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Abstract—In this paper, we consider Distributed Estimation
(DES) in a Wireless Sensor Network (WSN) and assume that
the number of sensors in the WSN is larger than the available
number of transmission slots. With classic DES, the sensors
independently transmit the sampled digitized data. However, the
WSN is an uplink multi-user channel where multiple sources
share the channel for communicating data to a Fusion Center
(FC). To this aim, we adopt the optimal communication scheme
for this setup that suggests interfering transmissions and the
use of Successive Interference Cancellation (SIC) at the FC. We
propose a joint SIC decoder and linear Minimum Mean Square
Error (MMSE) estimator for digital interfering transmission of
correlated data. We further introduce an optimization framework
that schedules and allocates power to the sensors optimally. We
formulate the problem in two ways: an expected distortion mini-
mization problem under a total power budget, and a transmission
power minimization problem under a distortion constraint. For
both cases, we consider the system performance under different
operating conditions, and we demonstrate the efficiency of the
proposed scheme compared to a system that employs optimized
sensor selection under orthogonal transmissions.

Keywords—Wireless sensor networks, linear distributed estima-
tion, correlated data, interference cancellation.

I. INTRODUCTION

Wireless Sensor Networks (WSNs) have a wide range of
applications including environmental monitoring, battlefield
surveillance, smart grid monitoring, health care monitoring,
home automation, farming, inventory tracking, etc. All these
applications are based on the same fundamental task of
sampling a random parameter and estimating it. Hence, it
is important to keep track of the quality of the estimation
accuracy through the Mean Square Error (MSE) distortion.
Furthermore, estimation has to be power-efficient since in these
applications the sensors are typically battery-operated. Improv-
ing power efficiency for a given MSE can be accomplished
by exploiting the data correlation with Distributed Estimation
(DES) algorithms that process the collected data jointly at a
Fusion Center (FC). The dual problem of reducing the MSE
subject to a power constraint can be more appropriate for
certain applications. One class of DES algorithms that solve
the previous problems and offer excellent performance, use
only low-complexity linear processing [1]–[7].

The challenge today is that linear DES algorithms [1]–[7]
have to operate in an environment where massive Machine
Type Communication (MTC) and Internet of Things (IoT)
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Fig. 1. WSN model for estimating the random signal θ. Each sensor i
transmits ydi , the digitized and modulated version of the analog sample.
Simultaneously transmitting sensors are decoded by the SIC decoder.

applications require the deployment of large numbers of sensor
nodes that all communicate to a FC. The problem is that even
though the amount of data available increases as the number of
sensors increases, it may not be possible to communicate them
to the FC. Hence, it is critical to investigate how to optimize
DES as the number of WSN nodes is increased.

This emerging DES scenario with multiple sensors commu-
nicating to a single FC could be modeled as a DES problem
subject to a constraint on the communication rate. A subset of
the literature on DES has studied this problem by employing
compression [5]–[7], or with the equivalent solution of sensor
selection/scheduling [1], [3], [8], which means that in both
cases the volume of the transmitted data is reduced. A common
feature of these works is that they assume orthogonal channel
access from the sensors using Time Division Multiple Access
(TDMA). TDMA is well-known to be suboptimal for achieving
the capacity of the Multiple Access Channel (MAC) [9]. An
alternative approach is to maximize the communication rate
leading to the transmission of more data to the FC. To this
aim, the authors in [10] considered transmit power allocation
across the wireless sensors. The final solution was a protocol
that schedules transmissions so that they interfere minimally.
However, this is not a capacity-achieving scheme for the MAC.
The optimal strategy that achieves the capacity of the fading
MAC when the data sources are uncorrelated, is Successive
Interference Cancellation (SIC) [9]. SIC decodes the received
signal with the highest power first, while treating the remaining
interfering signals as noise. SIC can also be optimized either by
selecting the transmission power of the simultaneously trans-
mitting sensors (power allocation problem), or by selecting the
sensors that will transmit simultaneously (scheduling problem).
The power allocation problem has been studied in the context
of CDMA systems [11], while the optimal scheduling of
sources for improving SIC has also been considered in the
context of ad-hoc networks [12].

A different class of research works has also investigated
DES in a MAC with non-orthogonal transmissions. Type-
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Based Multiple Access (TBMA) has been proposed by Mergen
and Tong [13], as well as by Liu and Sayeed [14], as a
method to utilize the MAC in order to perform distributed
detection or estimation. With TBMA, each sensor transmits
over the MAC a different waveform depending on the type
of the quantized observation. The authors assumed i.i.d. and
uncorrelated measurements across the sensors. The detection
problem for a deterministic signal in a MAC was considered
by Li and Dai in [15] under the the same channel gain from
the sensors towards the FC.

In this paper, we improve linear Minimum Mean Square
Error (MMSE) estimation for correlated sensors in a WSN
as their number is increased. To accomplish our goal, we
first investigate whether the capacity of the MAC can be
increased by exploiting data correlation. We show that unlike
the Additive White Gaussian Noise (AWGN) channel, data
correlation at the sources cannot be exploited to improve
the capacity of the fading MAC. This first result drives the
first system design choice in our paper: the separation of the
linear MMSE signal estimation at the FC from the optimal
capacity-achieving SIC-based digital receiver that does need
to exploit correlation. The second design choice is on the
system optimization where a subset of the sensors with the
most valuable information is selected for transmission under
the presence of bandwidth limitations. In our system, this
calls for a novel cross-layer optimization of SIC and linear
MMSE estimation. This concept drives the formulation of
a novel problem formulation that considers jointly SIC and
linear MMSE estimation. The formulation is enabled by the
developed analytical expressions for the instantaneous packet
loss probability of sensor transmissions, and the average MSE.
The optimization problem is formulated and carried out in two
forms: distortion minimization under a power constraint, and
power minimization under a distortion constraint. For both
problems, we provide the results under the optimal scheme
and results for a low-complexity polynomial-time heuristic.

The contributions and main results of this paper are:
1) We show that for correlated sources the ergodic capacity

Upper Bound (UB) of the fading MAC cannot be more
that the capacity UB for uncorrelated sources. This
result motivates our approach for not exploiting the
signal correlation at the demodulator/decoder but at the
signal estimator. This result has a direct impact on the
design of potentially different demodulation/decoding
and estimation algorithms.

2) We propose an algorithm for joint SIC decoding and
MMSE estimation for correlated data in a WSN. The
algorithm can operate as a stand-alone system without
any sensor coordination (scheduling or power alloca-
tion). Interestingly, for low data correlation across the
sensors, this system performs similarly to a state-of-the-
art sensor selection algorithm that uses TDMA.

3) We propose a sensor scheduling and power allocation
framework for minimizing the distortion or power.
The framework is accompanied by a low complexity
heuristic algorithm. Our optimization is enabled by an
analytical MSE model of our joint SIC decoder and
MMSE estimator.

4) Our results indicate that for lower correlation across
the sensor data, the sub-optimality of TDMA increases
rapidly as the number of WSN nodes increases. Further-
more, the MSE and power benefits of our scheme are
also increased when the variance of the random signal
is increased, i.e., when the signal is more random.

The rest of the paper is organized as follows. The system
model and an overview of the proposed scheme is described
in Section II. Section III serves as a detailed motivation of
this paper. The proposed algorithm for joint SIC decoding
and MMSE estimation is presented in Section IV. We jointly
consider SIC and MMSE and derive closed-form expressions
for the MSE that can be used for the optimization in Sec-
tion V. The problem formulation and the implementation of
the solution are presented in Sections VI and Section VII
respectively. Finally, Section VIII provides the performance
results and Section IX concludes this paper.

II. SYSTEM SETUP

We consider a WSN that consists of a set of nodes N
with |N |=N . Each sensor is making observations, xi, on a
random source signal θ with zero mean and variance σ2

θ . The
analog observation xi is then digitized and transmitted to the
FC as illustrated in Figure 1. Upon collecting all the digitized
observations, FC’s mission is to estimate θ.

Observation Model and Signal Compression. We assume
that the sensors observe θ with different correlation ρi as
xi = ρiθ + zi. The sampling noise zi is AWGN with zero
mean, variance σ2

zi , and is uncorrelated across the sensors. The
observations form the random vector x = [x1 ...xi... xN ]T ,
and if we similarly define the vectors ρ and z that contain the
ρi’s and zi’s respectively, then we can write x = ρθ + z.
The observations are then quantized. The input signal to
the quantizer of sensor i is the analog sample xi and after
quantization the resulting signal is yi = ρiθ + zi + qi. In the
above, qi is the quantization noise and is assumed independent
across sensors because it is performed locally at each sensor
without coordination1. In the quantizer, 2Ri representation
levels are used per source sample (or Ri bits). With a uniform
probabilistic quantizer the upper bound of the variance of the
quantization noise at sensor i is σ2

qi = W 2

(2Ri−1)2
, where 2W is

the range of the sensed signal.
Communication Model. With K source samples, the total

number of bits that must be communicated is KRi over the L
time-domain samples (see Figure 2). These bits are coded with
a capacity-achieving channel code and modulated with a PSK
constellation that have a combined spectral efficiency of Ri
bits/symbol. So the previous discussion leads to KRi=LRi.
The combined effect of channel coding and digital modulation
on the bits of the digitized samples is formally expressed for
a specific symbol transmitted during time-domain sample l as:

ydi [l] = CC-PSK(L,Ri, input bits) (1)

1This approximation, that is followed in the literature [1], [7] for tractability,
becomes more accurate for smaller quantization steps.
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Fig. 2. Modeling packet transmissions in the WSN under different channel
access assumptions: orthogonal (left), and asynchronous interfering (right).

This function expresses the channel coding and the modulation
in a compact form. As an example, for a sample of 8 bits
and uncoded QPSK, 4 time domain samples/symbols will be
produced each containing 2 bits. Similary, other PHYs could
be modeled with this approach (e.g., CDMA).

Channel Model. The transmission of a packet takes
place over a wireless link with slow flat Rayleigh fading.
Hence, hi[l]=hi for every time-domain sample/symbol during
the transmission of a packet, and |hi|∼Ray(E[|hi|2]). The
Rayleigh fading channel is characterized by the average re-
ceived power that is defined as E[|hi|2]=1/dista where dist
is the distance between the sensors and the FC, and a is the
path loss exponent set to 3. The fading levels are accurately
measured at the FC, while the sensors/transmitters do not
require any channel knowledge. The channel is constant for
multiple packet transmissions [1]–[3], [16]. Finally, the vector
h packs the channel gains from all the sensors.

Channel Access Schemes. We assume that a set network-to-
FC slots T with |T |=T are available for transmitting packets,
each consisting of L time-domain samples. The notion of
a slot in this paper represents a modeling tool that allows
us to capture asynchrony between several packet transmis-
sions, and does not correspond to the complete duration of
a packet transmission at the PHY (Figure 2). Two channel
access schemes are examined. First, TDMA with orthogonal
transmissions where sensors access the channel sequentially.
For TDMA, the received signal from sensor i at the FC for
the l-th time-domain sample is

r[l] =
√
Pihiydi [l] + w[l], (2)

where w[l] is the noise sample at the FC that is AWGN with
zero mean and variance σ2

w. Also Pi is the transmit power at
sensor i. Since the power of the PSK symbol is equal to Pi, we
set σ2

ydi
=1 to avoid complications in the derived expressions.

The average Signal-to-Noise Ratio (SNR) per symbol is

SNRi = Pi E[|hi|2]/σ2
w (3)

With TDMA, a packet transmission requires L time-domain
samples and so T sensors can transmit. TDMA communication
is typically used by the vast majority of today’s WSN systems
while any signal processing algorithms are developed on top
of the TDMA scheme. This is consistent with slotted channel
access schemes for WSNs. Formally, in this case the set of
sensors that transmit is S while for any given slot t, a subset
of sensors St can transmit. The cardinality of this set is one

(|St|=1) since only one sensor can transmits in that slot.
The second scheme is our proposed approach that adopts

interfering transmissions within each slot as illustrated in
Figure 2 (right). At any given slot, a subset of sensors St can
transmit. If we focus on a tagged sensor i, then the received
time-domain sample l at the FC is:

r[l] = hi
√
Piydi [l] +

∑
j∈St/{i}

hj
√
Pjsdj [l] + w[l] (4)

Here, sdj [l] is the signal contribution of a sensor j during
time-domain sample l, that can be asynchronous with the
packet transmitted from sensor i (as illustrated in Figure 2
(right)). As we will later see, this potentially asynchronous
situation is irrelevant for decoding the tagged sensor i since
the contribution of all the other sensors will be treated as noise
(i.e., the symbols of multiple sensors are not decoded jointly).
To ensure a fair comparison with the TDMA, we impose a
sum transmit power constraint P that is enforced over each
time-domain sample as a system parameter.

Synchronization. We assume that all sensors have a local
oscillator synchronized to the receiver carrier frequency. On the
other hand, our system does not require time synchronization
since the packets are decoded with SIC at the level of complete
packets, i.e., there is no symbol-level decoding with SIC.

Transmission/Estimation Schemes. To illustrate the effects
of interference on correlated sources, we study the following
schemes in this paper:

1) ORTH-MMSE-OPT: Each sensor compresses and trans-
mits its own signal directly to the destination in its own time
slot (Figure 2 (left)). The optimum set of sensors are selected
for transmission given the bandwidth constraint expressed
through the number of available slots T . The FC then uses
linear MMSE estimation.

2) SIC-MMSE: Each sensor compresses its own signal,
but in this mode, interfering transmissions are allowed. The
sensors transmit and interfere in an uncoordinated fashion and
the result is an arbitrary interference pattern (Figure 2 (right)).
Next, SIC decoding is applied in the digital packets at the
FC and as a next step, the FC uses MMSE estimation. This
scheme offers significant practical implementation advantages:
Any sensor is free to transmit during any time slot it desires,
and the recovery from the implications of such an approach
are in full responsibility of the receiver/FC.

3) SIC-MMSE-OPT: Compression, and correlation exploita-
tion with MMSE is exercised as in the last scheme. How-
ever, the optimum set of interfering sensors in specific slots
(scheduling) and their transmission power (power control) are
selected under the scheme in Figure 2 (right). In particular the
FC selects the sensors that will transmit in such a way that they
are decodable with SIC, but also the decoded packets have the
highest impact on the distortion minimization.

III. MOTIVATION

In this section, we review first the limitations of linear
MMSE estimation under orthogonal transmissions in multiple
access WSNs. Next, we discuss the limitations of employing
capacity-achieving multi-user communication (e.g., interfering
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transmissions under SIC decoding [9]). Two critical observa-
tions motivate the need for our proposed SIC-MMSE-OPT
scheme.

A. Limitations of Orthogonal Transmissions
Consider a WSN with T available slots and a set N of |N |

sensors, where |N |=N > T . For any set of sensors S ⊂ N
that transmit, we clearly need |S|=T . The baseband received
signal model is that of (2). Under linear MMSE estimation,
and if all the sensor observations are available at the FC, the
MSE can be easily proven to be a fractional expression that is
inversely proportional to the number of available observations.
In particular the MSE under the linear MMSE estimator is can
be calculated for our data model as [17]:

MSE = Tr(ρH(Σz + Σq)−1ρ + Σ−1θ )−1

=
σ2
θ

σ2
θ

∑N
i=1

ρ2i
σ2
zi

+σ2
qi

+ 1
(5)

With this orthogonal transmission scheme (denoted as ORTH),
and by extending the previous result to accommodate packet
losses, the result the MSE becomes:

MSEORTH
θ (S) =

σ2
θ

σ2
θ

∑
i∈S(1− πORTH

i )
ρ2i

(σ2
zi

+σ2
qi
) + 1

(6)

In the above, πORTH
i is the outage probability for packets

transmitted from sensor i and is a metric that is used for
characterizing slow fading channels [9]. In the denominator,
the fraction in the summation essentially corresponds to the
SNR contribution of each sensor. Note also that the MSE is a
function of the set S of transmitting sensors.

By further elaborating on the outage probability, it can
actually lead to a closed-form result:

πORTH
i = Pr

{
log2

(
1 +

Pi|hi|2

σ2
w

< Ri
)}

= 1− exp
(−(2Ri − 1)

Pi/σ2
w

)
(7)

The last equation follows from |hi| being Rayleigh.
By considering that only T sensors can transmit, the optimal

scheduling policy is to select the best sensors from the set N
given the limited number of slots. The term ”best” can be
translated in terms of the ratio (1−πORTH

i )
ρ2i

σ2
zi

+σ2
qi

. The linear
MMSE estimator collects these contributions and combines
them optimally. Thus, the sensor that has the highest ratio,
has the highest SNR contribution which means higher MSE
reduction in (6). Consequently, from (6) we can see that an
ordering of the sensors in terms of their SNR contribution,
and then the selection of the first T , is the optimal strategy in
this case. This approach also serves as our baseline scheme.

B. Limitations of Multi-User Communication
Our intention is to calculate the capacity of the AWGN

and fading MAC channels in order to determine the maximum
transmission rate in the WSN when the data is correlated.

Theorem 1. The capacity UB of the fading MAC for correlated
sources is equal to the capacity UB for uncorrelated sources.

Proof: To prove this result, we reuse our existing WSN
model and focus on a slot t where the set of sensors
that transmit simultaneously is St. Also assume symbol-
level synchronization just for this proof to illustrate the idea.
When the correlation of simultaneously transmitting sources
is captured with ρ, the AWGN MAC capacity CAWGN-MAC(ρ),
calculated in [9], is a function of the correlation vector ρ.
Hence, the multi-user capacity for correlated data transmis-
sion in the AWGN MAC depends on the data correlation
vector and is higher than the case of uncorrelated data, i.e.,
CAWGN-MAC(ρ) ≥ CAWGN-MAC(0).

Regarding the fading MAC, and due to the random nature
of the channel, there is the notion of the ergodic capacity that
is the capacity averaged over several channel realizations. To
achieve this capacity one must apply a channel coding across
all these realizations. We can calculate the UB as follows:

CFading-MAC(ρ) = E[log2(1 + SNR)] ≤ log2(1 + E[SNR])]

= CUB
Fading-MAC(ρ)

= log2(1 +
P avg

Fading-MAC(ρ)

σ2
w

) (8)

The average power P avg
Fading-MAC of the aggregate useful received

signal determines the capacity UB of the MAC [9]. Interfering
transmissions and SIC decoding can achieve the capacity of the
AWGN MAC and the ergodic capacity of the fading MAC [9].
To calculate this UB under Rayleigh fading in (8), recall that
the channel model for multi-user transmission is that of (4).
Hence:

P avg
Fading-MAC(ρ) = E

[
{
∑
i∈St

√
Pihiydi [l]}{

∑
i∈St

√
Pihiydi [l]}∗

]
=
∑
i∈St

Pi E[|hi|2]σ2
di + E

[∑
i∈St

∑
j∈St/{i}

√
PiPjhih

∗
jydi [l]y

∗
dj [l]

]
=
∑
i∈St

Pi E[|hi|2]σ2
di =

∑
i∈St

Pi E[|hi|2] (9)

The last follows from the uncorrelated Rayleigh channels and
is independent of ρ. Thus, the corresponding UB expression
in (8) becomes:

CUB
Fading-MAC(ρ) = log2(1 +

∑
i∈St Pi E[|hi|2]

σ2
w

)

= CUB
Fading-MAC(ρ = 0)

= CAWGN-MAC(ρ = 0) (10)

We observe that the ergodic capacity UB of the fading MAC
with correlated sources is equal to the capacity of both the
fading MAC UB and AWGN MAC but with uncorrelated
signals. Or we can condense these results as follows:

CFading-MAC(ρ) ≤ CUB
Fading-MAC(0) ≤ CAWGN-MAC(ρ) (11)

Therefore, we cannot exploit the correlation between the
source signals in a Rayleigh fading channel as effectively as
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in AWGN channel where we would have a capacity gain.
The previous results highlight the problems with the trans-

mission of correlated data from many sources in uncorrelated
Rayleigh fading channels. First, improving the MSE depends
on our ability to collect more data and to combine them
optimally with linear MMSE. Second, interference cannot
be exploited for increasing the multi-user capacity, i.e., we
cannot transmit more data. Motivated by these observations,
our objective in this paper is to use interference for increasing
the number of high value transmissions within T slots. This is
accomplished by optimizing SIC in such a way that the receiver
decodes the packets from the sensors that contribute more to
the MSE reduction.

IV. JOINT SIC DECODING AND MMSE ESTIMATION

Based on the ideas developed in the previous section, we
now present the joint SIC decoding and MMSE estimation
algorithm. For all the expressions we derive, the channel access
scheme we presented in Figure 2 (right) is used.

A. Successive Decoding Algorithm for Interfering Sensors
Let us first describe the algorithm operations during the t-th

slot where the set of the sensors that transmit is St. After the
sensors transmit, the FC attempts to decode the transmitted
packets by employing ordered SIC (OSIC). That is, the packet
with the highest energy/bit is decoded first while the other
packets are treated as noise regardless of their content [9]. For
exposition purposes, let us assume that the packet transmitted
from sensor i and received at the FC has the highest power. The
instantaneous Signal to Interference plus Noise Ratio (SINR)
for the packet from sensor i during slot t, and for a given
channel vector h, can be derived from (4):

SINRi(h,St) =
Pi|hi|2∑

j∈St/{i} Pj |hj |
2 + σ2

w

(12)

The SINR is calculated only for sensor i while the remaining
sensor transmissions are considered as interference. Also it is
important to recall that Pi, Pj are the transmission power per
time-domain sample and so SINRi(h,St) is normalized per
time-domain sample.

Regarding the actual packet-level decoding it proceeds as
follows: The start of each packet can be identified with a
preamble correlation operation [18]. After the packet with
the highest energy/bit is identified, a Matched Filter (MF) for
the specific sensor i with its known channel gain hi is used.
Then, Hard Decision Decoding (HDD) is used for detection.
After decoding the LRi bits of the packet correctly, then the
packet is removed from the aggregate signal in (4). Note that
according to the theoretical description of SIC in §6.1 of [9],
and a trace-driven study that quantifies the prospective gains
of SIC [12], OSIC operates precisely as described above,
i.e., at the packet-level and without requiring symbol-level
synchronization. The same process is continued until it is
completed for all the transmitted packets in slot t. If a packet
is not decoded successfully, it cannot be removed from the
aggregate signal and the SIC decoding chain fails. The above

may of course be true even if the instantaneous SINR in (12)
is more than the required packet decoding threshold [19]. This
is something that is considered in our simulations, i.e., we
do not assume ideal SIC decoding. The final result will be
that several packets will be decoded at the receiver depending
on the performance of SIC over the T available slots. Hence,
the FC will have available multiple digital observations that
are mapped to their corresponding quantization level through
D/A conversion (also illustrated in Figure 1). We denote the
available quantized signals from this step as the vector ȳ. This
mapping is necessary in order to proceed to the estimation.

B. Correlation Exploitation with Linear MMSE Estimation
The next step in our proposed joint decoding/estimation

algorithm is to exploit the knowledge of the data model and
the correlation that exists in all the decoded quantized signals
ȳ. Recall that our final goal is to estimate the random variable
θ from the several digitized decoded signals that are available
in ȳ. Since we have a number of observations equal to the
number of decoded packets, the data model becomes:

ȳ = ρ̄θ + z̄ + q̄ (13)

Similarly with ȳ, the bar in all the vectors denotes the subset
of the data model that corresponds to decoded packets (e.g.,
q̄ contains the qi’s of the decoded sensors). Next, we employ
a linear MMSE estimator for the received digital signals. So
the proposed estimator is:

θ̂ = (ρH(Σz + Σq)−1ρ + Σ−1θ )−1ρH(Σz + Σq)−1ȳ (14)

The covariance matrix of the source signal vector (denoted as
Σθ) is actually a scalar, i.e., Σθ=σ2

θ . This covariance can be
known, or it can be calculated online as we do in this paper.

V. MSE UNDER JOINT SIC/MMSE DECODING

In the last section, we discussed how the decoding and
estimation algorithms operate to obtain the desired estimate
θ̂. Our goal now is to model the performance of the previous
scheme, so that we can optimize it. For the optimization of
the joint SIC and MMSE, in the same spirit with our previous
derivations for (6), the average MSE for the complete WSN
that consists of sensors that interfere can be expressed as:

MSEINT
θ|h(S) =

σ2
θ

σ2
θ

∑
t∈T

∑
i∈St

(1−πINT
i|h(St))ρ

2
i

σ2
zi

+σ2
qi

+ 1
(15)

In the previous equation

πINT
i|h (St) =

{
1 if log2

(
1 + SINRi(h,St)

)
< Ri

0 otherwise
(16)

indicates if the instantaneous rate, expressed through the
Shannon formula, can meet the desired communication rate
of Ri bits/symbol for sensor i, and SINRi(h,S) expresses
the average SINR during the complete duration of the trans-
mitted packet and was defined in (12). Note that π is a
function of the interference pattern/transmission schedule S =
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{S1, ...,Sl, ...,ST }, and the channel gain h. The above ex-
pression essentially says that the MSE depends on the specific
schedule of the sensors that belong to the WSN. Therefore, in
order to minimize (15) for a given channel realization h, there
is a need to control πINTi|h (S).

For the orthogonal case, where each sensor digitizes and
compresses the signal while linear MMSE is executed after all
the signals are received at the FC, the MSE expression is again
that of (15) but in this case the outage probability is πORTH

i|h (St).
With orthogonal transmissions, even if the system performs
optimal sensor selection it can select at most T sensors, i.e.,
the maximum cardinality of the set S is T . Next, we formulate
the optimization problems.

VI. PERFORMANCE OPTIMIZATION OF JOINT SIC
DECODING AND MMSE ESTIMATION

Before formulating the optimization problem, we first dis-
cuss the intuition behind our optimization. For our first ob-
jective where we consider distortion minimization under a
power constraint, each sensor i is assumed to transmit the
digital packet at power level Pi. To be fair, a limit on the
transmit power of each time-domain sample or PHY symbol is
considered. When the distortion is minimized for the TDMA
scheme, this will lead to the assignment Pi=P where P is
the allowed power per time-domain sample. Each sensor will
transmit at the maximum allowed power, since only a single
sensor is allowed to transmit during each slot2. However,
with interfering transmissions, the available power P will be
distributed among multiple sensors. With SIC, this distribution
can be done in such a way that more packets can be decoded
at the FC, hence increasing the transmission efficiency of the
system. We will illustrate this with an example. Consider a
WSN with two sensors and one transmission slot. The first
option is that one sensor transmits at a power level Pi=P and
enjoys a rate log(1+ P

σ2
w

). If this rate is higher than Ri then we
have a successful transmission with high probability (precise
value in (7)). However, if two sensors transmit at power levels
P1, and P2 respectively, with P1 +P2 ≤ P , with SIC they can
both enjoy a sum-rate equal to log(1+ P

σ2
w

) [9]. This can happen
if P1, P2 are selected such that log(1 + P1

P2+σ2
w

) > Ri, and
log(1 + P2

σ2
w

) > Ri, i.e., the FC can decode both packets with
high probability. Thus, this is an optimized power allocation
so that more packets are decodable according to SIC. This has
been a typical optimization approach for SIC [11], [20].

For our system the question is how should the sensors be
selected at a given time slot t, so that the information sent
is decodable but also leads to the minimum MSE. Next, we
will formulate this optimization problem. We consider two
different cases. First, we minimize the MSE under a fixed
power constraint and then we consider power minimization
under a distortion constraint.

Minimizing Distortion under a Power Constraint We
first formulate the problem of MSE distortion minimization for

2Even though transmitting at the maximum allowed power may not be
needed for certain sensors, still it reduces the outage probability as per our
previous derivations (see (7)).

a fixed power consumption that is imposed per time-domain
sample. The distortion minimization problem is equivalent to
maximizing the MSE reduction (the denominator in (15)) by
selecting the sensors to transmit in each slot t among all the
available N . This decision is captured with binary variable ai,t
that indicates if the FC is able to cancel the signal from sensor
i transmitted in slot t. Sensors are scheduled to interfere only
if SIC can decode them. Our goal is to increase the number
of decoded packets by respecting an SNR packet decoding
constraint while also ensuring that these packets/signals con-
tribute more to minimizing the MSE. Therefore, if a packet
from a certain sensor cannot be canceled with SIC, it is not
scheduled in this specific slot t while it can be scheduled in
another slot. We also define the continuous variable Pi,t that
indicates the transmission power of sensor i in slot t. Hence,
the decision vectors are: a=

(
ait ∈ {0, 1} : i ∈ N , t ∈ T

)
and

P=
(
Pit ∈ {0, 1} : i ∈ N , t ∈ T

)
. This problem is formulated

as a Mixed Integer Linear Program (MILP):

DIST: max
a,P

T∑
t=1

N∑
i=1

ρ2i
σ2
zi + σ2

qi

ai,t,

s.t.
Pi,t|hi|2

σ2
w +

∑
k∈N,k>i Pk,t|hk|2

≥ 2Ri − 1,∀i ∈ N , t ∈ T (C1)

∑
k∈N,k>i

ak,t ≤ ciai,t,∀i ∈ N , t ∈ T (C2),
T∑
t=1

ai,t ≤ 1,∀i ∈ S (C3)

N∑
i=1

Pi,t ≤ P,∀t ∈ T (C4), Pi,t ≤ ai,tP (C5)

Constraint 1 (C1) is the SINR constraint for sensor i scheduled
in slot t. For the SINR constraint to be satisfied, Ri bits/symbol
need to be communicated successfully. To demodulate these
symbols, the SINR in (12) must be at least equal to 2Ri − 1.
This leads to the formulation of C1 in our problem formulation.
In the denominator, the summation term contains all the other
sensors that can potentially transmit in the same slot and have
not been canceled yet. These sensors are accounted for as
destructive interference (k>i accounts for these sensors that
have been ordered in advance). If a sensor is not scheduled
then this constraint does not need to be satisfied. That is why
we have N×T of these constraints. Constraint 2 (C2) ensures
that the optimal SIC decoding order is followed. Here, we
define ci as the number of links after i, in the sorted sequence
of the values of |hi|2/(2Ri − 1). C2 ensures that if sensor i
is not scheduled in slot t through the variable ai,t, then none
of the remaining sensors can be scheduled in that particular
slot. The reason is that they have lower energy/bit ratio by our
ordering requirement which means that the packet cannot be
decoded. Of course if ai,t=1 then all the remaining sensors
can be potentially scheduled. The specific way of populating
ci is central in making the problem solvable: The power
allocation variable Pi,t can effectively change the energy/bit
in equation (12) for a sensor i. However, if we cannot increase
the power Pi,t for a sensor i to a level that ensures that C1
is valid, then it is impossible to do that for a sensor i′ that
has lower energy/bit ratio |hi′ |2/(2Ri′ − 1). Hence, by using
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Ri in this ratio, the event that power allocation decisions in
our optimization change the optimal SIC ordering are avoided.
Constraint 3 (C3) ensures that sensor i transmits at most once
within the T slots. Constraint 4 (C4) is the power constraint
per time-domain sample that cannot exceed P , while constraint
5 (C5) ensures that no power is allocated to non-scheduled
sensors.

Minimizing WSN Power under a Distortion Constraint.
Now we formulate the power minimization problem under
a distortion constraint. To be consistent with our previous
notation, the power is minimized over the whole transmission
time. We define an MSE distortion threshold D that is the
minimum distortion constraint as in [1]. Then the power
minimization problem is formulated as:

PWR: min
a,P

T∑
t=1

N∑
i=1

Pi,t, s.t. (C1), (C2), (C3),

T∑
t=1

N∑
i=1

ρ2i
σ2
zi + σ2

qi

ai,t ≥
1

D
− 1

σ2
θ

(C4’), (C5)

Here, constraints C1-C3, and C5 are the same as in the DIST
problem. The new fourth constraint (C4’) ensures that the
distortion threshold in (15) is met.

Minimizing Power for ORTH. The previously described
optimization approach is also applied for the ORTH-MMSE-
OPT that considers orthogonal transmission and sensor selec-
tion. In particular, we present representatively its formulation
under the PWR objective:

min
a,P

T∑
t=1

N∑
i=1

Pi,t, s.t.
Pi,t|hi|2

(2Ri − 1)σ2
w

≥ 1,∀i ∈ N , t ∈ T (C1’),

N∑
i=1

ai,t ≤ 1, ∀t ∈ T (C2’), (C3), (C4’), (C5)

Note that the main difference is the removal of decoding order
constraints, a simpler SNR threshold constraint (C1’), while
the constraint for one sensor transmission/slot (C2’) was added.

VII. MILP RELAXATION AND APPROXIMATION

Even though designing the most efficient algorithm for
solving the MILP is not the main focus of this paper (since
this is a hard problem in general), we present a solution
by designing an approximation algorithm. Since there are no
polynomial time algorithms for solving MILPs, we first relax
the optimization problems so that a Linear Program (LP) can
be solved. LPs can be solved in polynomial time with interior
point methods. Thus, we allow the binary variables ai,t to take
any value between 0 and 1. After the LP is solved the results
of the relaxed LP, that consists of a set of continuous values
between 0 and 1, are converted to binary values. We adopt the
Randomized Rounding (RR) approach that assigns the final
binary values with a certain probability. Let ãi,t denote the
solutions of the LP, the binary values are approximated as:

âi,t =

{
1 Pr[1] = ãi,t
0 Pr[0] = 1− ãi,t (17)

This rule means that the final binary solution âi,t is equal to 1
with probability ãi,t and equal to 0 with probability 1 − ãi,t.
Values of ãi,t closer to 1 increase the probability that a binary
1 is assigned. This process ensures that the cost of the MILP
and LP solutions are the same. Since some constraints might
be violated after (17), they are first verified.

A side-effect of the relaxed problem formulation is that the
LP actually provides a solution that gives non-zero values for
ai,t for all the sensors and all the slots. Since the channel does
not change throughout the scheduling period of T slots, ai,t
obtains fractional values that are equal across all the slots even
though their sum is less than 1. So the heuristic algorithm
that we propose next is based on the application of the RR
procedure on a time slot basis. For each slot, we first obtain
the results of the RR algorithm, we then perform a constraint
check and keep the final result. Regarding the constraint
check, C1 cannot be violated by RR since it only contains
the continuous variable Pi,t and so the related solutions are
retained. Furthermore, when the value of âi,t is equal to 0 for
a certain sensor, the only constraint that must be checked is
the ordering through C2, i.e., a sensor with lower ranking in
the list ci may not be scheduled. So in this case we also set
âi,t equal to zero for all the remaining sensors in slot t. Of
course in this case the power Pi,t is also set to zero according
to C5. Finally, to ensure C3, i.e., a sensor is only activated
once within T , then if âi,t=1 we set âi,t′=0,∀t′ ∈ T /{t}.
The algorithm proceeds by removing all the already scheduled
sensors from the constraints. Subsequently, it repeats the same
constraint checks for the remaining sensors.

Correlation Estimation. Obtaining the value for the corre-
lation coefficients of each sensor might also be a non-trivial
task. To make our system fully implementable in practice,
we employ an estimator of the correlation coefficient vector
ρ at the FC (recall that this is a deterministic vector that
contains the correlation coefficients). Based on the available
measurements, we continuously update Σy. For known AWGN
and quantization variance at the sensors, this means we also
know the diagonal matrices Σz,Σq. From (13) we can obtain
the expression for the covariance matrix as Σy = ρρHσ2

θ +
Σz + Σq, from which we only need σ2

θ .

VIII. PERFORMANCE EVALUATION

In our setup, the sensors are spread randomly and uniformly
in a disc, and in the center there is the FC. The spatial
correlation model is created so that it represents reduced
correlation as nodes are farther away from the center of the
disc, i.e., ρi = ρdist(i), where dist is normalized in the range
[0, 1]. Different values for ρ are tested. The other parameters
are set as follows σ2

zi=σ
2
z=σ2

w unless otherwise noted. Also σ2
w

is controlled through the transmit SNR given in (3). σ2
θ may

take different values but it is equal to 10 unless otherwise
specified. We also used R̄i= 8 bits/source sample, the range of
the signal was W=1 Volt, and Ri=1, i.e., BPSK modulation.
Also 100 bits are transmitted (K=12 samples per packet).

A. Results for Distortion Minimization
For the distortion minimization problem, we present the

minimum distortion for the different schemes. We consider
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that T=4 slots are available, the number of available sen-
sors vary, while the total power budget is fixed (P=2). In
Figure 3, we present results for the average distortion of
all the schemes. We observe that the proposed SIC-MMSE-
OPT scheme outperforms SIC-MMSE and ORTH-MMSE-
OPT for every SNR and ρ combination, since it ensures that
SIC and MMSE are jointly optimized. The heuristic has a
good performance and the gap is only increased for high
values of the correlation coefficient. Recall that with OPT-
based schemes, the ratio ρi

σ2
z+σ

2
q

is included in the optimization
objective. For the high correlation case, this means that the
algorithm attempts to maximize the number of decoded sensors
that have high value observations. So the heuristic ”misses”
a number of opportunities for decoding high value packets
by not scheduling the corresponding sensors. Hence, for the
high correlation case (Figure 3(c),(d)), these observations are
more valuable for the performance when compared to the low
correlation case (Figure 3(a),(b)), leading to an increase in
the gap between the heuristic and the optimal solution. More
insight into the performance of the heuristic is provided in the
next subsection where we discuss power minimization.

Next we compare the performance of SIC-MMSE with
ORTH-MMSE-OPT. Note that SIC-MMSE allows simulta-
neous transmission of many uncoordinated sensors and then
applies our joint SIC-MMSE decoding algorithm without op-
timization. In the low ρ regime (Figure 3(a),(b)), we observe
that SIC-MMSE performs almost as good as ORTH-MMSE-
OPT. However, this picture changes significantly for higher
ρ. For ρ=0.9 (Figure 3(c),(d)) the performance gap between
ORTH-MMSE-OPT and SIC-MMSE increases, since each
observation now has higher value and their optimal selection
is more critical. In other words, the SIC-MMSE scheme
that does not perform any optimization, but simply decodes
opportunistically the observations with SIC, can reach the same
performance with ORTH-MMSE-OPT for low ρ. Finally, we
notice that all the schemes are more dependent on ρ rather
than the transmit power expressed through the SNR.

In Figure 4(a) we present average distortion results for
different σ2

θ/σ
2
z ratios (variance of the signal to be estimated

relative to the power of the sampling noise). We observe that
as this ratio increases, the performance gap between the pro-
posed scheme (SIC-MMSE-OPT) and the two other schemes
increases significantly. As the signal variance is increased (the
signal of interest becomes more random), the estimation accu-
racy suffers with ORTH-MMSE-OPT. The proposed scheme
is less sensitive to σ2

θ . We also investigated the effect of
the correlation coefficient on the average distortion for N=10
sensors and we present the results in Figure 4(b,c) for different
SNR levels. Here, we observe that for low data correlation,
the impact of our scheme becomes more significant. But even
for high correlation coefficient, the proposed scheme offers
significant benefits, reducing the distortion by more than 50%.

B. Results for Power Minimization
For the power minimization, we set the MSE constraint

to 0.5, and present the results in Figure 5. SIC-MMSE-
OPT outperforms the other schemes for every N by ensuring
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Fig. 4. The effect of the ratio σ2
θ/σ

2
z (with σ2

z = 1) and ρ on average
distortion.

a transmit power allocation to specific sensors so that the
signal is decodable and no extra power is wasted. The SIC-
MMSE-OPT power optimization algorithm identifies the set
of sensors that require the minimum power for meeting the
MSE constraint. For higher ρ (Figure 5(c),(d)), the value of
each observation is higher since the observations across sensors
are highly correlated, however, fewer packet decoding events
are required. Hence, the target MSE can be achieved with
few sensor observations. This also means that sensors that are
physically closer the FC, hence, requiring low transmission
power, are scheduled. So the heuristic works very well in
this case. However, when ρ is low (Figure 5(a),(b)), more
observations are needed, and more power must be spent to
meet the MSE target. So ”missed” scheduling opportunities
from the heuristic will result in a higher performance gap from
the optimal case. This result highlights the importance of using
ρ in the optimization objective and the heuristic. Also note that
for σ2

θ=10, and ρ=0.9 the optimization under ORTH-MMSE
fails as illustrated in Figure 5(d), i.e., there is no solution that
can meet the MSE requirement.

In Figure 6, we present the normalized average power per
sensor for the case of simultaneously transmitting sensors
under SIC-MMSE-OPT. As the signal variance increases in
Figure 6(a), only then the number of simultaneously scheduled
sensors increases. For σ2

θ=1, we observe that the average
number of sensors used is two. Here, the small value of the
power for the third sensor means that only in a few channel
realizations a third sensor was scheduled simultaneously. The
number of sensors used on average increases to three for σ2

θ=10
and four for σ2

θ=100. For higher transmit SNR illustrated in
Figure 6(b), we notice that three sensors are used nearly all the
time since they all have a good channel. On the other hand for
low transmit SNR most of the time one sensor is used since
it requires the consumption of higher power.

IX. CONCLUSIONS

In this paper, we studied DES of a noise-corrupted ran-
dom parameter in WSN where the sensors are allowed to
interfere their transmissions. We first proposed a joint SIC
decoder and MMSE estimator for interfering transmissions
of correlated data. Next, we modeled the MSE performance
of this system and our analysis was compactly captured in
a MILP optimization model. Our optimization exploits SIC
by selecting sensors for simultaneous transmission so that the
interfering signals are decodable while their contribution to the
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Fig. 3. The effect of the number of sensors on the distortion of all the proposed schemes for σ2
θ=10.
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Fig. 5. Results for power consumption minimization.
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Fig. 6. Average power allocated to 10 sensors.

MSE reduction is maximized. We also proposed a heuristic that
closely follows the optimal solution. The proposed framework
offers faster rate of power or MSE reduction as the sensor
population is increased. As our future work, we plan to study
the performance of the system under average conditions in
order to be able to adapt even in longer timescales. This will
allow the inclusion of higher number of sensor populations at
an even lower computational cost for the proposed scheme.
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