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Abstract

3D video for tele-medicine applications is gradually gaining momentum since the 3D
technology can provide precise location information. However, the weak link for 3D video
streaming is the necessary wireless link of the communication system. Neglecting the wire-
less impairments can severely degrade the performance of 3D video streaming that com-
municates complex critical medical data. In this paper, we propose systematic method-
ology for ensuring high performance of the 3D medical video streaming system. First, we
present a recursive end-to-end distortion estimation approach for MVC(multiview video
coding)-based 3D video streaming over error-prone networks by considering the 3D inter-
view prediction. Then, based on the previous model, we develop a cross-layer optimization
scheme that considers the LTE wireless physical layer (PHY). In this optimization, the
authentication requirements of 3D medical video are also taken into account. The pro-
posed cross-layer optimization approach jointly controls and manages the authentication,
video coding quantization of 3D video, and the modulation and channel coding scheme
(MCS) of the LTE wireless PHY to minimize the end-to-end video distortion. Experi-
mental results show that the proposed approach can provide superior 3D medical video
streaming performance in terms of peak signal-to-noise ratio (PSNR) when compared to
state-of-the-art approaches that include joint source-channel optimized streaming with
multi-path hash-chaining based-authentication, and also conventional video streaming
with single path hash-chaining-based authentication.
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1. Introduction

Recent advances in video coding and wireless communication technologies have boosted
the use of mobile health systems [1]. Supported by a significant amount of mature deploy-
ments of 4G networks, intelligent remote medicine is gradually becoming a reality. The
goal is to provide people a “networked healthcare” at any time or any place via remote
medical image or video processing [2][3]. One particular video technology can be key for
medical applications. This is 3D video that has brought people the experience of depth
in 3D cinema or 3DTV [4][5]. Because 3D video captures the third dimension, it can
bring humans a more natural perception and precise location information. Consequently,
besides 3D films or 3DTV [6], it can also be used for many other applications, such as 3D
video surveillance, 3D medical video [7][8] and 3D games. For example in recent years,
the advancement in 3D medical displays has made tele-surgical system a common practice
[9]. Despite the great promise of 3D video for medical applications, several problems have
to be carefully addressed.

A first problem is that 3D medical video generally includes more than one viewpoint.
The stereoscopic/multiview video coding introduces the inter-view prediction that makes
the inter-frame prediction dependency chain longer than before. Once the packet loss
occurs, the distortion drifting will be significant. Hence, error control with rate adaptation
at the application layer is necessary. Since the visual quality is very important, e.g. for
the doctor at the remote side to accurately diagnose the illness of the patient, the inter-
view prediction chain should be fully considered in determining the end-to-end video
distortion. In previous research works, the end-to-end distortion estimation for 2D video
has been studied thoroughly [10]][11]. However, for MVC-based 3D video streaming, the
existing end-to-end distortion estimation approaches typically utilize 2D video distortion
estimation techniques [12][13] and neglect the particular inter-view/inter-frame-combined
prediction-dependency problem. To the best of our knowledge, there is currently no work
dealing with the hybrid inter-view and inter-frame prediction dependency problem for
recursive 3D video end-to-end distortion estimation.

A second problem for 3D medical video communication is security [14]. Generally,
the communication network can provide a level of security through certain protocols.
However, besides protecting the video data during the transmission over the network, the
confidentiality requirement for the private medical information needs to be met initially
at the application layer during the medical video distribution. Currently, medical video
security is ensured by watermarking and authentication [15] at the video source. Either
watermarking or authentication will inject bits in the video to provide security function-
ality [16]. This type of protection for medical video will naturally introduce a redundant
bitstream to the transmitted video. For video authentication, the added redundant au-
thentication bits will occupy channel bandwidth and further affect the quality of video
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received by the user [17]. So, the amount of authentication bits plays an important role
for improving the streaming performance. Recent research woreks have proposed joint
source-channel-coding-based authentication redundancy selection schemes in [18][19][20].
These approaches considered source rate adaptation to match the channel bandwidth [21],
while they were not concerned with other parameters at the physical or other protocol
layers. Overall, the optimal level of redundancy in terms of bit-rate that is acceptable to
guarantee the end-user 3D video quality and security is still an open issue.

The final problem is that in such a remotely operated system, the 3D medical video
data communication over the wireless network is the weak link in ensuring reliable end-
to-end system performance. Usually, the dynamic and error-prone nature of the wireless
network results in the degraded video quality. The video quality will degrade considerably
since the limited bandwidth of the wireless network cannot always satisfy the demand of
transmitting 3D medical video. To guarantee communication reliability, different tech-
niques at different layers of the protocol stack have been adopted in LTE. For example,
Adaptive Modulation and Channel Coding (AMC) at the physical layer, and Automatic
Repeat Request (ARQ) at the data link layer. Although these techniques can meet the
communication quality requirements of 3D medical video, they usually fail to achieve the
optimal performance for wireless 3D medical video streaming since they neglect the im-
pact of cross-layer interactions on the overall system performance. Now the physical layer
of the LTE network provides different modulation and channel coding schemes (MCS)
which can bring different transmission capacities and different error protection strengths.
Thus, a balance between source coding and channel protection is needed. This is typically
exercised through cross-layer optimization [22][23]. However, existing works focus mainly
on the cross-layer optimization of adjacent layers, such as link layer and physical layer.
For 3D medical video streaming, besides the system parameters present at lower protocol
layers in the network, the particular feature of authentication in 3D medical video at the
application layer needs also to be considered in the cross-layer optimization.

Based on the above discussion, in this paper we propose a cross-layer optimized authen-
tication and error control approach for 3D medical video streaming. The contributions of
the paper are summarized as follows.

1) A recursive per-pixel end-to-end distortion estimation approach is proposed for
MVC-based 3D video streaming. For multiview video coding in the H.264/AVC, the inter-
view prediction, especially the weighted inter-view and inter-frame prediction brings new
problems for the recursive process. By utilizing the prediction-dependency relationships
among frames, the recursion process for distortion estimation of inter-view predicted pixel
is derived analytically.

2) A cross-layer optimization scheme that considers the authentication for 3D medical
video streaming over LTE is designed. In the proposed scheme, the authentication hash-
chaining paths, the quantization parameter (QP) of the video coder, and the MCS at the

3



physical layer are jointly selected to maximize the end-to-end quality of the 3D medical
video. The resource block error rate of the LTE physical layer is used to estimate the
application layer packet loss rate. The authentication success probability is incorporated
to the packet loss rate for estimating the end-to-end distortion. Hence, the effect of
authentication on the video transmission performance is fully considered in the proposed
cross-layer optimization scheme. Hash-chaining-based authentication redundancy can be
un-equally allocated among the different views under different channel conditions through
the end-to-end distortion control.

The rest of the paper is organized as follows. The proposed cross-layer optimized
error control and authentication scheme for 3D medical video streaming is presented in
Section 2. Specifically, the end-to-end distortion computation for 3D medical video coding
is introduced and the joint cross-layer optimization of authentication, video coding QP
and MCS is described. Experimental details and results are shown in Section 3. Finally,
Section 4 concludes the paper.

2. Cross-layer optimized 3D medical video streaming scheme

To improve the end-to-end quality of wireless 3D medical video, we design a cross-layer
optimization scheme for 3D medical video streaming. After introducing the necessary
background information, this section explains the proposed scheme in detail.

2.1. Background

2.1.1. 3D medical video encoding

3D medical video is generally captured by two viewpoints to form the stereoscopic 3D
video [24]. Thus, the stereoscopic encoding profile in the H.264/MVC standard is primar-
ily used. To meet the decoding delay requirements, the low-delay encoding structure, as
shown in Fig. 1, is also generally used in the practical applications [25]. In Fig. 1, I, P, B
denote the intra-coded frame, directionally inter-coded frame and bi-directionally inter-
coded frame, respectively. The inter-view prediction can be enabled to improve the 3D
medical video coding efficiency with increased length of the dependent prediction chain.
Due to additional prediction dependencies in the encoding process, the error drifting in
the transmission will be significant once a packet loss occurs. Hence, the cross-layer opti-
mized rate adaptation and error control algorithm should be designed to ensure a desired
3D medical video streaming quality. During encoding, a slice is the basic encoding unit
which can be independently packed into one packet. The source packet size itself depends
on the QP of video coding. A larger packet size is generated with small QP while the
opposite happens for larger QP. In addition, the packet size will also affect its packet loss
probability. Thus, the optimal QP should be carefully selected.
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Fig. 1. 3D medical video encoding structure

2.1.2. Hash-chaining-based authentication

In the past, the hash-chaining-based authentication has been widely adopted for wire-
less video streaming [18][21][26]. The hash-chaining-based authentication organizes the
packets into groups and signs only one packet in one group. The remaining packets in the
group with the hash chain are connected to the signed packet. Since packet losses usu-
ally occur in wireless transmission, hash-chaining-based authentication can be disrupted.
To ensure the error resilience of the hash-chaining-based authentication, the multi-path
hash-chaining-based authentication was proposed in [21], and is illustrated in Fig. 2. In
multi-path hash-chaining-based authentication, one packet can have many parent-chained
packets. When one hash chain is corrupted due to packet loss, another hash chain can
recover the authentication. However, the multiple hash chains increase the redundant
hash bits and add overhead.
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Fig. 2. Multi-path hash-chaining-based authentication

2.1.3. LTE downlink system

LTE is Long Term Evolution of the Universal Mobile Telecommunications System
(UMTS) so that it is an advanced standard of cellular wireless communication. To max-
imize the use of the time/frequency resources, the LTE downlink transmission protocol
adopts the Orthogonal Frequency Division Multiplexing (OFDM) technology. OFDM con-
verts the wide-band frequency selective channel into a group of flat fading sub-channels
with a subcarrier spacing of 15kHz. In LTE systems, the resource block (RB) is the small-
est resource unit and consists of 12 adjacent sub-carriers and 6 or 7 consecutive OFDM
symbols. To maintain reliable and efficient data transmission, LTE provides 15 candidate
modulation and channel coding schemes (MCSs) to be selected depending on status of
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transmission channel. The MCSs in the LTE downlink system have been investigated
thoroughly recently [27][28].

2.2. Cross-layer Optimization

Even though several techniques in LTE systems can be utilized to improve the 3D
medical video streaming performance, the parameters at different protocol layers typically
counteract towards the goal of optimizing the overall system performance. For example,
in the case of a bad channel state, the MCS modes with small constellation size and
powerful channel codes are used to ensure transmission reliability. Accordingly, to adapt
to the time-varying channel states and the selected MCS, the lower video bit-rate needs
to be appropriately adjusted with the appropriate QP and the appropriate amount of
authentication bits to ensure that the video packet is transmitted in a timely manner to the
end user. In such a case, if the higher bit-rate (lower QP) is selected, the streaming system
performance will be degraded due to the disharmony between the small size constellations
with powerful channel codes and higher video bit-rate.

In the LTE system, the RB allocation across the multiple users is based on the ratio
of user’s minimum data rate requirement to the channel gain. The adopted RB allocation
scheme considers the competing effect of multiple users by using proportional rate fairness
among them [35]. After the RB allocation, the cross-layer optimization scheme operates
for one particular user to further optimize the 3D medical video streaming performance
from a global perspective. In the proposed scheme, the following cross-layer cooperations
are investigated. First, the video coding QP at the application layer is taken into account
to regulate the source bit-rate so that it matches the physical layer transmission capacity.
Second, the multi-path hash-chaining-based authentication at the application layer is used
to adjust the optimal authentication redundancy. Third, the MCS at the physical layer is
dynamically selected to be in harmony with the dynamic source video bit-rate (the packet
size under normal playback frame rate). These parameters at different protocol layers
affect the end-to-end video quality and they can be jointly selected towards minimizing
the end-to-end distortion.

Recently, mobile-edge computing (MEC) paradigm [29] has been proposed and im-
plemented for service optimization over the radio access network (RAN). This provides
a practical and feasible solution for cross-layer service optimization. The MEC server
can communicate with an LTE base station (eNodeB) and the Mobility Management En-
tity (MME) in both the user plane and control plane [36]. Furthermore, the enhanced
architecture models have been specified in 3GPP release 14 for LTE to provide 3GPP net-
work service capability exposure to SCS (Service Capability Server) and AS (Application
Server) [37]. Based on the models, the SCS can provide the AS with the control plane
communication interface to the RAN. Thus, the external network entity (for example the
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cross-layer optimization controller) can communicate with the RAN component in the
control plane via the service capability exposure function.

Fig. 3 summarizes the proposed cross-layer optimization scheme for 3D medical video
streaming over LTE. In this scheme, we use both the MEC server and the SCS compo-
nent to realize the cross-layer optimized communication. The MEC server is placed near
eNodeB. The SCS that is controlled by the mobile network operator is deployed near the
Evolved Packet Core (EPC) network. Generally, the cross-layer controller takes charge of
the end-to-end distortion estimation based on the information from the different protocol
layers and the service provider takes care of the cross-layer optimization controller. The
MEC server connects to the eNodeB of the LTE system for collecting mobile network
feedback information from the radio access network. Then it transfers the collected in-
formation of different protocol layers to the controller. This is communicated in the data
plane (user plane) via the S1-U interface. The cross-layer controller performs the neces-
sary computations for the cross-layer optimization, and outputs the optimized parameters
to the SCS. The SCS signals them to the MME and eNodeB in the control plane via S1-C
interface to configure the optimized parameters of the different protocol layers for the
given user. With the help of the MEC server and SCS, the cross-layer optimization can
be practically implemented in LTE for 3D medical streaming.
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Fig. 3. Cross-layer optimized authentication and error control scheme for 3D medical video streaming
over LTE
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2.2.1. Application layer video encoding and hash-chaining-based authentication

To ensure the video source rate adapts to the channel dynamics, a dynamic packet-
based rate adjustment is implemented by the real-time video encoder. In the video en-
coder, one frame can be segmented into several slices which can be packed into indepen-
dent packets. For real-time 3D medical video streaming, the packet size can be adjusted
by regulating the encoding QP. The different QPs will result in different video distortions
with different bit-rates.

Due to the multiple prediction dependencies among frames in 3D medical video en-
coding, the multi-path hash chain can be configured to increase the probability of authen-
tication success during transmission. Thus, one packet in one hash group can select the
hash parent from the previous decoding packets in the prediction chain pointing to the
current packet. Hence, one packet may have multiple hash-chain parent selection scenar-
ios. Based on the hash-chain knowledge of previous parent packets, the authentication
probability of a current packet can be estimated and the corresponding redundancy in
bits can also be computed. Different authentication hash-chains can result in different
authentication success probabilities and different transmission overheads, and finally in
different end-to-end video qualities.

To rigorously describe our system let us denote with N the maximum hash chain
number of parents that a packet has. Each parent will incur a cost of b bits, and the
probability that the packet is successfully authenticated is ϕ. The application layer packet
loss probability before authentication in LTE system is denoted with ρ. Since each packet
can have several candidate hash parents, the authentication probabilities for different hash
chains are different. Let us assume the available candidate hash parents for the current
packet are M , and then the authentication success probability for the ith packet in the
current group of pictures (GOP) is obtained by

ϕi = (1− ρi)(ϕ0ϕ1 · · ·ϕi−1), (1)

where ϕi denotes authentication success probability of the ith packet in the current GOP
and ρi denotes the packet loss probability of the ith packet in the current encoding GOP.
Because stereoscopic video encoding is enabled at the 3D video encoder, the GOP for two
views is considered as a processing unit for authentication.

If m (m < M) packets are selected as the parent hash-chain packets by the ith packet
and the nth parent packet has a distance dn with the current ith packet, the authentication
success probability of the current packet can be re-written as

ϕi = (1− ρi)(ϕi−d0ϕi−d1 · · ·ϕi−dn · · ·ϕi−dm) (2)

Assume now that the added hash bit overhead is m · b and the source packet size
is S. The packet size will be S + m · b after adding the hash bits. When the packet
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passes through the physical layer, the packet might occupy different number of resource
blocks (RB) depending on the amount of the added hash bits. At the physical layer,
the MCS for each RB can be changed depending on the signal to noise ratio (SNR) of
the channel. When the amount of hash bits is increased, the number of needed RBs and
the application layer packet loss probability will increase accordingly. Hence, the added
amount of hash bits directly affects the authentication success probability and packet loss
rate of the application layer.

Besides the source coding induced distortion, packets with failed authentication also
introduce the video distortion at the receiver. In addition, the authentication bits will
increase the transmission overhead and reduce the transmitted source data, and thus
indirectly increase the video distortion. Hence, the authentication is amenable to cross-
layer optimization.

2.2.2. MCS at the physical layer of LTE

At the physical layer of LTE downlink, there are many candidate MCS modes. Differ-
ent MCS modes will result in different physical layer transmission capacities with different
packet loss rates. To estimate the packet loss rates for the transmitted packets, the mu-
tual information effective SNR mapping (MIESM) is used to measure the LTE downlink
quality. For one candidate MCS mode z, the effective SNR γmieff (z) based on mutual
information is calculated as [27]:

γmieff (z) = κ(z)[F−1(
1

Nsb

Nsb
∑

j=1

F (

√

γj

κ(z)
))]2 (3)

where Nsb is the number of the subcarrier, γj is the SINR at the jth subcarrier, and κ(z)
is the calibration factor for the MCS mode z. The functions F (x) and F−1(y) are defined
as

F (x) ≈
{

−0.04210610x3 + 0.209252x2 − 0.00640081x, 0 < x < 1.6363
1− exp(0.00181491x3 − 0.142675x2 − 0.08220540x+ 0.0549608), x ≥ 1.6363

(4)

F−1(y) ≈
{

1.09542y2 + 0.214217y + 2.33727
√
y, 0 < y < 0.3646

−0.706692 log(−0.386013(y − 1)) + 1.75017y, 0.3646 ≤ y ≤ 1
(5)

Based on the MIESM γmieff (z), the block error rate (BLER) ξ(γmieff (z)) for one RB
with the MCS mode z can be accurately predicted as [27]

ξ(γmieff (z)) =
1

2
[1− erfc(

γmieff (z)− b(z)√
2 · c(z)

)] (6)

where efrc(·) is the complementary error function, b(z) and c(z) are the transition center
and transition width, respectively. The values of b(z) and c(z) can be obtained via
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fitting (6) to the exact BLER in the specific communication system. In this work, the
MIMO2×1 AWGN LTE downlink channel is simulated using the LTE link-level simulator
[28]. BLER-SNR curves for the 15 MCS modes are used in the LTE downlink physical
layer. The specific 15 MCS modes and the associated parameters are shown in Table 1.

Table 1. The candidate LTE downlink MCS modes

MCS mode
index z

Modulation
order

Rate
(bits/symbol)

κ(z) b(z ) c(z )

1 QPSK 0.1523 3.07 -7.758 0.6003
2 QPSK 0.2344 4.41 -5.724 0.5182
3 QPSK 0.3770 0.60 -3.652 0.4032
4 QPSK 0.6010 1.16 -1.593 0.3588
5 QPSK 0.8770 1.06 0.3501 0.2910
6 QPSK 1.1758 1.06 2.348 0.2563
7 16QAM 1.4766 0.87 4.297 0.2549
8 16QAM 1.9141 1.01 6.214 0.2293
9 16QAM 2.4063 1.04 8.242 0.2253
10 64QAM 2.7305 1.03 10.13 0.2248
11 64QAM 3.3223 1.11 12.06 0.2028
12 64QAM 3.9023 1.01 13.89 0.1962
13 64QAM 4.5234 1.07 15.72 0.1958
14 64QAM 5.1152 1.00 17.50 0.2134
15 64QAM 5.5547 1.05 19.59 0.2592

For video streaming over LTE, one packet may occupy several RBs at the physical
layer. Thus, for each candidate MCS mode z, the packet loss probability ρn,i(z) of the
slice sn,i is related to the BLERs for all the RBs that the packet occupies,

ρn,i(z) = 1−
Bnum
∏

k=1

(1−BLERk(γmieff (z))) (7)

where Bnum is the RB number that the packet occupies, and BLERk(γmieff (z)) is the
BLER for the kth RB corresponding to the packet sn,i.

2.2.3. End-to-end Distortion Estimation

During 3D medical video transmission, there are many parameters that will introduce
video distortion. First is the source video coding. The lossy nature of video quantization
introduces a non-recoverable video signal loss. During the transmission, the bit errors or
packet losses will occur and will introduce video distortion. Packet loss will introduce
error drifting in the video decoder due to the prediction dependency. In 3D medical video
coding, the inter-view prediction increases the dependency in the motion compensation
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procedure. To estimate accurately the end-to-end distortion of 3D medical video stream-
ing, the recursive per-pixel estimation approach [30] is utilized to take into account the
multi-prediction problem in the MVC. For easy understanding, the basic mathematical
symbols and notations throughout the paper are listed in Table 2.

Table 2. Basic symbols and notations

Notations Definitions

f i
n The ith pixel value in the nth frame

f̃ i
n The ith decoded pixel value in the nth frame

E[·] The expectation function

f̃ i
n,l The ith decoded pixel value in the nth frame of the left view

f̃ i
n−1,l ith decoded pixel value in the (n-1)th frame of the left view

f̃k
n−1,l The kth decoded pixel value for concealing the error of ith pixel in

the (n-1)th frame of the left view
⌢

f
i

n,l The ith reconstructed pixel value at the encoder in the nth frame
of the left view

θin,l The authentication success probability of pixelf̃ i
n,l

θin−1,l The authentication success probability of pixelf̃ i
n−1,l

êin,l The encoding prediction residue of pixel f̃ i
n,l

f̃
j
n−1,l The encoding prediction value of f̃ i

n−1,l

f̃ i
n,r The ith decoded pixel value in the nth frame of the right view

f̃ i
n−1,r The ith decoded pixel value in the (n-1)th frame of the right view

f̃k
n−1,r The kth decoded pixel value for concealing the error of ith pixel in

the (n-1)th frame of the right view
⌢

f
i

n,r The ith reconstructed pixel value at the encoder in the nth frame
of the right view

θin,r The authentication success probability of pixelf̃ i
n,r

θin−1,r The authentication success probability of pixelf̃ i
n−1,r

êin,r The encoding prediction residue of pixel f̃ i
n,r

f̃
j
n−1,r The encoding prediction value of f̃ i

n,r in the (n-1)th frame

f̃o
n,l The encoding prediction value of f̃ i

n,r in the left view

By incorporating authentication in the video transmission, the probability of successful
authentication is

θi = ϕi · (1− ρi) (8)

When the original pixel value and the decoded pixel value are available, the end-to-end
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distortion for one pixel can be computed as

Di
n = E[(f i

n − f̃ i
n)

2]

= (f i
n)

2 − 2 · f i
n · E[(f̃ i

n)] + E[(f̃ i
n)

2]
(9)

Generally, the end-to-end distortion for one slice can be computed for all pixels in
terms of mean squared error (MSE) [31]. Since the 3D medical video generally includes
two views [18], the distortions for one packet with total pixels ℵl and ℵr for left view and
right view can be computed respectively as

Dn, l =
1
ℵl

∑

i∈ℵl

Di
n,l

= 1
ℵl

∑

i∈ℵl

[(f i
n, l)

2 − 2 · f i
n, l · E[(f̃ i

n, l)] + E[(f̃ i
n, l)

2
]]

(10)

Dn,r =
1
ℵr

∑

i∈ℵr

Di
n,r

= 1
ℵr

∑

i∈ℵr

[(f i
n, r)

2 − 2 · f i
n, r · E[(f̃ i

n, r)] + E[(f̃ i
n, r)

2
]]

(11)

One notes in the above that the MSE is completely determined by the first and second
moments of the decoder reconstructed pixels, and so the distortion per pixel in Eq. (10)
and Eq. (11) can be recursively computed by considering the video encoding prediction
and compensation. Note that the recursive way of the end-to-end distortion estimation
already accounts for all parameters that affect it, like quantization, packet loss, error prop-
agation, and error concealment at the decoder. In this paper, we assume that the decoder
simply uses the previous frame for error concealment. Thus, the decoder reconstruction
process provides the derivation of per-pixel distortion. Based on the classification of video
coding prediction modes, the distortion can be estimated as the following cases.
(1) Left view frame
If the current frame belongs to left view (intra view) and the current pixel belongs to an
intra encoded macroblock (MB), E[(f̃ i

n,l)] and E[(f̃ i
n,l)

2] will be computed based on the
specific authentication success probability as follows

E
[

f̃ i
n,l

]

= θin,l ·
(

f̃ i
n,l

)

+
(

1− θin,l
)

· θin−1,l · E
[

f̃k
n−1,l

]

+
(

1− θin,l
)

·
(

1− θin−1,l

)

· E
[

f̃ i
n−1,l

] (12)

E

[

(

f̃ i
n,l

)2
]

= θin,l ·
(

⌢

f
i

n,l

)2

+
(

1− θin,l
)

· θin−1,l · E
[

(

f̃k
n−1,l

)2
]

+
(

1− θin,l
)

·
(

1− θin−1,l

)

· E
[

(

f̃ i
n−1,l

)2
] (13)
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When the MB is encoded in inter-prediction mode, the motion compensation will be
involved in the pixel reconstruction process. The reconstructed pixel value consists of
the predicted pixel expectation and the prediction residue. Consequently, E[(f̃ i

n,l)] and

E[(f̃ i
n,l)

2] will be computed by mimicking the decoding image reconstruction process,

E[f̃ i
n,l] = θin,l · (êin,l + E[f̃ j

n−1,l]) + (1−θin,l) · θin−1,l · E[f̃k
n−1,l]

+(1−θin,l) · (1− θin−1,l) · E[f̃ i
n−1,l]

(14)

E[(f̃ i
n,l)

2] = θin,l · {(êin,l)2 + 2êin,l · E[f̃ j
n−1,l] + E[(f̃ j

n−1,l)
2]}

+(1− θin,l) · θin−1,l · E[(f̃k
n−1,l)

2]

+(1− θin,l) · (1− θin−1,l) · E[(f̃ i
n−1,l)

2]

(15)

Based on the above equations, E[(f̃ i
n,l)] and E[(f̃ i

n,l)
2] for left view can be recursively

computed from E[(f̃ i
n−1,l)] and E[(f̃ i

n−1,l)
2] until to the acknowledged frame. If one frame

is acknowledged (no matter received or not), the acknowledged frame will be decoded
and updated by the distortion estimation module for performing the above end-to-end
distortion estimation process.
(2) Right view frame
When the current frame is inter-view coded frame, more complex prediction relationship is
involved in the video encoding. Consequently, the computation of E{(f̃ i

n,r)} and E[(f̃ i
n,r)

2]

need to be discussed in different cases. The computation of E{(f̃ i
n,r)} can be classified

into four categories:
1) If the current pixel is intra-frame predicted, E{(f̃ i

n,r)} will be computed as

E
[

f̃ i
n,r

]

= θin,r ·
(

f̃ i
n,r

)

+ (1− θin,r) · θin−1,r · E
[

f̃k
n−1,r

]

+(1− θin,r) · (1− θin−1,r) · E
[

f̃ i
n−1,r

] (16)

2) If the current pixel is inter-frame predicted, the motion compensation needs to be
carefully considered. Thus, E{(f̃ i

n,r)} will be computed as

E[f̃ i
n,r] = θin,r · (êin,r + E[f̃ j

n−1,r]) + (1− θin,r) · θin−1,r · E[f̃k
n−1,r]

+(1− θin,r) · (1− θin−1,r) · E[f̃ i
n−1,r]

(17)

where êin,r denotes the encoding prediction residue of the current encoding block.
3) If the current pixel is inter-view predicted, the inter-view compensation needs to be
utilized in the pixel reconstruction. E{(f̃ i

n,r)} will be computed as

E[f̃ i
n,r] = θin,r · (êin,r + E[f̃ o

n,l]) + (1− θin,r) · θin−1,r · E[f̃k
n−1,r]

+(1− θin,r) · (1− θin−1,r) · E[f̃ i
n−1,r]

(18)
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4) If the current pixel is predicted by the weighting of inter-view and inter-frame predic-
tions, more complicated compensation relations are involved into the pixel reconstruction.
E{(f̃ i

n,r)} will be computed as

E[f̃ i
n,r] = θin,r · (êin,r + w1 · E[f̃ j

n−1,r] + w2 · E[f̃ o
n,l]) + (1− θin,r) · θin−1,r · E[f̃ i

n−1,r]

+(1− θin,r) · (1− θin−1,r) · E[f̃k
n−1,r]

(19)

where f̃ o
n,l denotes the encoding prediction value of the right view pixel f̃ i

n,r in the left
view, and w1and w2 denote the weights of inter-view and inter-frame predictions that
satisfy w1 + w2 = 1. From Eqs. (16) to (19), the pixel reconstruction at the decoder
side is described based on the expectation of pixel value in the previous frame or the
time-synchronized frame in adjacent view.

Similarly, the computation of E[(f̃ i
n)

2] can also be classified into four categories:
1) If the current pixel is intra-frame predicted, E[(f̃ i

n)
2] will be computed as

E

[

(

f̃ i
n,r

)2
]

= θin,r ·
(

⌢

f
i

n,r

)2

+ (1− θin,r) · θin−1,r · E
[

(

f̃k
n−1,r

)2
]

+(1− θin,r) · (1− θin−1,r) · E
[

(

f̃ i
n−1,r

)2
] (20)

2) If the current pixel is inter-frame predicted, E[(f̃ i
n)

2] will be computed as

E[(f̃ i
n,r)

2] = θin,r · {(êin,r)2 + 2êin,r · E[f̃ j
n−1,r] + E[(f̃ j

n−1,r)
2]}

+(1− θin,r) · θin−1,r · E[(f̃k
n−1,r)

2]

+(1− θin,r) · (1− θin−1,r) · E[(f̃ i
n−1,r)

2]

(21)

3) If the current pixel is inter-view predicted, E[(f̃ i
n)

2] will be computed as

E[(f̃ i
n,r)

2] = θin,r · {(êin,r)2 + 2êin,r · E[f̃ o
n,l] + E[(f̃ o

n,l)
2]}

+(1− θin,r) · θin−1,r · E[(f̃k
n−1,r)

2]

+(1− θin,r) · (1− θin−1,r) · E[(f̃ i
n−1,r)

2]

(22)

4) If the current pixel is predicted by weighting inter-view and inter-frame signals, E[(f̃ i
n)

2]
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will be computed as

E[(f̃ i
n,r)

2] = θin,r · {(êin,r)2 + 2êin,r · (w1 · E[f̃ j
n−1,r] + w2 · E[f̃ o

n,l])

+w1
2 · E[(f̃ j

n−1,r)
2] + w2

2E[(f̃ o
n,l)

2] + 2w1w2E[f̃ j
n−1,r · f̃ o

n,l]}
+(1− θin,r) · θin−1,r · E[(f̃k

n−1,r)
2]

+(1− θin,r) · (1− θin−1,r) · E[(f̃ i
n−1,r)

2]

≈ θin,r · {(êin,r)2 + 2êin,r · (w1 · E[f̃ j
n−1,r] + w2 · E[f̃ o

n,l])

+w1
2 · E[(f̃ j

n−1,r)
2] + w2

2E[(f̃ j
n,l)

2] + 2w1w2E[f̃ j
n−1,r] · E[f̃ o

n,l]}
+(1− θin,r) · θin−1,r · E[(f̃k

n−1,r)
2]

+(1− θin,r) · (1− θin−1,r) · E[(f̃ i
n−1,r)

2]

(23)

Based on the previous recursive computations of E{(f̃ i
n,r)} and E[(f̃ i

n,r)
2], the end-to-

end distortion for MVC-based 3D medical video streaming can be calculated.

2.2.4. Cross-layer Optimization Formulation

Generally, to guarantee the smooth video playback at the receiver, the transmission time
for the packet needs to be constrained by the normal playback frame rate. Let us denote
the packet number for one frame Np, the normal playback frame rate Fp, and the maxi-
mum allowable transmission delay for one packet Tmax, and we can obtain Tmax = 1

Np·Fp
.

By considering the transmission delay constraint we can formulate the cross-layer opti-
mization problem by minimizing end-to-end distortion as,

(mhash(d0, ..., dm−1)
opt, QP opt, zopt) = argmin

m∈H,QP∈Q,z∈Z

D(m,QP, z)

subject to t<Tmax,
(24)

wheremhash(d0, ..., dm−1)
opt denotes the optimal hash chain parents for the current packet,

QP opt denotes the optimal quantization parameter for the packet to adapt to the available
channel capacity, and zopt denotes the optimal MCSs. In Eq. (24), the H, Q and Z

denotes the candidate hash chain parents selection scenarios, the candidate QPs and
the candidate MCS modes, respectively, t denotes the transmission time for the current
packet and D(m,QP, z) is the end-to-end distortion for the packet under the combination
of parameters m, QP and z. Specifically, the instantaneous transmission time t of one
packet is equal to S(QP )

Cz
, where S(QP ) denotes the packet size which is determined by the

selected encoding QP , and Cz denotes the transmission rate provided by the MCS mode
z. To minimize the video quality fluctuations among the frames and keep the balanced
quality between the views, the calculations of Q and Z for the current packet are relative
to those values of the co-located packets in previous frames and adjacent views.
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To solve Eq. (24), one can recursively compute the end-to-end distortion for each
combination of parameters and then select one combination of parameters that lead to
minimal distortion. However, this exhaustive search of the optimal parameters is time-
consuming. To reduce the complexity of the cross-layer optimization, the branch and
bound algorithm in [32] is used to reduce the search space for each type of parameters.
Specifically, we prune the search space by reducing the candidate parameter set of the
application and physical layers. At the physical layer, a subset of the MCSs result in very
high packet loss probability when the channel SNR is low. In such cases, they are pruned.
We utilized a packet loss rate bound as a threshold for pruning the sub-optimal MCSs.
In our implementation, the target packet lose rate bound is set to 2%. At the application
layer, the initial candidate QP range is shown in Table 3, and the QP range estimation
based on the rate-quantization-model [32] is utilized to reduce the QP range. For the
authentication, the hash chain parents will be reduced from 5 to 2 according to the PLR
from 30% to 0 every other 10%. Thus the cross-layer optimization was implemented in
practice based on a reduced parameter search space. The specific flowchart of the low
complexity algorithm can be found in [32].

3. Experimental Results

We implemented the proposed cross-layer optimization scheme for 3D medical video
streaming over LTE downlink with the H.264/MVC software and matlab software [33].
Specifically, we simulated the hash-chaining-based authentication scheme in the proposed
cross-layer optimized 3D medical video streaming approach. In the simulation, the medi-
cal 3D clips, surgery with spatial resolution of 960×540 and laparoscope (navigate) with
640×480 [34] were used to verify the performance of proposed authentication and stream-
ing approach. The specific experimental parameters are shown in Table 3.

To verify the advancements of the proposed approach, the state-of-the-art approaches
including the streaming approaches with single-path hash-chaining-based authentication
[16] and joint source-channel optimized multi-path hash-chaining-based authentication
[17] were utilized as the baseline schemes. For having a fair comparison, we used the
adaptive modulation and channel coding scheme in LTE at the physical layer when we
experimented with the joint source-channel multi-path hash-chaining-based authentica-
tion.

3.1. Distortion estimation accuracy

For the proposed medical streaming approach, accurate end-to-end distortion is the basis
for high performance cross-layer optimization. To demonstrate the accuracy of proposed
end-to-end distortion estimation approach, we performed distortion estimation for 3D
medical video streaming at different channel conditions. Fig. 4 shows the distortion
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Table 3. The specific experimental parameters

Coding structure IPPP with inter-view prediction

Error concealment Temporal replacement

Maximal reference
frames

4

Candidate MCS mode Table 1

Candidate QP range 20-45

Authentication Hash-chaining-based approach

Average SNR (2,4,9,14,20)dB

SNR distribution Rayleigh

Transmission rate 1M symbol/s

estimation accuracy in terms of peak signal to noise (PSNR) for 3D surgery sequence
under different channel conditions. Fig.4 (a) and (b) show the distortion estimation
results for different encoding bit-rates with 3% packet loss rate (PLR) and Fig.4 (c) and
(d) show the distortion estimation results for Surgery and Laparoscope with rates of
2200kbps and 1000kbps (average rate for each view) under different PLRs of 1%, 3%, 5%,
and 7%. From Fig. 4, it can be seen that the proposed distortion estimation approach can
accurately obtain the end-to-end distortion. For good channel quality (low packet loss
rate), the accuracy of distortion estimation is as expected higher than that of bad channel
quality (high packet loss rate). This observation reflects that the packet loss events are
very random and the packet loss probability is difficult to be accurately predicted.

3.2. Authentication verification performance

For the proposed hash-chaining-based authentication approach, the authentication bit-
rate can be adaptively added into the transmission to obtain the optimal authentication
probabilities under different channel conditions in terms of the rate-distortion trade-off.
Fig. 5 shows the authentication verification probabilities with single-path hash-chaining-
based authentication (Singlepath), joint source-channel optimized multi-path authentica-
tion (JSCC-Multipath) and the proposed cross-layer optimized multi-path authentication
(CR-Multipath). It can be seen from Fig. 5 that under bad channel conditions, the
authentication success probabilities are relatively lower than those of good channel qual-
ities for all three approaches. CR-Multipath can always achieve the highest verification
probability among the three approaches. This is because CR-Multipath can dynamically
select the authentication hash chain parent, and at the same time the source coding bit-
rate dynamically adapts to the channel so that the packet loss rate is reduced and the
authentication success probability is increased. The Singlepath approach only adds one
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Fig. 4. Distortion estimation accuracy

authentication path in the transmission and it cannot successfully be authenticated when
any packet in the path is lost. As for the JSCC-Multipath approach, it suffers from lower
content-adaptive protection with a transmission time constraint for the packets and so it
incurs a relatively higher delay-induced PLR and lower verification probability than the
CR-multipath approach.

3.3. Communication overhead

We recorded the additional hash bits as the communication overhead to evaluate the pro-
posed authentication approach. We compared the additional communication overheads
for three authentication approaches under different channel conditions. Fig. 6 shows the
overhead ratio over the total bit-rate for two views received by the end-user for different se-

18



2 4 9 14 20
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

SNR (dB)

V
er

ifi
ca

tio
n 

P
ro

ba
bi

lit
y

Surgery

 

 

Singlepath
JSCC−Multipath
CR−Multipath

(a)

2 4 9 14 20
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

SNR (dB)

V
er

ifi
ca

tio
n 

P
ro

ba
bi

lit
y

Laparoscope

 

 

Singlepath
JSCC−Multipath
CR−Multipath

(b)

Fig. 5. Authentication verification probabilities under different channel conditions

quences. From Fig. 6, it can be seen that the overhead is gradually reduced with improved
channel conditions for JSCC-Multipath and CR-Multipath. It indicates that the trans-
mission bit-rate gradually increases with dynamic MCS and in the mean while the bit-rate
received by the end-user increases with improved channel conditions. Consequently, the
overhead ratio decreases with improved channel quality. The overhead for Singlepath
approach is almost unaffected since a fixed MCS is used. For the overhead comparison
between JSCC-Multipath and CR-Multipath, we note that the CR-Multipath adaptively
regulates the authentication overheads with dynamic channel conditions so that it can
reduce the overhead when compared to JSCC-Multipath.
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Fig. 6. Communication overheads under dynamic channel conditions
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Fig. 7. The selected number of authentication hash parents and MCS modes for different slices

3.4. 3D Medical Video Streaming Performance

In the proposed system, the authentication redundancy bit-rate is adaptively added
by cross-layer optimization. Hence, the received 3D medical video quality dynamically
changes with the time-varying channel quality. The selected MCS modes and the number
of authentication hash chain parents for a set of 3D video slices are shown in Fig. 7. From
Fig. 7, it can be seen that the MCS modes with small size constellations and powerful
channel codes (small MCS mode indexes), and large number of hash parents were selected
to guarantee the transmission and authentication reliability under the transmission delay
bound at the condition of γ̄=4dB. For γ̄=14dB, the MCS modes with larger size constel-
lations (larger MCS mode indexes) and small numbers of hash parents were selected to
increase the transmission capacity and decrease the authentication redundancy bit-rate.
Thus, we see that the proposed cross-layer optimization scheme can properly select the
MCS mode and authentication hash parent numbers to make the encoded video stream
and the added authentication overheads dynamically adapt to the time-varying channel.

Fig. 8 shows the PSNR performance for 3D medical video streaming under different
channel qualities. The PSNR value in Fig. 8 is the average PSNR for two views. At the
conditions of γ̄ = 2dB and γ̄=4dB, the proposed CR-Multipath approach improves the
streaming performance significantly over the other two approaches. This is because the
cross-layer optimized parameter selection makes the streamed content and the added au-
thentication redundancy bit-rate adapt to the channel quality and further avoids possible
packet losses. For γ̄=14dB and γ̄=20dB, the CR-multipath approach improve the 3D
medical video streaming performance at a limited range over the other approaches since
the packet loss is not very serious.
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Fig. 8. The 3D video streaming performances under different channel conditions for different
approaches

Five anaglyph 3D images (101th frame) of the sequence Surgery (one original frame,
two decoded frames at the condition of γ̄=4dB and two decoded frames at the condition
of γ̄=14dB) are shown in Fig. 9. From the perceptual quality comparison of the images,
it can be seen that the proposed cross-layer optimized 3D medical video transmission ap-
proach can provide superior subjective quality to the traditional streaming approach with
joint source and channel coding optimized multi-path hash-chaining-based authentication
and the streaming approach with the single path hash-chaining-based authentication. Es-
pecially, for SNR when the packet loss is serious, the proposed cross-layer optimization can
take an active action on the suppression of packet loss. This can be verified by noticing
the upper regions of images in Fig. 9.

4. Conclusion

This paper presented a cross-layer optimized 3D medical video streaming and au-
thentication approach for wireless telemedicine application over LTE. By considering the
authentication requirements of 3D medical video, we performed a joint optimization of
the parameters of different protocol layers including the application authentication redun-
dancy and video coding bit-rate, and the physical layer MCS are performed to improve
the error-resiliency capability of 3D medical video streaming. In the optimization, the
MVC-based recursive end-to-end distortion estimation approach is derived by considering
inter-view prediction. Extensive experimental results showed that the proposed cross-layer
optimization approach can improve the 3D medical video streaming performance in terms
of PSNR over a state-of-the-art joint source-channel optimized multi-path authentication
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(a) Original 3D medical image

 

(b) JSCC-multipath decoded 3D medical im-
age at the condition of γ̄ =4dB

 

(c) CR-multipath decoded 3D medical image
at the condition of γ̄ =4dB

 

(d) JSCC-multipath decoded 3D medical im-
age at the condition of γ̄ =14dB

 

(e) CR-multipath decoded 3D medical image
at the condition of γ̄ =14dB

Fig. 9. Five anaglyph 3D images (101th frame) of Surgery ((a) one original frame, two decoded frames
(b) and (c) at the condition of γ̄ =4dB, and two decoded frames (d) and (e) at the condition of γ̄
=14dB)
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approach.
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