,PABS-VQS

j ,PRS-RA
j ,PRS-VQS

j to obtain the currently opti-
mal solution for iteration τ as zj(τ), and xj(τ) . Besides our
problem-specific details described in this subsection, further
details regarding the primal-dual method and its asymptotically
optimal convergence property can be found in [25], [3].

First we focus on subproblem (20) that is linear program.
Hence, it can be efficiently solved using standard convex
optimization techniques [25]. The BS also solves the second
subproblem, i.e., the integer linear program (ILP) in (21) for
identifying the currently optimal video representation for each
user. This problem is solved in pseudo-polynomial time using
dynamic programming (DP) [25]. Its speed of convergence is
evaluated collectively for the complete system in our perfor-
mance evaluation, while the time complexity of the complete
JTRAVQS is discussed in a later subsection.

After solving the subproblems, and given the current result
zABS
j (τ),xABS

j (τ), we employ a sub-gradient method [25]
to update the dual variables. A representative calculation is
presented for the dual variables of the very first constraint:

λ1,jir(τ + 1) =
[
λ1,jir(τ) + β(τ)(zABS

ir (τ)− η)
]+

(22)

In the above, the term in the parenthesis is the sub-gradient,
[.]+ denotes the projection onto the non-negative orthant, and
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β(τ) is the step size at iteration τ . Similarly we define the
update rules and the subgradients for the remaining dual vari-
ables. In each iteration τ , the dual objective is improved using
the subgradient update and accordingly the primal relaxed
problems PABS-RA

j ,PABS-VQS
j ,PRS-RA

j ,PRS-VQS
j are solved again

in order to update the primal variables (which are then used
in the subsequent dual objective update).

C. Solving the Master Problem
For the final step, the dual variables for constraints of each

Pj are provided to the master problem P0 that has to be solved
now for the optimal η at the central controller (CC) of the
system. Recall that for the master problem we applied primal
decomposition. It is thus solved very efficiently by collecting
only the resource prices for η, i.e λABS

1,j (τ), λRS
1,j(τ), from each

PBS in order to form the global subgradient [26]. In practice
we only transmit the local subgradient λABS

1,j (τ)−λRS
1,j(τ) from

each BS. The current value of η is updated as follows [26]:

η(τ + 1) =
[
η(τ) + β(τ)

 0− λRS
1,0(τ)
...

λABS
1,j (τ)− λRS

1,j(τ)
...


︸ ︷︷ ︸

global subgradient

]+
(23)

Now β(τ) is a vector that can be selected as before in order
to control the speed of convergence [25].

D. Discussion on Time Complexity
The time complexity of the discrete knapsack problem de-

noted by PABS-VQS
j , when solved with dynamic programming,

is polynomial with respect to the size of the problem |Nj ||R|
for each BS j, but for bounded knapsack capacity. Hence, in
our case it is O(|Nj | · |R| · 1), i.e., linear. This is because
from (15) we notice that the capacity of the knapsack is 1,
in other words only one item (video representation) can be
selected. PABS-RA

j is a LP and so polynomial with respect to
the number of associated users |Nj |, i.e., PABS-RA

j is P(|Nj |).
Hence, the time complexity of PABS-VQS

j may be better than
that of PABS-RA

j . We conclude that the worst execution time of
one iteration of the JTRAVQS algorithm, as a function of its
inputs, can be expressed as:4

max
j∈J

(
max

(
O(|Nj ||R|),P(|Nj |)

)
+dj,CC

)
+O(1)+max

j∈J
(dCC,j),

where dj,CC is the delay between BS j and the CC, O(1)
corresponds to the execution time of the primal update (one
vector multiplication and one addition) and dCC,j is the delay
for communicating the new primal update to the BSs. In our
simulation we also considered that the backhaul links have the
worst case transmission delay of dj,CC=60ms [27]. For 100
iterations the total delay until the optimal solution is reached
is 6 seconds which means that the calculations have to take
place within 4 seconds in order to reach a solution within a 10
second period. This is well within the capabilities of modern
processors for solving the discussed LP and ILP. Also, each BS
j communicates only λABS

1,j , λ
RS
1,j to the CC which constitutes a

negligible overhead. The good performance of the algorithm,
allow us to investigate its use in shorter time scales next.

4The quantities in theO,P notation have to be multipled with the execution
time of the fundamental algorithm operation.

IV. PROBLEM FORMULATION AND SOLUTION FOR DASH
Motivation. In a network it is possible that channel condi-

tions and users are more dynamic. In this case the bitrate of the
transmitted video should be adapted. One way to accomplish
that is DASH. With DASH a video is stored as a sequence of
short duration (typically 2-10 sec) video segments [28]. Each
segment may be available at different sizes, SNR qualities,
spatial resolutions, frame rates. However, it has been shown
that allowing the client to be fully responsible for requesting
video segments (a pull-based system), after estimating the
variations in the end-to-end throughput, results in significant
waste of resources [29], [30]. In this paper, our optimization
framework at the BS is responsible for the choice of the
optimal video representation. This is also a realistic option
since DASH does not specify where video adaptation occurs.

Enhanced System Model. We define the term slot as
the period that the problem is solved and its decisions are
enforced (see Fig. 3). Without loosing generality we assume
that JTRAVQS-DASH is solved during a slot with a duration
of 10 seconds. Since the problem is solved for every slot, the
instance of the problem currently solved is also indexed by
t. The result is that the JTRAVQS-DASH problem is solved
during slot t to calculate the optimal RA and VQS for slot t+1.
The algorithm requires several iterations as before, that are in-
dexed also by τ . Regarding the input parameters to JTRAVQS-
DASH Cit is our estimate of the TCP throughput of user i
during slot t according to [31], and Njt the set of associated
users. This approach for modeling Cit, is consistent with the
behavior of DASH that uses TCP for downloading segments.
Hence, contrary to related work our approach is more realistic
with respect to Cit [12]. The video quality model in (3) is
used with Qirt denoting the quality of the remaining segments
that should be transmitted. Let us finally define some minimal
additional notation since the optimization variables must be in-
dexed by slot t: zjt =

(
zABS
irt , z

RS
irt ≥ 0 : i ∈ Njt∪Fjt, r ∈ Ri)

and xjt =
(
xABS
irt ≥ 0 : i ∈ Njt ∪ Fjt, r ∈ Ri). Now xABS

irt

indicates that in slot t segments from representation r will be
transmitted to user i. The same algorithm is used for solving
JTRAVQS-DASH but the two subproblems are adapted.

DASH Rate Allocation (DASHRA) Problem. The most
important aspect is the re-formulation of constraint (12) that
is now indexed by the slot t, and is packed into constraint
vector fDASH

2 :

xABS
irt Sirt ≤ (zABS

irt C
ABS
it +zRS

irtC
RS
it ) max{∆Bit, 1}, ∀r ∈ Ri, i ∈ Njt

(24)

Re-writing (20) for the DASH case yields the problem
PABS-DASHRA
jt :

max
zABS
jt

(λABS
1,j f

ABS
1 (zABS

jt )− ηλABS
1,j + λ2,jf

DASH
2 (zABS

jt ,∆Bt)

+ λABS
3,j f

ABS
3 (zABS

jt )) s.t. (10), (24), (13) (25)

In (24) Sirt is the average bitrate that must be sustained by
the remaining segments of the r-th representation similarly
to (1), (3). The key difference from the initial problem is
parameter ∆Bit. This is the total duration of the playable
video in seconds that user i has in its buffer at the start of
slot t and is denoted as Bit, minus the playable video that the
slowest user has in its buffer, i.e., ∆Bit = Bit − B(slowest)t.
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Solve JRAVQS-DASH for slot t

z1(t-1)

Receiving 1 segment 

Receiving 2 segments

Slot t-1

z2(t-1)

Receiving 1 segment 

z3(t-1)Bi(t-1)

0

20

10

Bit

0

30

10

ΔBit

0

30

10

Fig. 3. Transmission of different segments during slot t − 1 that has a
durationof 10 seconds. JTRAVQS-DASH is solved to reach the decisions for
the next slot t.

Each user updates the estimate of the playable video as:
Bit = Bi(t−1) + received during (t-1) − played during (t-1).
This parameter ensures that users that have received lower
volume of data are effectively prioritized. Hence, if the RA
decision for user i in the t−1-th slot is zi(t−1), then at the start
of slot t−1 the BS can calculate Bit, since it knows the result
of RA and of course the duration of video that will be played.
To summarize, this is effectively a rebuffering constraint that
contains the differential buffer information.

DASH Client Model Example. To explain the playback
model for the DASH client and the setting of ∆Bit, let
us use a specific example with clients that have different
playback buffer contents as illustrated in Fig. 3. The number
of transmitted segments depend on the value of zi(t−1). Also
in this example we consider the downloading of complete
segments for exposition purposes but our model supports
partially downloaded segments. For user 1 assume that it
is the client that is lagging behind from the rest and the
playble video it has in its buffer at the start of slot t − 1
is B1(t−1)=0. Hence, at the start of slot t− 1 it will rebuffer
until it receives the segment and after it finishes, the video
player enters the playback mode. Also B1t=B1(t−1)+10-10=0,
and ∆B1t=B1t − B1t=0. At the start of slot t − 1 user
2 has 20 seconds worth of video, while during t − 1 it
will receive two additional segments leading to B2t=20+20-
10=30, and ∆B2t=B2t−B1t=30. Hence, by having allocated
more resources with z2(t−1) the result is a pre-fetching of
data. For user 3 similarly we obtain B3t=10+10-10=10 and
∆B2t = B3t −B1t=10.

DASH Video Quality Selection (DASHVQS) Problem.
Now the VQS problem is solved by adding one constraint in
the problem (21). We reformulate the PABS-VQS

j problem to
PABS-DASHVQS
jt that is also solved over the t− 1 slot:

max
xABS
jt

(
∑

i∈Nj∪Fj

∑
r∈Ri

xABS
irt Qirt + λ2,jf

DASH
2 (xABS

jt ) + λ3,jf3(xABS
jt )

+ λ4,jf4(xABS
jt ) + λ5,jf5(xABS

j )) s.t. (12), (13), (15), (17)

Note that for partial downloading, if in the next slot
DASHVQS identifies that a lower or higher video quality is
transmitted, then pre-buffered data are not discarded but the
unfinished segment is received. The new decision for the video
quality is enforced when a new segment will be transmitted.
The dual variables are updated as before and the sub-gradients
are similarly modified based on the new constraint.

V. PERFORMANCE EVALUATION

In this section, we present a comprehensive evaluation of
the proposed algorithms comprising our framework through
custom Matlab simulation. Our simulator performs a precise
PHY-level simulation of wireless packet transmissions.

JTRAVQS Evaluation. The parameter settings for our
simulations are set as follows. Downlink MBS and PBS trans-
mit power are equal to 46dBm and 30dBm respectively [6].
Distance-dependent path loss is given by L(d) = 128.1 +
37.6 log10(d), where d is the distance between two nodes in
Km [4], and the shadowing standard deviation is 8 dB. The
user speed is 3 kmph (quasi-static as we already stated), and
average CQI is provided every 10 minutes. The macrocell area
is set to be a circle with radius equal to 1 Km. The wireless
channel parameters include a channel bandwidth of W=20
MHz, noise power spectral density of σ2=10−6 Watt/Hz, while
the same Rayleigh fading model was used for all the channels.
Packets of 1500 bytes are transmitted at the PHY, while
the optimal MCS is calculated according to (8). The user
distribution and picocell locations are random and uniform
within the macrocell. We set the biasing threshold to 0 dB for
all the systems to calculate Nj . The user population increases
up to a number of 200 to evaluate the performance in networks
that continuously become more dense, consistently with the
recent trends [6]. For the PFRA system we configured the users
to request randomly and uniformly one of the available video
representations, while for JTRAVQS users request randomly
and uniformly one of the available videos. The video content
used in the experiments consists of 26 CIF (352x288), and
high definition (1920x1080) sequences that were encoded
with SVC H.264 as a single layers [20]. The videos are
compressed at 30 fps and different rates ranging from 128
Kbps and reaching values<7 Mbps. The frame-type patterns
were G16B1,G16B3,G16B7,G16B15, i.e., there are different
numbers of B frames between every two P frames and a GOP
size is always equal to 16 frames.

Regarding the presentation of the results, Fig. 4 shows the
average video quality (in terms of the representation r) that is
delivered to the picocell and macrocell users. For example one
data point that has the value 3.2 indicates that on average the
users received the quality representation 3.2. Hence, higher
values indicate that the users received on average higher
video quality representations. The data points in these figures
correspond to different values of η. Also, the data points
correspond to the average (mean) of all the measurements
for 100 randomly generated topologies. The sample variance
for this set the measurements is between 0.1 and 0.2 which
is fairly small compared to the value of the mean and its
difference between all the tested systems.

Video Quality. For this set of results we present the average
video quality of the picocell users versus the average video
quality of the users associated to the macrocell (only from the
MBS to its associated users) for different constant values of
η to illustrate the impact of different TDRP. The results for
all systems can be seen in Fig. 4(a,b) for f=0.5. JTRAVQS
is superior when compared to PFRA for high user density
and low PBS density in Fig. 4(a). As the number of the
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Fig. 4. Average macrocell vs. aggregate picocell video quality.

PBSs is increased to 8 in Fig. 4(b), all the systems can
achieve higher performance. The reason is that fewer users
are associated to each picocell and so a higher communication
rate is available for each user under any scheme. So more
picocells leads to better results due to the higher available
rate per user as expected. Another important result is that for
constant PBS density (either 4 or 8), we have higher gain as the
user population grows. The reason is the higher importance of
optimal rate allocation, since the rate of a single PBS is shared
among several users. For example in the very left data point of
Fig. 4(b) performance improvement of JTRAVQS over PFRA
is 21% for 100 users and 36% for 200 users). Of course the
average video quality is reduced for all systems since more
users are present. Also note that in the left part of the x
axis, where all the resources are practically allocated to the
picocells (η ≈ 1), we observe the maximum possible video
quality in the network. In this regime, the performance gap
between JTRAVQS and the other systems is increased as the
number of picocells and users is increased.

Another important result in the same figure, is related to
the optimal η∗. It is indicated with a dashed line that is in-
tersected with representative performance curves. This shows
that the interpretation of the optimal TDRP with JTRAVQS,
that is denoted as η∗(JTRAVQS), results in higher value for
η∗ when compared to η∗(PFRA) by 22% (highlighted with
the horizontal arrow). Also if we assume that the system
executes first PFRA to calculate the optimal TDRP indicated
as η∗(PFRA), and then perform RAVQS [14] with this fixed
value, the result is an average quality equal to 4.3 (the
gain is highlighted with the lower vertical arrow). However,
our complete system calculates the optimal operating point
indicated with η∗(JTRAVQS) in the figure which gives an
average quality equal to 5.1, a performance difference of
18.6% (the gain is highlighted with the upper vertical arrow).
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Fig. 5. (a) Video quality for different fraction of participating users. (b)
Micro-benchmark for the upper bound (UB) and lower bound (LB) versus
the number of iterations for JTRAVQS and a specific user. Two different sets
of available video quality representations are shown (|R1|=2 and |R1|=6). (c)
Rebuffering time/events vs. total number of users. (d) Rebuffering time/events
vs. peak number of users with user churn.

Our system offers significant performance increase for
f=0.5 but the benefits are more important when f=0.75 in
Fig. 4(c,d). Note that for f=0.75 the slope of the curve is
reduced as the η is decreased. The benefit is because we have a
higher number of users that can be optimized under JTRAVQS.
Also in this case the benefits are even more important when
the fraction of the resources 1 − η that the macrocell uses
is below 50% (left part of the x axis) since this gives more
resources to the highly spectral efficient links in the picocells
to be used and so a higher communication rate is possible.

Fraction of Optimized Users. Now an interesting set of
results is obtained for different values of f . We notice in
Fig. 5(a) that as this fraction is reduced, JTRAVQS essentially
degenerates to the PFRA system. Nevertheless, we still obtain
significant benefits even for ratios of f around 30% since few
users are enough for JTRAVQS to be able to improve the
overall system performance.

Primal-Dual Convergence. The convergence speed of
JTRAVQS versus the number of iterations is illustrated in
Fig. 5(b). Results for the algorithm execution are shown for
a specific fixed number of picocells and user population. The
results for the primal-dual algorithm used for JTRAVQS show
that the convergence is achieved within 150 iterations. Also
Fig. 5(b) illustrates another important aspect of our system: If
the system uses fewer discrete quality representations for each
video file, it allows the faster convergence of the algorithm.

JTRAVQS-DASH Evaluation. The performance of
JTRAVQS-DASH is evaluated with the same setup as before,
that is however augmented when necessary. Now we present
results for the playback performance: The time that a client is
rebuffering in seconds, and the number of rebuffering events
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per minute. To ensure fairness, we calculate first the optimal
solution with JTRAVQS. Then, the minimum video quality
for the JTRAVQS-DASH system is set equal to JTRAVQS.
This ensures that JTRAVQS-DASH delivers at least the same
video quality and the question is then to evaluate its ability
to minimize rebuffering.5

For static user conditions the results are illustrated in
Fig. 5(c). We draw a notched box plot of the rebuffering
time for all the clients in the upper part of Fig. 5(c), and the
number of rebuffering events in the lower part of Fig. 5(c).
The notch here marks the 95% confidence interval for the
median.6 All the systems perform well for 20 and 40 users
since high capacity is available in the network. However,
for higher user densities the buffering time with the baseline
JTRAVQS is increased by a factor that is worse than linear.
The same is true for PFRA that is slightly worse. With a higher
number of 8 PBSs, rebuffering time is improved for JTRAVQS
because of higher available capacity. The same is true for
the number of rebuffering events/minute that is a very high
number for the first three systems we discussed (2-3 events
in a 10 minute period). Hence, the higher capacity in the
network achieved with 8 PBSs, simply delays the inevitable
sharp increase but only of the rebuffering time. This result has
an interesting interpretation for MNOs: With increasing user
density, expanding the network with more small cells improves
marginally the rebuffering time and practically not at all the
rebuffering events. This is in contrast to the video quality that
can achieve significant improvement in our earlier plots. For
extra gains, solutions with buffer-awareness are required.

Better results are obtained for RAVQS-DASH again with a
constant η=50%. This is effectively a system configuration that
encompasses the main features of the DASH-aware streaming
literature for single cell networks, e.g. [12], where the rate
allocation and video quality are optimized by considering the
buffer contents, but the overall communication resources are
constant. Recall than η=50% is the optimal η under a PFRA
metric for a population of 100 users and 4 PBSs (as illustrated
in our earlier figures). Buffer-awareness can indeed reduce the
rebuffering when compared to the previous systems, while it
can also reduce the variations of playback buffering for the
users (we have more predictable performance). The proposed
JTRAVQS-DASH system illustrates that it can reduce the
time spent in rebuffering by over 50% when compared to the
previous system, while the number of rebuffering events is
reduced even more significantly (1 event/25 min. vs. 1 event/10
min.). Hence, for a HCN the fixed TDRP is not the best
option even if we design a DASH-aware system. Also, our
overall results indicate that using a fixed TDRP has worse
consequences in the rebuffering time/events of DASH than on
the video quality (e.g., the results illustrated in Fig. 4).

Finally, we evaluate our system for a time-varying user
population based on results from a real 3G network reported
in [15]. We simulate an 8 hour period between 4pm and 12am,
with a user peak occurring around 9pm [15]. During this peak,

5One can plot a synthetic metric of the two but this is not easily interpreted
in terms of real QoE.

6Note that we plot the median here instead of the mean to avoid being
influenced by outliers.

the number of users is nearly 30% higher than the number
of users at 4pm and 12am. Hence, in our simulation we set
accordingly |Njt| (the increase and decrease are approximated
as linear in time as shown in [15]). In the results in Fig. 5(d)
we present in the x axis the peak number of users. Cit for
each user i is also affected since TCP shares equally the
communication rate among the competing traffic. Also, we
only compare different flavors of JTRAVQS-DASH since the
previous systems are not designed for a dynamic network.
First, we observe again that the systems with fixed resource
partitioning η=50% have worse performance. Second, we
notice that the rebuffering time is higher when the fraction
of optimized users is also high and equal to f=0.75. This
means that with increasing user density in a network with user
churn, optimizing a lower fraction f of the users increases the
DASH playback quality of the optimized users by a significant
amount for JTRAVQS-DASH. This is an important result since
it provides a tool for an MNO to differentiate QoE in terms
of rebuffering to various users.

VI. CONCLUSIONS

In this paper, we presented a framework for improving
the quality of video streaming in a HCN that employs
TDRP. TDRP is essential for the efficient operation of HCNs
and when high quality video distribution enters the game,
efficiency becomes even more important. Our framework
addressed precisely this challenge, i.e., it ensures optimal
and video-aware allocation of resources in HCNs that apply
TDRP. We formulated this problem in a linear non-convex
formulation for which we proposed a primal-dual approxi-
mation algorithm. Our problem was decomposed into several
problems that included a convex rate allocation problem, and
a binary ILP for optimal video quality selection. An extensive
performance evaluation under different HCN configurations
highlighted the value of our framework for obtaining video
quality improvements. Another implication of our solution
approach is that it can be solved very fast. This allowed us to
augment it to support the more challenging case of DASH. In
this case significant additional improvement in terms playback
performance was obtained.
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