
1

Video Delivery in Dense 5G Cellular Networks
Antonios Argyriou†, Konstantinos Poularakis∗, George Iosifidis‡, Leandros Tassiulas∗
†Department of Electrical and Computer Engineering, University of Thessaly, Greece

∗Department of Electrical Engineering, and YINS, Yale University, USA
‡School of Computer Science and Statistics, Trinity College Dublin, and CONNECT Centre, Ireland

Abstract—One of the main challenges for mobile network
operators today is the efficient delivery of mobile video-on-
demand (VoD) services. In order to satisfy their requirements,
we must revolutionize the way we manage the densely deployed
resources in 5G wireless networks, and tailor their operation
for video content delivery. Two key approaches that leverage the
density of the 5G infrastructure are: (i) the systematic usage
of in-network storage resources available in base stations (BSs)
for the deployment of smart caching policies, and (ii) the video
delivery optimization techniques which leverage the novel multi-
tier, dense, and heterogeneous structure of 5G systems. We first
provide an overview of the main features of the densely deployed
5G networks that are expected to shape mobile VoD services.
Next, we present specific solutions that have been recently
proposed for each one of the approaches above, and discuss
the main lessons learned. Finally, we discuss a number of open
problems for video delivery in dense 5G systems.

I. INTRODUCTION

5G is the next generation of wireless systems that aspires to
become a paradigm shift and not just an incremental version
of existing cellular networks. One of its key features will be
the extremely dense deployment of base stations of various
form factors. This heterogeneous and multi-tier architecture is
envisaged to deliver orders of magnitude higher throughput,
lower delay, and energy efficiency. This approach will enable
5G systems to support a significantly enlarged and diversified
bouquet of applications. Clearly, one of the main tasks of
these ultra-dense 5G networks will be to satisfy mobile video
demand ranging from HD to UHD and novel multimedia
services, which is driving the mobile data traffic growth.

The content consumption habits of mobile users are rapidly
changing. Nowadays, users spend more time on their mobile
devices than their TVs. To exemplify, according to Nielsen
ratings, 84% of mobile devices are used while watching TV
programs offered by Video on Demand (VoD) platforms such
as Netflix, Hulu, and Apple TV. This is facilitated by the
latest developments in video delivery technology, ranging from
adaptive streaming mechanisms to sophisticated video codecs,
that aim to revolutionize the user viewing experience. These
developments place huge pressure to Mobile Network Opera-
tors (MNOs) which need to leverage these novel technologies
and develop clean-cut video delivery solutions to satisfy the
unprecedented, in volume and performance, requests of users.

The most popular types of requests are video streaming and
video content downloading. In both cases, the user experience
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is enhanced through the delivery of high resolution video
content that is delivered with low delay, and rendered smoothly
and without interruptions (playback stalls), a condition that
is more challenging to satisfy in the case of streaming. 5G
operators are planning to satisfy these requests through the
dense deployment of wireless infrastructure that can both
increase the capacity but also the energy efficiency of video
delivery. At the same time however, they must suppress their
operating expenditures. This can be achieved by utilizing
efficiently the available physical resources and by reducing
the energy consumption of the deployed active network com-
ponents. Oftentimes, the above objectives are contradicting,
and a proper balance must be carefully selected, a task that
becomes more intricate the denser the networks become.

To that end, two novel features of ultra-dense 5G systems
are expected to play a key role in efficient video delivery:

• the in-network storage that is available today in abun-
dance and at low-cost, and

• their multi-tier, increasingly heterogeneous and dense
architecture of the Radio Access Network (RAN).

Storage, a hitherto underutilized resource in wireless networks,
can be deployed at large in 5G systems. This is essential
for the transformation of cellular networks to mobile video
delivery platforms: storage can substitute expensive capacity
investments and, at the same time, improve the user experience
through proper caching policies. The dense multi-tier hetero-
geneous structure, on the other hand, enables concurrent and
multi-path connections from the core network to the end users.
This creates novel opportunities for optimizing the delivery
of video content, either by using enhanced physical layer
techniques or smart routing approaches.

In this paper we first provide a brief overview of the
key features of the dense 5G system that are expected to
revolutionize video delivery, and of the latest developments
in mobile VoD technology (Section II). Then, we analyze
how the growing demands of users can be satisfied through
two classes of solutions: (i) advanced network-aware caching
strategies for video delivery through downloading or streaming
(Section III), and (ii) holistic end-to-end optimization for video
delivery through streaming that features proactive and dynamic
channel-aware algorithms (Section IV). Finally, Section V
summarizes and presents key future research questions.

II. BACKGROUND: 5G AND MOBILE VIDEO

A. Dense 5G System Architecture
5G networks are expected to be complex due to coexistence

of diverse wireless communication technologies and the ultra-
dense deployment of various types of base stations and other



Fig. 1. Overview of ultra-dense 5G networks. Caching of video content
(denoted "S") will be realized at the network core, at the RAN, base stations
(BSs) of different form-factors and even at mobile devices. Advanced physical
layer techniques, such as CoMP and D2D transmissions, will proliferate
and support Ultra High Definition (UHD) video delivery. SDN and NFV
capabilities will allow for per flow routing and bandwidth provisioning, and
sharing of network and storage resources.

radio elements. In the sequel we describe the 5G model placing
emphasis on the aspects pertinent to the density of wireless
network infrastructure and video delivery. An overview of the
envisaged system architecture is presented in Fig. 1.

Multi-tier Architectures and Storage. 5G networks will
be characterized by the high density of base stations (BS)
[1]. Various types of small cell base stations (SCBS), will
underlay the typical macro base stations (MBS) and give
rise to the multilayer heterogeneous cellular network (HCN).
Therefore, BS density means that users will concurrently
be within range of multiple BSs, often of different types,
and there will exist multiple paths connecting them to the
requested content. Each path will yield a possibly different
cost for the operator, and different performance for the users.
For example, SCBSs will often be connected to the network
core through long-range and low-capacity backhaul links, but
typically will serve few users. Hence, delivering video through
a SCBS can increase the actual throughput but it might also
introduce high latency. On the other hand, this multilayer
dense structure increases intra-cell interference which, in turn,
reduces the spectral efficiency of wireless transmissions within
the cells, especially for SCBSs located close to the MBS. This
often results in highly fluctuating levels of interference, and
therefore complicates the resource allocation decisions that
rely on such time-sensitive information.

Another novel feature of 5G systems is the utilization of
in-network storage. This has become a readily available and
low-cost commodity, and as such, can be leveraged to improve
the performance of 5G systems. For example, popular content
caching at the network core can reduce the expensive off-
network bandwidth consumption, and improve the end-user
experience. Similarly, caching at the RAN or even at the base
stations, expedites content delivery and alleviates the problem
of limited capacity of the SCBS backhaul links [2]. Besides,
the large storage capacity of modern user devices allows them
to cache content and distribute it through device-to-device
(D2Ds) communications. Operators have begun experimenting
with such solutions, following similar developments in wire-
line networks.

Network Sharing. Finally, a pivotal idea in 5G systems
is the extensive employment of cooperation mechanisms, in

all possible levels. From the MNOs’ perspective, the hard-
ware abstraction and virtualization offered by software-defined
networking (SDN) and network function virtualization (NFV)
offer new network sharing solutions that can suppress their
expenditures especially in urban areas of dense deployments.
For example, operators can share their storage resources to
cache video content, or share the cached items and even co-
design their caching policies [3]. From the end users’ perspec-
tive, the proliferation of advanced handheld devices facilitates
cooperative solutions such as direct exchange of video content
and relaying of video streams. Such D2D solutions, either in
fully autonomous mode or in cooperation with the operators,
are expected to play a key role in 5G networks [4]. Mobile
video delivery in particular, can greatly gain by such schemes
due to the inherent locality of video content popularity.

B. Mobile Video Technology

In this new era, it is crucial for 5G operators to understand
the latest advances in video technology, as well the factors that
shape user satisfaction (utility) from mobile video viewing.
Both of these aspects need to be taken into account when
designing their video delivery mechanisms that may be based
either on downloading or the more sophisticated adaptive
streaming techniques. Video downloading performance de-
pends on the throughput of the communication link that affects
eventually the video startup delay. On the other hand adaptive
streaming has a more complicated set of performance metrics
as we discuss next.

Adaptive Streaming. One class of mobile video delivery
techniques that are currently gaining increasing popularity
are the adaptive streaming protocols. Prominent examples
include dynamic adaptive streaming over HTTP (DASH) [5],
and HTTP Live Streaming (HLS). The main idea is that a
video file is stored as a sequence of smaller segments with a
typical duration of a few seconds. Each segment is available
at different quality in terms of video signal SNR, spatial
resolution, frame rate, or any combination of these different
quality metrics. Based on the actual end-to-end throughput
that each user achieved during the delivery of the current
segment, the protocol determines the quality (and hence the
size) of the next segment. The goal is to maximize the video
quality while minimizing the two most important elements
of the video streaming Quality of Experience (QoE): (i) the
number of video playback stalls, and (ii) the playback stall
duration. However, adaptive streaming protocols are not aware
of the network-side state and objectives. For example, they
can induce high energy consumption by overloading certain
network components. It remains an open question to design
proactive streaming services that ensure high user QoE and
meet the operators’ goals.

Scalable Video Coding. Unlike data, video can be available
in several different quality levels described in the last para-
graph. Content providers, traditionally make available multi-
ple video versions encoded at various rates. These versions
offer different user experience and have different storage and
network bandwidth requirements. Alternatively, layered video
encoding [6] (or scalable video coding, SVC) can offer the



same flexibility with lower storage requirements regardless
of the delivery mechanism (downloading or streaming). With
SVC each video is encoded into different layers which, when
combined, produce a quality that increases as more layers
are used (e.g. higher frame rate, higher resolution). This
technique introduces an encoding overhead (hence, requires
more bandwidth) but offers network flexibility since the layers
of each file can be cached at the available storage reservoirs,
Fig. 1, and routed over different paths. From the operator’s
point of view, it is important to determine which technique
(versions or layers) is more suitable for satisfying the diverse
user requirements. This problem that has been investigated for
wireline networks [7], takes an entirely new twist in the multi-
layer heterogeneous 5G systems [8].

Video Codecs. In addition to the explosive growth in on-
demand video, we are in the middle of a transition from
high definition video to ultra high definition (UHD) video,
with higher 4K/8K resolution, higher 10-bit color accuracy,
and higher dynamic range. HEVC/H.265 was built to meet
the previous requirements and match the capabilities of future
screens. HEVC/H.265 is nearly 50% more efficient than H.264
in terms of bitrate for the same video quality at the cost
of higher complexity at the encoder and decoder. Beyond
HEVC/H.265, there are other significant developments in
video codecs that depart from the past. AV1 will be the
first codec released by the Alliance for Open Media (AOM).
It is designed to replace Google VP9 and to compete with
HEVC/H.265. One of its competitive advantages is the Al-
liance membership, which ensures the royalty-free deployment
of AV1 playback in browsers, mobile devices, and smart
TVs, as well as the distribution of AV1-encoded content by
YouTube, Netflix, and Amazon. Other video coding standards
based on HEVC/H.265 and AV1 may also proliferate in
the future. These include multiview video coding like the
MV-HEVC extension, and 3D video extensions of H.264
and HEVC/H.265, technologies that use multiple independent
video streams. It is critical for the operators to be fully aware
of the video content that they deliver so that they can configure
and optimize their networks accordingly. For example, during
streaming, the smaller video files of the newer codecs are more
robust to network performance fluctuations, while the same
video content consumes fewer resources and induces lower
costs. In the sequel, we discuss in detail such solutions.

III. NETWORK-AWARE VIDEO CACHING

Proactive in-network caching has been traditionally consid-
ered a very efficient method for optimizing content delivery. It
enhances the user experience (reduces delays), and lowers the
network costs by decreasing the bandwidth consumption and
the network energy expenditures. Given the vast number of
video files, the challenge here is to design the video caching
policy, i.e., decide where to cache each video file and what
encoding rate (quality) to use for it. For this caching problem,
we consider video delivery through downloading. Hence, the
video performance metric of interest is the video startup delay.
This is a crucial QoE metric regardless of the delivery method
(streaming or downloading) and correlates positively to the
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Fig. 2. (a): Left: In typical caching, both SCBSs cache video 1 (most
popular) and two multicast transmissions are required for the remaining video
requests. Right: In multicast-aware caching, video 1 requests are transmitted
with one multicast, and local requests are satisfied by low-cost SCBS
caches. (b): Energy benefits of multicast-aware caching, over conventional
caching, increase when user demand becomes massive and video popularity
distribution more steep (captured by the shape parameter of a Zipf probability
distribution [11]).

engagement of users. We briefly touch upon video streaming
in this section by proving new and unpublished results, while
we discuss in detail methods for optimizing it through an end-
to-end network optimization in Section IV.

Even when we consider video downloading, caching is
already a computationally hard problem and various solu-
tions have been previously proposed for wireline networks.
However, video caching in dense 5G HCNs is substantially
different because of: (i) the heterogeneous and dense multi-
tier network structure, (ii) the video demand which is often
expected to be massive (e.g., during sport events), and (iii)
the user requests which, unlike other cases, have significant
elasticity in terms of video quality. The mobile video delivery
solutions discussed in the section fit perfectly into the SDN
paradigm. SDN allows the operators to employ extremely fine-
grained traffic engineering control. For example, routing and
bandwidth allocation can be designed on a per-flow basis
instead of using generic origin-destination criteria. Therefore,
for each video service that a user receives, the network can
employ a different video delivery policy.

A. How to Design Video Caching Policies in HCNs?

The first question we investigate in this context is how
to optimally design a policy for caching video content at
the network edge, i.e., at various small cell BSs. This idea,
originally proposed in [2], is very promising [9] as it reduces
the required backhaul capacity, a huge cost factor for the
deployment of SCBS. Unlike prior works, we studied this
problem by taking into account the limited wireless capacity
of SCBS. Clearly, caching a file at a base station that does



not have enough capacity to deliver it, is of no practical use.
This coupling is more pronounced when user demand is large
enough and/or the BS are of very small form factor, e.g., a
pico or femto eNB, as is the case in ultra-dense 5G systems.

In particular, in [10] we analyzed this scenario by employing
facility location theory, where each facility represents a cached
item at an SCBS. Our goal was to find the servicing policy
that maximizes the SCBS cache hit ratio and therefore reduces
the number of energy-consuming MBS transmissions. The
obtained solution yields not only the caching but also the
routing decisions. In other words, it dictates where to cache
each item and how to route each request. The model considers
important features of the system, such as the storage and
bandwidth heterogeneous constraints of the base stations, and
the spatial variations in content popularity. We reduced this
problem to the Unsplittable Hard-Capacitated Metric Facility
Location instance and, using this mapping, we designed new
approximation algorithms. Through extensive evaluation it was
found that these joint routing and caching algorithms perform
very well (10% optimality gap in practice), and achieve an
MBS load reduction that outperforms by almost 40% the
caching policies that are link-capacity unaware.

A similar joint optimization approach was followed in
[11] where we co-designed caching and multicast policies.
Multicast is a particularly efficient technique as it exploits the
broadcast nature of the wireless medium and replaces multiple
unicast transmissions. In 5G systems, where the mobile data
demand will often be massive, and an increasing number of
multimedia services (e.g., social networking platforms) will
employ the one-to-many communication paradigm, multicast
is expected to have a special role. Clearly, this will affect the
policies for caching video files at the base stations or other
locations at the RAN, as it is explained with the example of
Fig. 2(a). Therefore, we need to understand how is caching
affected by multicast, and how can we combine these two
functions to reduce the network’s energy consumption.

To address this question, we introduced a discrete optimiza-
tion problem that jointly devises the caching policy (where
to cache each video file) and the multicast strategy (which
file and from which BS to transmit). We showed that this
multicast-aware caching problem is NP-Hard even to approx-
imate within a factor of O(

√
N), where N is the number

of SCBS per macrocell. We used randomized-rounding tech-
niques and developed solutions with performance guarantees
under the assumption of (bounded) capacity expansion. We
also proposed heuristic solutions (requiring no expansion) that
perform very well in practice. Trace-driven evaluation showed
that these joint designs achieve energy savings that largely
exceed the conventional multicast-unaware caching policies.
Moreover, these benefits increase as the demand becomes more
heavy (number of requests/sec) and more steep (a few video
files attract most of the demand), Fig. 2(b).

B. How to Cope with the Elasticity of Video Quality Demand?

A second question is how to better satisfy the user re-
quests, given that these are often elastic in terms of video
encoding quality. Delivering high video quality to the users
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Fig. 3. (a): Cooperative caching architecture where local caches at nearby
SCBSs are jointly used to serve the area’s demand. (b) impact of cooperative
caching on video streaming performance. The proposed layer-aware coop-
erative caching (LCC) strategy reduces the stalls and increases the quality
of streamed videos (Q5>Q4>...>Q1) compared to the indepenent caching
strategies (IC) or other cooperative solutions (e.g., Femtocaching [2]) which
are layer agnostic (decisions made per video file rather than per layer).

increases their satisfaction, and hence the potential revenue
of the operator, but accelerates the consumption of network
resources. Therefore, special emphasis should be placed in
balancing the user experience and the network costs. The latter,
in many cases, can be reduced through smart network sharing
techniques.

In detail, [8] proposed a methodology which determines
where to cache each video file and at what quality. These
decisions are affected by the network architecture, namely the
bandwidth in (and cost of) each available routing path. Be-
sides, the caching policy is shaped by the operator which might
prefer to prioritize the users’ satisfaction or the suppression
of its expenditures. Regarding video coding, we evaluated the
impact of different encoding techniques, namely we compared
versions of video files and layered encoding (SVC). We found
that when user requests are heterogeneous in terms of video
quality levels (i.e., users ask for both low and high quality),
then SVC can be a better solution than versions.

Operators can reap higher benefits from video quality elas-
ticity if they share their network resources. Namely, in [3]
we designed caching algorithms for operators that cooperate
by pooling together their physically co-located local caches,



as shown in Fig. 3(a). Instead of fetching content from distant
servers, when a requested file is not available at the SCBS, the
operator retrieves it from the nearby cache of another MNO.
This approach allows the data to be available at the SCBS of
the MNO for serving future requests besides the current. When
layers are used instead of versions, there are more degrees of
freedom in sharing, but the caching problem becomes more
challenging.

We proposed an approximate solution to this cooperative
caching problem by partitioning the cache capacity into por-
tions dedicated to serve an MNO’s needs and other portions for
its collaborators. Using real traces of SVC-encoded videos it
was shown that this solution can achieve up to 25% reduction
in delay over existing layer-agnostic caching schemes (caching
per video file instead of per layer) and 75% over non-
cooperative caching solutions (each operator optimizes its own
caching policy). As a side benefit, the proposed cooperative
layer-aware caching algorithms achieve smoother playback for
video streaming. The latter arise when the users view their
video content while downloading it, and a key concern is
to avoid video playback stalls. The cooperative layer-aware
solution manages to minimize the undesirable stalls and deliver
a significant portion of the requested files with very high
quality, Fig. 3(b).

IV. END-TO-END VIDEO STREAMING OPTIMIZATION

In addition to storage, operators in dense HCNs have to
manage the allocation of the wireless resources like time
slots, power, spectrum, and also backhaul capacity. In dense
networks the challenge is that the previous tasks have to be
accomplished across the numerous heterogeneous BSs in the
RAN and the backhaul network infrastructure. In addition,
when we consider video streaming, it is more challenging to
derive the optimal resource allocation.

By performing a video-aware allocation and optimization of
resources in dense networks we can have tremendous benefits
for the user experience and the operator costs. However, video-
aware optimization methodologies typically focus on a specific
part of the network. Such an optimization may focus on the
multiple BSs inside a macrocell and their multiple associated
users [12], a single video streaming flow, or the storage
resources in the RAN and the users [2]. However, dense HCNs
will require sophisticated network decisions for the allocation
of spectrum, time, backhaul capacity, the used power across
different BSs, D2D resources and all this in an environment
of varying channel conditions. This rather challenging and
dynamic environment that emerges in the dense multi-tier
architecture forces us to adopt a holistic end-to-end resource
optimization approach to maximize the performance gains and
minimize a potentially unbearable servicing cost.

In this complex system it is essential to identify the most
critical applications and focus on understanding and opti-
mizing their performance. In [13] we focused on adaptive
video streaming with DASH and considered an HCN RAN
powered by LTE while we also added in the system a detailed
model of the network backhaul. The first question we wanted
to answer for this multi-tier system was how the backhaul

network load and the total power consumption (backhaul and
RAN) affect the MNO decisions for radio resource allocation,
user association to the densely deployed BSs, and the final
delivered video streaming quality of each user. We developed
an optimization framework that employs a detailed power cost
model for the entire multi-tier system (including the backhaul
infrastructure). The algorithm ensures that the users are associ-
ated to the optimal BS and receive such a faction of the LTE
resources that the objective is maximized. The optimization
objective balances the quality of the delivered video (users’
satisfaction) and the operator cost with the introduction of two
balancing parameters named a and b respectively. The related
results for different values of these parameters can be seen
in Fig. 4(a), 4(b). It is clear that the MNO has at its arsenal
a full set of operating points that tradeoff the total energy
consumption and the user video quality, by carefully adjusting
the parameters of the proposed framework, or alternatively by
increasing the density of the multi-tier topology [13].

The second question we investigated was how to optimally
design a fast resource allocation policy suitable for adaptive
video streaming that requires only local SCBS information.
We adopted a resource allocation model that corresponds to
the actual operating principle of LTE-A (resource blocks and
power). To ensure that the system fits in a landscape of densely
deployed BS, we relax the scheduling optimization problem
so that it allows video quality adaptation on a large time scale,
and a fast derivation of the power and RB assignment on very
short time scales. This can allow the plethora of individual BSs
to reach independently a solution which, albeit suboptimal, can
be employed for real dense 5G systems that have stringent time
constraints.

Another question in the dense multi-tier architecture is how
to manage the wireless radio resources in the complete macro-
cell when video streaming traffic dominates. As we explained
in Section II, the multi-tier architecture of dense HCNs suffers
from a specific problem, namely strong intra-cell interference.
In our baseline architecture of Fig. 1 the challenge is the
optimal allocation of the spectrum and time slots between
the MBS and the picocells/femtocells. In [14] we investigated
the implications of a dense multi-tier HCN interference on
video quality. We proposed a modeling framework that can
optimize the allocation of time across a macro tier and a
densely deployed small cell tier, the selected video quality of
the content to be delivered to each user, and the rate allocated
to each user to support smooth video streaming. As the density
of the small cells is increased our optimization allocates more
resources to this tier by considering the video quality as the
optimization metric. It is interesting to note that having a
fixed allocation of the time between the different tiers leads to
significantly sub-optimal performance for the video streaming
users. As the video quality of the streams that the users request
becomes more heterogeneous, and localized at specific BSs,
optimizing the time allocated to different tiers becomes even
more critical for the overall video QoE (playback freezes and
video resolution).
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Fig. 4. Holistic resource allocation employed in the architecture of Fig. 1
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V. DISCUSSION AND CONCLUSIONS

One of the highest priorities for the emerging ultra-dense
HCNs is the efficient delivery of mobile video content. This is
an equally important and challenging task. It requires the re-
design of video delivery mechanisms, by taking into account
the diverse types of radio and network components in emerg-
ing dense 5G systems (e.g., Base stations, backhaul links,
etc.); the user demand that will be often be massive, rapidly
varying, and with stringent QoE constraints; and the latest
developments in video technology. The presented solutions in
this paper contribute towards this ambitious goal, by providing
analytical and numerical evaluation results for the design of
such mechanisms.

Nevertheless, there exist many remaining issues that need
to be carefully addressed. For example, the joint caching and
routing (or, multicast) policies presented above, are designed
based on long-term statistics, with the goal to be applied for
long time periods (e.g., belong to the class of randomized
algorithms). However, in certain cases the network conditions
vary fast with time, e.g., links have delay that changes because
of heavy interference/clutter or due to massive traffic. It is

imperative to design policies that take into account such
effects. For example, we need to develop methods for devising
caching policies when the network links have load-dependent
delay or cost parameters.

Another interesting direction is to employ more sophisti-
cated performance objectives, i.e., to go beyond minimizing
the video delivery delay. This is particularly important for
video services such as streaming and video conferencing.
Such objectives can include customizable criteria, such as
QoE metrics, where - for example - a certain minimum video
encoding level needs to be ensured for prioritized users (or,
for example, sponsored content).

Finally, an equally fascinating research avenue is the de-
velopment of more comprehensive tools that leverage new
and sophisticated aspects of dense 5G systems and allow
better understanding of video delivery performance. Besides
the consideration of intra-cell interference, and backhaul costs
as discussed in Section IV, additional examples include HCNs
with links that operate in different bands (e.g., below 6GHz,
mmWave), 5G links than span several heterogeneous BS with
different hardware and PHY capabilities.
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