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Abstract—In the chain of stereoscopic video processing, stereo-
scopic video coding and viewing are usually two independent
stages. Conventional stereoscopic video coding puts emphasis on
improving the coding efficiency by seeking the optimal trade-off
between the coding bit-rate and the signal-based distortion, while
neglecting the perceptual behaviors of binocular combination
when stereoscopic video is viewed by human beings. In this
paper, we propose to utilize binocular combination to optimize
the stereoscopic video coding from the perspective of perceptual
quality measurement. Specifically, we propose a novel binocular-
combination-oriented measurement for visual distortion, and then
derive the Lagrange multiplier for the binocular-combination-
oriented rate-distortion optimization (RDO). Via extensive sub-
jective tests, the results show that the proposed perceptual RDO
can save more than 5% BD-rate over the traditional RDO in
MV-HEVC (MultiView extension of HEVC) for stereoscopic video
coding.

Keywords—Binocular combination, Perceptual rate-distortion op-
timization, Stereoscopic video coding, Stereoscopic 3D video.

I. INTRODUCTION

Advanced 3D display technology enables the human brain to
experience depth beyond the conventional 2D plane, providing
enriched experiences to viewers. As a result, there has an
increasing number of consumer-oriented 3D video applica-
tions, such as digital cinema, home theatre, mobile 3D video,
3D games, and virtual/augmented reality. However, 3D video
applications have not successfully entered into our daily lives
due to their poor Quality of Experience (QoE) [1]. Therefore,
enhancing QoE of 3D video applications is crucial for the
success of all kinds of 3D video applications.

Generally, poor 3D QoE are caused by several factors im-
pacting 3D perception. Unlike 2D video applications, several
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forms of distortion, as well as the neurological symptoms
(such as visual fatigue and headache) induced by the ocular
adjustment to 3D depth, may lead to quality degradation of 3D
perception. In the full 3D video processing chain, 3D video
coding is a key factor affecting 3D QoE, along with imprecise
or improper 3D geometry incurred by the generation of 3D
contents. Specifically, during 3D video compression, residual
data quantization errors are inevitable and irreversible, which
degrade the 3D video quality, evaluated by traditional video
signal distortion measurement methods, such as mean squared
error (MSE) or sum of squared errors (SSE). Although these
measurement methods can sufficiently explain video signal
quality degradation, they do not perform well on 3D video
perceptual quality degradation [2][3][4]. Due to the intrinsic
nature of 3D perception in human brain, a new perceptual
quality metric for 3D video is necessary for quantifying 3D
video compression performance.

In literature, the majority of research efforts have focused
on quality assessment of compressed 3D videos. Several of
them on 3D video quality assessment have proposed various
quality metrics based on different 2D video quality evaluation
schemes [5][6][7]. These quality metrics take considerations
of the characteristics of human visual system (HVS) and 3D
vision, such as binocular rivalry [6] and binocular suppression
[7], focusing on modeling the coarse behavior of 3D perception
[7] and evaluating the 3D video quality qualitatively. Another
major drawback of those quality metrics is their high com-
putational complexity. For 3D video compression, the com-
putation requirements on quality metrics are even higher. The
perceptual distortion introduced by the coding scheme must be
quantitatively characterized at a low computational complexity.
Hence, existing 3D video quality evaluation methods cannot
be directly adopted by 3D video encoders.

Furthermore, in literature, existing stereoscopic 3D video
coding frameworks only adopt inter-view prediction for ex-
ploiting the natural inter-view correlation without considering
the human brain behavior on fusing two views in stereoscopic
video perception. In this paper, we present a novel stereoscopic
video coding scheme that is based on the binocular combina-
tion process in human brain. Therefore, it can be used for
optimizing the perceptual 3D video quality under the given
bit-rate constraint. To the best of our knowledge, there has no
such binocular-combination-oriented perceptual rate-distortion
optimization (RDO) for 3D video coding in literature.

The contributions of this paper are as follows.
1) A binocular-combination-oriented perceptual distortion

metric is proposed to characterize 3D visual distortion in
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stereoscopic video coding, where the binocular 3D perceptual
distortion is modeled as a linear fusion operation. To obtain
the binocularly combined visual distortion, the gain-control
combination of Difference of Gaussian (DoG) models in the
frequency domain has been adopted. Hence, the binocular 3D
perceptual distortion can be quantitatively characterized by the
combination of the distortions from two views.

2) We propose a novel rate-distortion function by in cooper-
ating the binocular combination characteristics of stereoscopic
video coding. Specifically, based on the coding-induced 3D
perceptual distortion measurement, the relationship between
3D perception distortion and coding bit-rate is derived based
on the rate-distortion theory. The perception-based 3D RDO is
subsequently implemented to optimize the perceptual stereo-
scopic 3D coding efficiency through optimal mode selection.
The main advantage of the proposed 3D perceptual RDO
over the traditional RDO is that the binocular combination in
the viewing stage is integrated with the compression stage,
making the coding optimization gear towards not only the
signal fidelity but also the perceptual quality preservation under
a given bit-rate constraint.

The rest of the paper is organized as follows. The related
work is presented in Section II. The 3D perceptual RDO
based on binocular combination is described in Section III.
Experimental results are presented and discussed in Section
IV. Finally, Section V concludes the paper.

II. RELATED WORK

The research work relevant to this paper can be classified in-
to three categories: stereoscopic 3D video quality assessment,
3D video RDO, and binocular combination models.

A. Quality assessment for stereoscopic 3D video coding
A significant body of work exists in the area of stereoscopic

3D video quality assessment. The first works on stereoscopic
3D video quality evaluation were based on traditional 2D
video quality evaluation tools. These works process two-view
videos (or video plus depth) independently and then average
the evaluation scores to assess the total stereoscopic 3D video
quality [8][9]. Though this type of approach can evaluate the
stereoscopic 3D video quality to a certain extent, it neglects
the natural multiview geometry in 3D video which means that
the evaluation accuracy is limited. Newer works proposed the
quality assessment of the cyclopean view through the binoc-
ular rivalry mechanism based on psychological 3D perception
[5][6][10][11]. Since the binocular suppression (a special case
of binocular rivalry) behavior also exists in binocular vision,
the authors in [5] proposed an adaptation of the 3D spatial
sensitivity by binocular fusion and suppression for performing
quality assessment. Another class of schemes for stereoscopic
3D image quality evaluation utilizes the pooling of different
classes of quality indexes to calculate the total quality measure-
ment [7][12][13][14]. Beyond the pooling of multiple quality
metrics, a quality assessment approach based on binocular
integration has been recently proposed [15]. This study is the
first to introduce the binocular combination principle into a
stereoscopic 3D video quality assessment model.

The previous approaches focused on general 3D video/image
quality assessment metrics. They considered different types of
artifacts and distortions in several stages of the stereoscopic
3D video processing and focused on building efficient and
objective 3D quality metrics. However, these metrics cannot
be directly adopted for measuring the stereoscopic 3D video
distortion by the video encoder. A stereoscopic 3D video
quality metric must be accurate so that it can optimize the
video coding efficiency. Since video is naturally a digital
signal, a quality metric based on perceptual signal distortion
is ideal for measuring 3D video quality degradations under
different bit-rate constraints. This is one of the main goals of
this paper.

B. RDO in 3D video coding
Recently, significant progress has been made in 3D video

coding (3DVC) [16]. Research efforts in 3D/multiview video
coding are typically aimed at removing the signal redundancy
among the 3D video data. Several coding tools have been
developed to improve 3D video coding efficiency [17]. RDO
[18] is an important tool for improving the video coding
efficiency. During video coding, the selection of different
encoding modes can lead to different video fidelities and
different amount of produced bits. To find the optimal encoding
mode, a Lagrange-based optimization method is predominantly
used to identify the optimal trade-off between the amount of
encoding bits and the video distortion.

In the field of 2D video coding, the literature is rich with
seminal papers that accurately model the rate-distortion func-
tion for different video coding standards [19][20], that is later
used for RDO. In recent years, perceptual RDO technologies
have gradually emerged. The goal now is to optimize the
perceptual video coding performance by removing redundancy
based on perceptual metrics [21][22].

Furthermore, for 3D video coding, several RDO-based mode
selection approaches have been proposed based on different
distortion metrics [23][24][25][26]. In [25], the authors pro-
posed a rate control scheme based on binocular suppression for
stereoscopic video coding. This work only partially considered
the binocular vision characteristics of stereoscopic video for
performing the rate control step. In [26], the authors proposed
a mode selection scheme for 3D video coding based on single-
view HVS-based perceptual distortion measurement, while
they did not touch upon the issue of binocular vision.

The previous approaches used the signal MSE or the binoc-
ular suppression characteristic to assess the 3D video quality.
Clearly, this does not accurately reflect the fusion process of
the two views in the human brain. The main problem is that
the 3D perception is generated by the human binocular visual
system. Hence, the binocular vision characteristics must be
introduced into the stereoscopic 3D video distortion model.

C. Binocular combination model
During the formation of the 3D perception in the hu-

man brain, one of the most important processes, besides
the generation of the depth perception, is the generation
of the cyclopean perception. A fundamental issue in vision
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science, that has been the focus of many psychophysical and
physiological investigations [27][28][29], is how the HVS
combines information from the two eyes to form a single
cyclopean representation of the external world. Studies in the
past have found that the binocular combination mechanism
exhibits several psychological properties, such as the cyclopean
perception [30] and Fechner’s paradox [29]. The cyclopean
perception means that people will perceive the single view
of a unified visual scene from the combination of the images
projected to the two eyes. It is one of the basic functions of
binocular combination. Fechner’s paradox refers to the fact
that a bright light presented to one eye may actually appear
less bright when a dim light is shone into the other eye [29].
These two properties highlight the theoretical foundations for
modeling the binocular combination process.

Based on the understanding of binocular combination mech-
anism in the human brain, a large number of computational
models of binocular combination have been proposed. In [31],
a weighting form of binocular combination of two views
was proposed. To capture more accurately the cyclopean
perception, the vector summation model was proposed in [32],
which characterized the binocular brightness perception as the
sum of two orthogonal vectors (with appropriate normaliza-
tions). The nature of neural cell processing in the HVS was
considered by the authors in [33] that computed the neural
responses from each eye (e.g. excitation and inhibition) for
binocular combination. However, the accuracy of interpreting
cyclopean perception in this model depends on the adopted
neural response description. Based on gain-control theory,
Ding and Sperling [34] proposed to measure the appearance
of a cyclopean image resulting from binocular combination
of two view signals by using the energy responses of the left
and right images. The model can explain well the cyclopean
perception and Fechner’s paradox.

III. BINOCULAR-COMBINATION-ORIENTED PERCEPTUAL
STEREOSCOPIC 3D RDO

In this section, we introduce the proposed RDO scheme
for stereoscopic video coding that is based on binocular
combination. In the proposed scheme, the traditional RDO
based on signal distortion is extended to RDO based on visual
distortion for stereoscopic video coding. Specifically, we first
derive a new 3D perception distortion model in terms of the
binocular combination mechanism, and then according to the
successive encoding relationship of the left and right views we
derive a new 3D perceptual rate-distortion function for right
view encoding, in addition to the traditional rate-distortion
function for left view encoding.

For the stereoscopic 3D video applications, stereoscopic
video compression and human brain binocular combination can
be understood as a single process that leads to the perception
of the 3D scene signal, as illustrated in Fig. 1. Specifically,
the 3D scene signal I3D can be expressed as two view signals
namely IL and IR. When people view the raw stereoscopic
video, the raw signals of the two views are combined into one
3D signal by the human brain with a pair of raw combination
coefficients ξL and ξR. Thus, during the 3D signal capturing

stage, the raw 3D signal can be seen as the combined form
of two separate raw signals ξL · IL and ξR · IR. During the
compression stage, IL and IR are encoded by the encoders
EncL and EncR. Although the current MV-HEVC or AVC-
MV (H.264/AVC MultiView profile) encoder simultaneously
encodes the two views with inter-view prediction, the two
views are indeed successively encoded by the same encoder
and this is equivalent to two views being encoded by two
encoders. The compressed video signals of the two views are
distributed to the client and then successively decoded by the
decoders DecL and DecR. Finally, the decoded signals ÎL and
ÎR are combined into one decoded 3D signal Î3D with another
pair of binocular combination coefficients ξ̂L and ξ̂R while
being viewed by humans.
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Fig. 1. The stereoscopic 3D visual signal compression and human brain
combination process.

A. Binocular combination distortion
The objective measurement of perceptual 3D video quality

remains a challenging problem. The issue is the complicated
interaction among the neural signals of the two eyes that are
involved in the visual cognition process of 3D scene in the
human brain. This visual cognition mechanism is currently
not understood to the desired degree. Thus, it is challenging
to efficiently measure the 3D perception in an objective way.
In recent years, with the advancement in vision science, the
community has reached a better understanding of the binocular
combination process that occurs in the human brain. Currently,
we can use the binocular combination process to approximate
the early stages of the formation of the 3D perception.

As mentioned earlier, several computational models of
binocular brightness combination have been proposed [29],
such as the eye weighting model, vector summation model,
neutrally inspired models, and gain-control theory models.
Research in the past has shown that among these models,
the early stage of psychological binocular combination can be
approximated with sufficient accuracy with the help of gain-
control theory [34][35]. The binocularly combined cyclopean
3D video signal I3D can be obtained as

I3D = fc(IL, IR)

= ( 1+εL(IL)
1+εL(IL)+εR(IR) )IL + ( 1+εR(IR)

1+εL(IL)+εR(IR) )IR
= ξL · IL + ξR · IR,

(1)

where εL(IL) and εR(IR) denote the total energies in different
frequency bands for the left view video signal IL and the
right view video signal IR, respectively, ξL and ξR denote
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the different combination coefficients for the raw video signals
of the left and right view, respectively, and fc(·) denotes the
binocular combination processing.

One important result that allows us to proceed further, is
that the visual response of an image in HVS can be charac-
terized via Difference-of-Gaussian models [36] [15] [37]. The
physiological study in [36] indicated that the optimal number
of models (the number of DoG spatial frequency bands) is 4.
The DoG model for an image I can be expressed as

Idog, s(x, y)
= (G(s)−G(ks)) ∗ I
= ( 1

2πs2 e
−(x2+y2)/(2s2) − 1

2πk2s2 e
−(x2+y2)/(2k2s2)) ∗ I

(2)
where s is the standard deviation of Gaussian response G(·),
and k is the space constant with typical value equal to 1.6. Fig.
2 shows the DoG decomposition results of one given image
in the Balloons video sequence. The different frequency band
components in Fig. 2 indicate different human visual responses
for an image.

(a) Idog,s0 (b) Idog,s1

(c) Idog,s2 (d) Idog,s3

Fig. 2. The different spatial frequency band components Idog,s0 , Idog,s1 ,
Idog,s2 , Idog,s3 of an given image in Balloons clip, and s0 = 0, s1 = 1,
s2 = k · s1, s3 = k · s2 denote the standard deviations of Gaussian response,
respectively

The binocular combination of two views in human brain
can be approximated as the weighted combination of the DoG
spatial frequency bands for the left and right views. The
HVS response for each view in a stereoscopic pair, can be
decomposed to two independent DoG spatial frequency bands.
Then the energy for each DoG band can be computed, and
also the total energy εL(IL) for all bands for the left and right
views. Consequently, the binocular combination coefficients
ξL and ξR, can be computed as described in Eq. (1). The total
energy over all DoG bands for one complete image is

ε(I) =
∑

i ε(bi) =
∑

i

∑
p∈bi

p2, (3)

where ε(bi) denotes the energy of the ith band, and p is the

value of the pixel in band bi of image I . With Eq. (3), εL(IL)
and εR(IR) for the left and right views can be derived.

After the cyclopean view processing for the raw and com-
pressed stereoscopic images, the 3D visual distortion that
makes use of binocular combination is computed as

Dc = E{I3D − Î3D}
= E{(fc(IL, IR)− fc(ÎL, ÎR))

2}
= E{(ξL · IL + ξR · IR − ξ̂L · ÎL − ξ̂R · ÎR)2}
= E{(ξL · IL + ξR · IR − ξL · ÎL + ξL · ÎL
−ξ̂L · ÎL − ξ̂R · ÎR + ξR · ÎR − ξR · ÎR)2}

= E{(ξL · (IL − ÎL) + ξR · (IR − ÎR)

+ÎL · (ξL − ξ̂L) + ÎR · (ξR − ξ̂R))
2},

(4)

where E{·} denotes the expectation operator. Due to the negli-
gible effect of compression on the combination coefficients, the
coefficients for the compressed and raw stereoscopic images
are assumed to the same [15]. We have ξL ≈ ξ̂L and ξR ≈ ξ̂R.
Furthermore, we assume that the quantization noise for the
left view and right views are mutually uncorrelated so that
E{(IL − ÎL) · (IR − ÎR)} becomes zero. Hence,

Dc = E{(ξL · (IL − ÎL) + ξR · (IR − ÎR))
2}

= (ξL)
2 · E{(IL − ÎL)

2}+ (ξR)
2 · E{(IR − ÎR)

2}
+2ξLξR · E{(IL − ÎL) · (IR − ÎR)}

= (ξL)
2 ·DL+(ξR)

2 ·DR

+2ξLξR · E{(IL − ÎL) · (IR − ÎR)}
≈ (ξL)

2 ·DL+(ξR)
2 ·DR,

(5)
where DL and DR are the distortion values for the left and
right views.

B. Stereoscopic 3D visual RDO
It is well known that in the high bit-rate regime of video

encoding, the relationship between the distortion and the
quantization level can be approximated as [38]

D =
q2

12
, (6)

where q is the quantization step size. The binocular combina-
tion distortion can be described as

Dc =
(ξL)

2 · q2L
12

+
(ξR)

2 · q2R
12

, (7)

where qL and qR are the quantization step sizes for left and
right views, respectively.

For 2D video encoding, there is a trade-off between dis-
tortion and bit-rate. RDO attempts to find the optimal op-
erating point between these two conflicting objectives. For
stereoscopic video encoding, that adds the element of binocular
combination in human brain, a perceptual RDO is necessary to
determine the optimal video encoding mode. We note in Fig. 1
that stereoscopic video encoding is executed in two stages. The
first stage is the left view video encoding that uses traditional
RDO. It satisfies

JL = DL + λLRL (8)
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with
RL = aL · log2(

bL
q2L/12

) and DL =
q2L
12

, (9)

where RL is the left view encoding bit-rate, aL and bL are
constants, and λL is the Lagrange multiplier for the left view
encoding. Then

λL = −dDL

dRL

= −dDL/dqL
dRL/dqL

= − 2
12qL

/
−2aL

qL ln 2

=
ln 2·q2L
12·aL

, (10)

We notice in Eq. (10) that the Lagrange multiplier for
RDO is dominated by the quantization level. In the reference
encoding models of H.264/AVC (JM) and H.265/HEVC (HM),
the Lagrange multiplier is determined by the quantization
parameter first and then refined in terms of the video coding
structure. Based on the relationship between quantization pa-
rameter and the quantization step size in MV-HEVC, Eq. (10)
can be empirically modified as [43]

λL = c · 2(qp−12)/3, (11)

where c is a constant related to the coding structure, and qp
denotes the coding quantization parameter (QP).

Similarly, during the second stage of stereoscopic video
coding for the right view, the distortion must be computed
to control the right view coding bit-rate. The RDO for the
right view can be characterized as

JR = Dc + λRRR, (12)

where JR denotes the Lagrange cost and RR is the right view
encoding bit-rate. Fig. 1 illustrates that the decoded left view
is used as the inter-view prediction reference for the encoding
of the right view. Thus, the Lagrange multipliers for the left
and right views are different. The total perceptual distortion
corresponds to the two encoding channels for left and right
views. For the left view, the traditional RDO is used and so
λL is determined by the quantization parameter of the left
view. However, for the right view the video encoding mode
is selected based on the perceptual RDO. Thus, the obtained
stereoscopic 3D visual quality is optimal under the total bit-
rate constraint of the two views.

For the right view, when considering the human brain’s
binocular combination at the encoder, the perceptual RDO in
Eq. (12) can be further expanded as

JR =
(ξL)

2 · q2L
12

+
(ξR)

2 · q2R
12

+ λRRR (13)

Similarly with before, the derivation for right view encoding
proceeds as follows:

dRR

dqR
=

−2aR
qR ln 2

, (14)

where aR is a constant. And also

dDc

dqR
= 2

(ξR)
2 · qR
12

, (15)

Thus, the Lagrange parameter for the right view can be
formulated as

λR = − dDc

dRR

= − dDc/dqR
dRR/dqR

= ln 2 ·
[
(ξR)2·q2R
12·aR

]
= (ξR)

2 · λ′
R,

(16)

where λ′
R is the Lagrange parameter for traditional SSE-based

RDO for the right view and in MV-HEVC it is also obtained
as Eq. (11).

IV. EXPERIMENTAL RESULTS

Experimental study has been carried out based on the
MV-HEVC reference software, following the common test
requirement of the multiview texture-based MV-HEVC in 3DV
core experiments [40]. We have implemented the proposed
binocular-combination-based 3D RDO for MV-HEVC. The
coding parameters used in experiments are shown in TABLE
I. In the proposed RDO, the luminance distortion is used
for computing the binocular combination distortion, and the
chroma distortion is not considered. In our implementation,
λ′
R in Eq. (16) is derived from the coding structure of the

HM (HEVC Model) reference software [43]. To evaluate the
performance of the proposed encoding scheme, the SSE-based
RDO in MV-HEVC is chosen as the baseline scheme referred
as the traditional approach.

TABLE I. EXPERIMENTAL TEST CONDITIONS

Encoding Profile multiview-main
Intra Period 24
GOP size 8
QP 20, 25, 30, 35
MaxCUWidth 64
MaxCUHeight 64
Coding structure Hierarchical B
Other parameters Default setting

Extensive subjective tests were conducted to verify the
accuracy of the proposed distortion model. The subjective tests
adopted the Double Stimulus Impairment Scale (DSIS) method
in [39], in which five grades of the mean opinion score (MOS)
were used (0 for the lowest quality and 5 for the highest one).
All tests were performed on a 27 inch NVIDIA 3D vision
based 3D monitor (ASUS VG278, 144Hz) with seven test
sequences from the 3D video coding experiments in MPEG
[40] (the specific sequences are illustrated in Fig. 3). For the
test sequences, the selected views are listed in TABLE II. A
total of 21 subjects participated in the tests, consisting of 14
males and 7 females. The viewers sat in front of the screen
with comfortable distance and the field of view was about
30o. The specific test environment and procedures followed
the suggestion of ITU-R BT.2021 [41].

A. Accuracy of binocularly combined distortion measurement

Four DoG models of an given image were used to perform
the binocular combination in all experiments. To restrict the
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(a)Balloons,1024 768 (b)Kendo, 1024 768 (c)Newspaper, 1024 768 

 

(d) GTFly,1920 1088    (e) PoznanStreet, 1920 1088  (f) UndoDancer, 1920 1088   (g) Shark, 1920 1088 

 
Fig. 3. Test sequences of stereoscopic video.

TABLE II. THE SELECTED LEFT AND RIGHT VIEWS FOR DIFFERENT
SEQUENCES

Sequences Left Right
Balloons 1 2
Kendo 0 1
Newspaper 2 3
GTFly 1 2
PoznanStreet 3 4
UndoDancer 1 2
Shark 1 2

range of distortion values, the MSE distortion is transformed
into Peak Signal to Noise Ratio (PSNR) by using

BC-PSNR = 10 · log10(
255

BC-distortion
), (17)

where BC-distortion denotes the binocularly combined dis-
tortion. The values of the binocularly combined distortion in
terms of BC-PSNR are further transformed into the subjective
MOS values by a symmetrical logistic function [39]. Fig. 4
shows the correlations between the proposed distortion mea-
surements and the measured MOS values for all stereoscopic
test videos. It can be observed from Fig. 4 that the proposed
distortion measurement model correlates well with the MOS
value obtained from the actual subjective evaluation.

The combination coefficients for the Balloons and Shark
videos are shown in Fig. 5. Since spatial frequency features
for different 3D sequences are different, the gains of binocular
frequency combination for different sequences are also differ-
ent. For video sequences with similar energy distributions in
the spatial frequency domain of the two views, the binocular
combination tends to obtain the same combination coefficients
for the two views. Since motion in temporal domain imposes
an impact on image content, the binocular combination coef-
ficient changes with the increasing frame number.

The accuracy of the proposed distortion measurement model
is summarized in TABLE III for different quantization levels
and test sequences. In TABLE III, the consistency evalua-
tion metrics are: the Pearson correlation coefficient (PCC),
Spearman rank correlation coefficient (SRCC), and root mean
squared error (RMSE). A low RMSE, high PCC and a high
SRCC each suggest high accuracy. To reduce the computation-

al complexity of the proposed distortion measurement model,
in our experiments we did not combine multiple frequency
bands with multiple pairs of coefficients. Instead, only one
pair of coefficients was used over all bands. Results in TABLE
III show that the proposed distortion measurement model can
characterize the 3D visual quality degradation of compressed
stereoscopic video with sufficient accuracy. Specifically, both
PCC and SRCC have the average values higher than 0.91, and
the RMSE value is lower than 0.03.

In binocular combination, only spatial frequency of lu-
minance component was used, and phase and contrast of
the stereoscopic images were not considered as part of the
binocular combination process. This may lower the accuracy
of the proposed distortion measurement. Although the results
of the proposed distortion measurement model do not exactly
follow the actually measured MOS values, they still reflect
the perceptual quality variations among different compression
levels in a quantitative way, meaning that the proposed model
can be used for encoding mode selection in the RDO of the
stereoscopic video encoder.
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Fig. 4. Correlation between the proposed distortion measurements and the
measured MOS values (in horizontal axis, the distortion is characterized by
BC-PSNR value).
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Fig. 5. Binocular combination coefficients for different sequences.

TABLE III. ACCURACY OF THE PROPOSED DISTORTION
MEASUREMENT MODEL

Sequences Binocular combination measurement
RMSE PCC SRCC

Balloons 0.022 0.9284 0.9236
Kendo 0.033 0.9134 0.9126

Newspaper 0.012 0.9319 0.9322
GTFly 0.036 0.9021 0.9102

PoznanStreet 0.024 0.9223 0.9265
UndoDancer 0.041 0.9043 0.8945

Shark 0.037 0.9156 0.8924
Average 0.029 0.9176 0.9131

B. Binocular perceptual rate-distortion performance

In this subsection we will validate whether the proposed per-
ceptual RDO performs as designed. The symmetric stereoscop-
ic encoding of the Balloons sequence with QP=30 was used
to analyze the encoding mode differences among the proposed
perceptual RDO and the traditional RDO. Fig. 6 illustrates
the subjective quality comparison between the stereoscopic
anaglyph (red-cyan) pictures of the proposed RDO and the
traditional RDO for the tenth frame of the Balloons sequence
(and their coding partition (CU) type comparison). We notice
that the proposed approach can achieve a superior subjective
3D quality than the traditional RDO, especially in the areas
near certain balloons covered by the dash line rectangle, the
boundaries of some balloons in the depth dimension of the
perceived cyclopean view are clearer under the proposed RDO
scheme due to the fact that a higher number of sub-blocks are
selected in those areas in the proposed encoding approach.
When comparing results between Fig. 6(a) and Fig. 6(b), the
boundary of that balloon pointed by arrow in Fig. 6(a) is
clearer than that of Fig. 6(b), indicating that the proposed RDO
is able to optimize the perceptual stereoscopic video coding
performance by using cyclopean view perception.

In traditional RDO in MV-HEVC, binocular combination is
not considered during the stereoscopic video encoding stage.
Specifically, the distortion measurement at the encoder adopts

   

           

(a) Encoded by proposed RDO      (b) Encoded by traditional RDO 

   

(c) CU partition of proposed RDO   (d) CU partition of traditional RDO 

 Skip  Inter prediction (including inter-view) 

Fig. 6. The subjective stereoscopic anaglyph (red-cyan) quality comparison
between the proposed RDO and the traditional RDO for the tenth frame of
Balloons sequence, and their coding type comparison.

the single view video distortion for performing RDO mode
selection. In our scheme, the binocular combination distortion
of two views is used to assist the right view video coding
mode selection during the stereoscopic video coding. Hence,
the video coding result correlates with the HVS 3D perception
better than the traditional approach. Binocular combination
can well explain the process of the cyclopean view formation
in human brain. Thus, for the proposed RDO, the video
coding modes are selected towards more consistent binocular
combination during the formation of the cyclopean view in
human brain. Under the traditional RDO, since the encoding
qualities of specific areas in two views are not consistent, a
two-view image cannot perfectly match the cyclopean view
perception of the 3D world (such as the boundary of the
balloon to which the arrow points in Fig. 6).

To verify the statistical performance of the proposed per-
ceptual stereoscopic RDO, both symmetric and asymmetric
coding for stereoscopic video were conducted. Since the effec-
tiveness of the BC-PSNR metric has been verified, the coding
performance was assessed by both BC-PSNR and subjective
evaluation.

Symmetric Stereoscopic Encoding: The symmetric en-
coding of stereoscopic video can deliver almost the same
quality for the two views. Accordingly, the combination of
binocular brightness can achieve the cyclopean view with a
similar quality. Fig. 7 shows the BC-PSNR performances under
different bit-rates for the Balloons and Shark videos for both
the proposed perceptual RDO and the traditional RDO. It can
be seen from Fig. 7 that the proposed binocular combination-
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Fig. 11. BD-rate saving results over the traditional RDO.

based RDO can improve the 3D perceptual encoding efficiency.
At low bit-rate, the perceptual coding efficiency is improved
slightly more than that at high bit-rate, indicating that the
quantization-induced distortion at low bit-rate is larger than
that at high bit-rate. Thus, the binocularly combined distortion
may impose a more significant impact on the coding mode
selection of the right view in the proposed perceptual RDO.
Fig. 8 illustrates the MOS values over different bit-rates for
the Balloons and Shark videos. The subjective test results in
Fig. 8 lead to the same conclusions as that of Fig. 7.

Asymmetric Stereoscopic Encoding: In tests of asymmet-
ric stereoscopic encoding, QP gap between two views was set
to 8. Fig. 9 shows that the binocularly combined distortion
measurement in terms of BC-PSNR under different bit-rates
for Balloons and Shark with asymmetric encoding. In Fig. 9,
when compared with symmetric encoding, the binocular cod-
ing performances for low and high bit-rates are improved with
similar increments, because that the binocular combination can
efficiently regulate the right view encoding mode to suppress
the asymmetric quantization-induced 3D quality degradation
for both low and high bit-rate coding. The subjective results
in Fig. 10 are consistent with Fig. 9 in terms of the perceptual
3D quality improvements.

The overall performance enhancement of perceptual cod-
ing in terms of the BD-rate savings [42] for the symmetric
and asymmetric encodings under all test sequences has been
summarized in Fig. 11. The average BD-rate saving for all
sequences is up to 5.93%. In our current experiments binocular
combination is performed over all DoG models and only the
overall energies of the two views are involved in computational
reduction. Hence, the combination accuracy can be further
refined by one-to-one combination over two-view DoG models
with higher computational complexity.

C. Encoding complexity
In this work, simulations were performed on a personal

computer (Linux CentOS) with Intel Xeon 2.10GHz pro-
cessor and 12GB random access memory. For the proposed
binocular-combination-oriented RDO, the DoG computation
is introduced for each pair of stereoscopic video images.
The additional DoG computation involves pixel-based filter-
ing computation and it does not increase the computational

complexity. Compared with traditional RDO, the increment of
computation time is defined as,

∆T =
Tp − To

To
× 100%, (18)

where Tp and To denote the encoding times for the proposed
and traditional solutions, respectively. TABLE IV shows the
coding time increment for different sequences. It can be
observed from TABLE IV that the complexity of the proposed
binocular-combination-oriented RDO only increased on aver-
age less than 1% over traditional encoding.

V. CONCLUSION

In this paper, we proposed a binocular perception distortion
model by taking considerations of the distortion combination
from two views inspired by human brain behaviors. Based on
the proposed distortion model, we developed a low-complexity
perceptual RDO scheme for enhancing the stereoscopic video
encoding efficiency. The proposed scheme jointly optimizes
both encoding and viewing processes of stereoscopic video
with the proposed 3D perceptual optimization metric for
higher encoding efficiency. Subjective tests show that based
on binocular combination the proposed perceptual RDO can
reduce the BD-rate by up to 5.93% over the traditional RDO
in MV-HEVC.
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Fig. 8. The subjective test results under different bit-rates for Balloons and Shark.
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Fig. 9. The BC-PSNR performances under different bit-rates for asymmetric encoding.
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Fig. 10. The subjective test results under different bit-rates for Balloons and Shark for asymmetric encoding.
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