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Abstract—The Electric Vehicles (EVs) market has seen rapid
growth recently despite the anxiety about driving range. Recent
proposals have explored charging EVs on the move, using
dynamic wireless charging that enables power exchange between
the vehicle and the grid while the vehicle is moving. Specifically,
part of the literature focuses on the intelligent routing of EVs
in need of charging. Inter-Vehicle communications (IVC) play an
integral role in intelligent routing of EVs around a static charging
station or dynamic charging on the road network. However, IVC
is vulnerable to a variety of cyber attacks such as spoofing.
In this paper, a probabilistic cross-layer Intrusion Detection
System (IDS), based on Machine Learning (ML) techniques, is
introduced. The proposed IDS is capable of detecting spoofing
attacks with more than 90% accuracy. The IDS uses a new metric,
Position Verification using Relative Speed (PVRS), which seems to
have a significant effect in classification results. PVRS compares
the distance between two communicating nodes that is observed
by On-Board Units (OBU) and their estimated distance using the
relative speed value that is calculated using interchanged signals
in the Physical (PHY) layer.

Index Terms—Connected Vehicles; Cyber Security; Electric
Vehicles; Intrusion Detection Systems; Spoofing Attack;

I. INTRODUCTION

Two of the main prohibiting factors for the adoption of
the Electric Vehicles (EVs) across Europe are the driving
range (i.e. the distance the vehicle can cover before it needs
to recharge), and the lack of supporting charging infras-
tructure. One solution to these pivotal factors would be the
implementation of stochastic optimisation techniques for the
charging procedure of EVs [1]. However, this research area
has specific limitations regarding the optimal placement of
charging stations in a city, queue stability issues, especially
when few charging stations must facilitate a large number
of requests, among others. Furthermore, the deployment of
charging infrastructure requires changes to the existing civil
infrastructure, which are costly and take a long time to im-
plement. To overcome these prohibiting factors, it is important
that novel and cost-effective approaches to help in the adoption
of EVs are proposed.

A novel solution initially proposed in [2], [3] to increase the
driving range of EVs is the use of city buses as energy sources
on the move. The EVs can make efficient use of Mobile En-
ergy Disseminators (MED), which operate as mobile charging
stations, and Static Charging Stations (SCS) [2]. The role of a
MED can be taken over by city buses that follow a predefined

route across the city. Inner-city busses repeatedly move along
a predefined route. An EV can establish a communication
with a MED and approach it at a specific location along
the predefined route to complete the charging process. The
proposed method exploits Inter-Vehicle Communication (IVC)
in order to eco-route EVs. This innovative approach drives the
investigation towards integrated solutions that allow EVs to
charge while moving through the city, without the need for a
significant change in the existing road infrastructure.

Dynamic Wireless Charging (DWC) is a technology with
great potential, but further R&D may still be required to-
wards its applicability. A number of companies are actively
developing DWC solutions, both in the research and testing
phases [4]–[7]. In [8] the authors have proposed an intelligent
routing technique that can be used to implement a dynamic
charging model on existing road infrastructures. The proposed
system for Dynamic Wireless Charging is based mainly on
wireless Vehicle-to-Vehicle (V2V) communications and uses
a route optimization solution. The usage of wireless com-
munication among EVs and MED coordinates the real-time
booking procedure for either the SCS or the MED, optimizing
waiting times. Specifically, nodes that enter the system broad-
cast periodically beacon messages, known as Cooperative
Awareness Message (CAM), to inform of their presence. Every
beacon message contains a Node Identifier, GPS coordinates,
GPS speed, current Timestamp and MAC address of the EV.
These messages are transmitted several times per second using
Dedicated Short Range Communication (DSRC) and Wireless
Access in Vehicular Environments (WAVE) technology, based
on the IEEE 802.11p standard. However, these messages
are vulnerable to a wide range of cyber threats, such as
eavesdropping, spoofing and modification attacks.

In particular, a spoofing attack against the communication
between EVs could allow an attacker to modify the charging
process (e.g. changing the order of charging) either on a
MED or on a SCS for its benefit, affecting legitimate EVs. A
spoofing attack is one of the most dangerous attacks for route
optimisation systems. This type of attack allows an attacker
to spoofs its real geographical position in the information sent
within CAM messages, making other nodes believe that the
vehicle is in another position [9]. This way an attacker can
benefit against competing EVs, since the charging sequence
is based on navigation decisions. Every EV has a table that
contains the locations and the node identifiers of every other
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EV in its vicinity. The information about the location of every
vehicle is extracted from their GPS system and sent to its
neighbors through CAM messages. An attacker can create an
illusion that he is present at a specific location by altering the
location table of the GPS System or by generating and sending
stronger fake location signals to its GPS receiver. The presence
of an Intrusion Detection System (IDS) capable of detecting
GPS falsification is essential in such a system. Moreover, the
spoofing attack disrupts the legitimate communication between
two nodes, causing similar effects to those of a Denial of
Service (DoS) attack. At the same time it is more difficult
to be detected since it requires only a very small number of
malicious packets to be produced. The proposed IDS uses an
additional metric from the Physical (PHY) layer: the estimated
relative speed along with the GPS parameters are making it
more efficient in detecting such attacks.

Motivation: The main motivation of this paper is to in-
vestigate how the presence of a spoofing attacker as an inner
node of the system affects the total travel time that must be
optimized in [8]. Specific examples are described in which
the presence of an attacker can violate the right order for
the charging of EVs using the MED or the SCS. These
examples are not unique, however they are highly probable
and can incur a significant increase in the total travel time.
This indicates that more advanced attacks, possibly involving
numerous coordinated attackers, can impact and degrade the
operation of the system. However, the detailed analysis of
coordinated attack models is out of scope of this paper. Here,
we show that a probabilistic IDS is appropriate in order to
detect and mitigate the presence of at least one attacker.

Concluding, an IDS based on Machine Learning (ML) is
developed in order to detect spoofing attackers. Based on the
outcomes of the IDS, attackers are excluded from the Dynamic
Wireless Charging mechanism. Another contribution of the
article is the introduction of a novel metric that is used as
a separate feature for the ML algorithms. This metric named
Position Verification using Relative Speed (PVRS) is based on
the relative speed ∆u which is estimated through interchanged
signals in the PHY layer. PVRS compares the distance be-
tween two communicating nodes through their on-board Units
(OBU) and the estimated distance that is calculated using the
∆u value. The effect of the proposed PVRS metric in the
performance of the probabilistic IDS was an increase of 6% in
accuracy. Therefore, PVRS is an appropriate metric especially
for the detection of a spoofing attack. This is the first proposed
ML IDS in the literature that can effectively detect a spoofing
attacker in a realistic application, alleviating also its effects.
The detection engine of the proposed IDS is based on several
ML algorithms, such as Random Forest (RF) and k-Nearest
Neighbour (k-NN), using metrics in a cross-layer approach.
Both supervised learning techniques are very popular, with
the k-NN being robust against noisy training data like the ones
obtained from a real-life urban environment and RF being one
of the most accurate algorithms, reducing the chance of over-
fitting. The outcomes of both supervised ML approaches are
correlated using data fusion techniques in order to improve
the overall performance of the IDS.

The rest of this paper is organised as follows. Section II pro-

vides an overview of related work in the domain of spoofing
attack detection. Section III describes the topology and the
types of the implemented attacks. Section IV describes the
proposed probabilistic IDS and the newly introduced PVRS
metric. Section V presents the experimental evaluation setup,
the impact of the implemented attack in V2V communication
and the proposed system for Dynamic Wireless Charging. It
also includes the experimental results of the probabilistic IDS.
Section VI contains a discussion of recent authentication and
key-distribution techniques that are used in VANETs in order
to strengthen and secure the communication process. Finally,
Section VII summarises our findings and concludes our work.

II. RELATED WORK

The literature in the area of spoofing attacks in VANETs
is divided in two distinctive areas of interest. Firstly, tech-
niques that use metrics from the Application layer (APP),
e.g. speed-deviation, such as Acceptance Range Threshold
(ART) [10]. Speed Deviation Verification at consecutive time
intervals has been also used for the verification of each
vehicle location. However, this metric is vulnerable against
GPS spoofing attacks. Swaszek et al. [11] consider the use of
range-only information to detect Global Navigation Satellite
System (GNSS) spoofing of a platoon of vehicles equipped
with inter-vehicle communications. This paper considers the
use of short range only information communicated amongst a
platoon of vehicles to detect GNSS spoofing. So the ability
to detect spoofing depends largely on the relative platoon
geometry and the direction of spoofing. These methods are
mainly based on upper layer metrics, the honesty of nearby
vehicles and the traffic density of spoofing attackers. However,
there is a scarce number of proposed detection systems that
use a cross-layer approach.

Secondly, there is a specific area in which the publications
also use metrics from the PHY layer, such as the Received
Signal Strength (RSS), and metrics from the Application
(APP) layer, such as speed-deviation of nodes [12]. In var-
ious publications, the strength distribution analysis is used
to detect Sybil or Spoofing attacks [13]. The proposed is a
cooperative detection method, in which multiple neighboring
nodes cooperate to measure the signal strength distribution of
a suspicious node and verify its physical position. However,
the simulation results of [13] indicate that given the unstable
nature of radio propagation, this basic cooperative method
can only afford quite limited accuracy. To solve this limited
accuracy of the proposed model due to propagation delay or
packet losses, especially in VANETs, the concept of Presence
Evidence System (PES) is proposed in order to be ensured
that nodes in the opposite traffic are physical nodes and
we can have them as the trusty sources of signal strength
measurements. However, the ability to detect spoofing depends
largely on this assumption that the opposite traffic is trusty
sources. The authors in [14] propose a solution to correct
the wrong position given by the fake GPS. The correction is
based on a validation process by comparing the given position
to an Roadside Unit (RSU) using the wireless Vehicle-to-
Infrastructure communication (V2I). However, the wireless
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communication between the transmitter and the RSU can be
impaired by fast fading characteristics such as shadowing from
buildings or other obstacles that exist in VANETs. Therefore, a
realistic IDS for a VANET must take into account parameters
from the PHY or MAC layer that indicate the communication
problem. Moreover, it is obvious that the proposed IDS is
based on V2V communication only and can be applied to a
VANET without any extra infrastructure such as RSUs.

Existing literature [13], [14] uses RSUs as verifying base
stations, with publicly known true locations. The RSUs located
in the transmission range of the vehicles are used to verify
the real received position from satellite against the spoofed
GPS transmitter. However, it is not clear explained how these
RSU stations can be assumed as non-malicious. A variety
of approaches have been proposed in the literature to recog-
nize spoofing. Of interest here are methods which compare
Global Navigation Satellite System (GNSS) information to
measurements available from other, non-GNSS sensors [11].
In [15] Carson and Bevly discussed the use of range and
bearing information with GPS positions to detect spoofing for
a platoon of vehicles. They assumed the availability of Relative
Position Vectors (RPVs) between pairs of vehicles from the
radar sensor. To detect spoofing of a single vehicle they
compared these RPVs to the corresponding GPS difference
vector, declaring spoofing if the difference was too great.
Their focus was on a pair of vehicles only. All the above
mentioned techniques use the IVC for the interchange of
ranging information between nodes to detect anomalies that
indicate spoofing of the GPS positions. However, the wireless
V2I communication confronts the wireless interference from
the entire location as well the fading characteristics.

Last, extensive works present applications of spatial pro-
cessing methods for GPS spoofing detection and mitigation
that use either Phase Delay Measurements [16] or the Angle
of Arrival (AoA) estimation [17] from the PHY layer to
verify the message originator. From an attacker perspective,
an illegitimate node may intentionally falsify information to
achieve a certain goal that might be rational in some scenarios.
A drawback of using metrics from the PHY layer is the
incorrect GPS spoofing detection (e.g. false alarms) that may
occur in situations where multiple correct satellite signals are
received from similar directions and phase delay differences
are below a predefined threshold.

All the above publications do not use ML approaches for
detecting spoofing attacks. On the other hand, several articles
such as [18], [19] introduce the Received Signal Strength
Indicator (RSSI)-based schemes for detecting spoofing attacks
in Wireless Sensor Networks (WSNs) using ML techniques
without using a cross-layer architecture. based on detailed
analytical models for the mobile radio channel, the proposed
algorithm combines two classifiers to process and analyze the
instant samples of received signal strength to detect attacks.
The algorithm is optimized for scenarios where the legitimate
node and the attacking node are at the same distance or at a
very close distance from each other in relation to a landmark,
which is the worst case scenario. A novel cross-layer IDS
is presented in [20] with high accuracy results. However,
this IDS has only been tested only in a platoon of vehicles

application. Last, in [21] an IDS is proposed based on a deep
convolutional neural network (DCNN) to protect the controller
area network (CAN) bus of the vehicle. The DCNN learns the
network traffic patterns and detects malicious traffic without
hand-designed features. The experimental results demonstrate
that the proposed IDS has significantly low false negative rates
and error rates when compared to the conventional machine-
learning algorithms, increasing also the complexity of the
system.

In contrast to all the aforementioned works for the detection
of a spoofing attack using position verification techniques
that is observed by the GPS. We use an additional prototype
metric named PVRS that compares the distance traveled and
is observed by the On-Board Units (OBU) sensors with the
estimated traveled distance using the relative speed (∆u)
metric between the sender and the receiver [22], [23]. The
novelty of the ∆u metric is that it can be estimated by the
wireless channel of the PHY layer using the effect of the
Doppler phenomenon without extra sensors or infrastructure.
This estimated metric can be combined with social mobility
patterns constructing the PVRS metric. Relative speed as a
metric can be combined with other metrics from the APP and
the PHY layer leading to a cross-layer detection approach.
From the PHY layer different metrics such as the RSSI, the
Signal to Interference and Noise Ratio (SINR) and Packet
Delivery Ratio (PDR) for the effective detection of a spoofing
attack are used.

III. SYSTEM MODEL

A. System Description and Topology
Two different charging systems are compared: one that uses

a Static Charging Station (SCS) only, and one that combines
a SCS and a Mobile Energy Disseminators (MED). We use
different initial energy conditions for all the EVs of the
simulation. Our intelligent route search method takes into
account the waiting time either for the MED-EV appointment
or for the waiting time at the queue of an SCS, in the presence
of a spoofing attacker among the inner nodes of the system.
It is shown that the proposed method decreases significantly
the waiting time for the charging procedure and the charging
time that is needed for an EV, because the EV continues to
charge along its route.

However, the presence of a spoofer in the system can either
cause the starvation of specific EVs for a long time interval or
cause the rerouting of the EVs for charging, which results in a
significant increase in the overall travel time. At initialisation,
the system model is populated with a number of EVs (50-
200). From this point onwards, every node broadcasts, at a
time interval of δ(t) = 0.1 seconds, a CAM message to
inform either the SCS or the MED of its presence. All EVs
are informed of the waiting time either by the SCS or by
the MED. This comes as a response through the periodical
communication with MEDs or SCS using the CAM messages.
Based on this information, an EV can choose either the SCS
or the MED for its charging needs whilst selecting the best
route from its starting point to its final destination.

For our simulated scenario, we use 3 inner nodes - vehicles
of a charging system. The 2 first vehicles represent the pair
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Figure 1: Topology. Beacon routing from EV A to the MED
or the SCS. IDS placement at the EV B.

Attacker-Receiver. The third vehicle is a legitimate vehicle, the
Victim, whose identity is spoofed by the attacker. The nodes
that enter the system broadcast periodically beacon messages,
to inform of their presence and update the MED and the SCS
with information about their current location. This beacon
message contains a Node Identifier; the GPS coordinates; the
GPS speed; the current Timestamp and the MAC address. In
Figure 1 the attacker (EV A) initially intercepts the Node
Identifier (ID) of EV I, when the EV I broadcasts the CAM
to inform about its presence. Then, the attacker immediately
spoofs the ID of EV I to transmit CAMs with false GPS
location coordinates earlier than the legitimate CAMs sent
by the EV I. This means that most of the legitimate CAMs
sent by the EV I are lost or delayed due to the MAC backoff
procedure. After that, the receiving MED would be misdirected
to an incorrect location, different from the one agreed with EV
I, interfering with the charging process.

The above scenario is not the only one that may occur. For
example, a spoofing attacker may launch a spoofing attack not
only for their own benefit. The attacker may aim to disrupt the
operation of the system as a form of Denial of Service (DoS)
by virtue of the V2V communication problem between EV I
and EV B (see Section III-B). In any case, the developed IDS
would need to distinguish between both legitimate CAMs sent
by EV I, and spoofed CAMs sent by EV A, both transmitted
with the ID of EV I.

It is well known that for broadcasting a packet in the
802.11p protocol, relay nodes may be involved in routing this
packet to its final destination. The localisation of the proposed
IDS is decided to be one step before the SCS or the MED as
can be seen in Figure 1, which is located at the transmission
range (1000m) of both the SCS and the MED. This role of
relay node has the EV B in which located the IDS and re-
transmit a packet from the EV I (which is the victim) either
the EV A (which is the attacker) until the destination which
is either the MED or the SCS.

A specific example of the Dynamic Wireless Charging
System that is susceptible to a spoofing attack is described in
Figure 2. Firstly, Figure 2a shows the attacker that is randomly
selected from one of the inner nodes of the system. The
attacker can either be located on a road which is in a vertical
position to the road the EV I is located on, or on the same road
and hence following the EV I. We investigate the case that the

attacker is initially located on a vertical road in relation to EV
I, since the results are similar in both cases.

Next, EV A intercepts the ID of EV I. As a consequence
of the spoofing attack, EV I loses its turn for charging (see
Figures 2b,2c). From this situation the attacker EV A has
benefited since it is that vehicle that ends up following the
MED for charging (see Figure 2d). So, the victim can charge
only after the termination of the spoofing attack, greatly
increasing its waiting time for charging.

The blocking of the EV I must be detected by the proposed
IDS to maintain satisfactory levels for the overall travel time
of the Dynamic Wireless Charging System. A long term mit-
igation strategy could involve the localisation of the attacker
EV A and and its exclusion by the charging process.

B. Spoofing Attack in V2V communication

All EVs in the proposed charging system periodically broad-
cast CAMs, known as beacon messages, in order to inform
neighbouring vehicles of their presence. Each CAM comprises
several fields such as Vehicle Identifier (ID), Time instance,
the MAC address and current vehicle GPS location and speed.

Safety applications are very challenging for the design of a
MAC protocol in VANETs due to their low latency (less than
100ms) and high reliability requirements. However, the per-
formance of the 802.11p MAC protocol is highly affected by
some key parameters, such as the packet size of safety related
message, the message generation function, the vehicle density,
the communication range, etc. Some of these parameters are
not set properly in recent proposed evaluations. Furthermore,
as stated in [24], there is significant concern if BSMs (Basic
Safety Messages) are constrained to be sent on the central
control channel (CCH) during the 50ms CCH interval. This
is because there could be hundreds of devices in a given area
and the collision rate could be very high.

According to the IEEE 1609.4 coordination scheme, the
channel time is divided into synchronization intervals with
a fixed length of 100ms, consisting of 50ms (including 4ms
guard interval) alternating between CCH and service channels
(SCH). All vehicles stay in the control channel during the CCH
50ms period and switch to one of the six service channels
during the SCH 50ms period. However, the ID and the MAC
address of the sender in the WAVE Service Advertisement
(WSA) frame [25] can be modified by a spoofer. In addition,
this spoofing attack can increase the collision probability
which has a negative effect on the performance of the IEEE
802.11p MAC protocol, specifically in safety applications
using the above mentioned CCH intervals [26]. This situation
arises if a node stays in the CCH channel for a time interval
longer than 50ms. Other factors need to be also defined,
such as the number of vehicles than can be accommodated in
VANET safety applications with these specific CCH intervals.
The implications of the implemented spoofing attack are
presented in more detail in Section V-B. .

For the simulated attack scenario, initially, the EV I and EV
B vehicles have a wireless connection established using the
IEEE 802.11p MAC protocol. The attacker EV A approaches
the EV I and EV B vehicles. When the EV A approaches the
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(a) The attacker is initially located in a vertical road in relation to the
EV I and intercepts the ID of EV I and continues its route (b) The attacker spoofs the ID of EV I

(c) The MED passes the EV I and leads to incorrect GPS location

(d) The attacker EV A benefits from the spoofing attack and books the
MED for charging

Figure 2: Spoofing Attack effects on MEDs

EV B in a distance within the transmission range of 1000m,
the attacker intercepts the ID and MAC address of EV I from
the broadcasting CAMs and starts its spoofing attack. During
the spoofing attack, EV A also broadcasts a CAM message
every 0.1 seconds, using the ID of EV I, in order to inform
the EV B about an incorrect GPS location and speed value.
Since the attacker replicates the ID and MAC address of EV
I, during the spoofing attack, there would be WSA frames
showing discrepancies between the identity and the physical
characteristic of the frames.

The routing flow that is selected in the transport layer is
based on the incorrect spoofed MAC address of the transmitter
EV I. This results in frame losses in the PHY layer due to
path losses and fast fading factors, or due to the strict delay
constraints of the backoff procedure in the MAC layer. Hence,
many CAMs sent by EV I are lost in the MAC layer and are
never acknowledged by the client, which increases the Packet
Error Rate (PER) and also decreases the throughput. So it
is clear that the spoofing attack affects the communication
channel. This attack can be also used as an another kind
of a DoS attack. The designed IDS aims to detect these
discrepancies in the communication channel.

As discussed earlier, the attacker exploits these fields to
transmit false GPS location coordinates within the CAMs,
which misdirects the EV I to an incorrect location. As a

consequence the observed RSSI values of the wireless com-
munication between Transmitter- EV I (Tx) and Receiver- EV
B (Rx) to move to a different level, indicating the spoofing
attack.

Figure 3 shows a comparison between the RSSI values
obtained at the receiver that corresponds to different distances
between the Transmitter and Receiver vehicles during the first
two stages of the simulation (i.e., the initial period of normal
traffic and the spoofing attack). The initial period of normal
traffic is between the time interval (10 - 70 sec), while the
spoofing attack is conducted in the time interval between
(70 - 85 sec). When the position of the transmitter, which
is the spoofer during the spoofing attack, is quite different
from the legitimate vehicle’s position, the level of the RSSI
values change significantly as can be seen in Figure 3. This
can indicate the spoofing attack, but also shows that the RSSI
maybe is a crucial metric for the detection of a spoofing attack
in a cross-layer ML approach.

IV. THE PROBABILISTIC IDS

A. Supervised ML Techniques

The k-NN is a simple Machine Learning (ML) technique
for pattern recognition, based on feature similarity [27]. When
we say a technique is non-parametric, it means that it does
not make any assumptions on the underlying data distribution.
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Figure 3: Different RSSI levels during the normal operation
and spoofing attack

Therefore, k-NN could and probably should be one of the first
choices for a classification study when there is little or no prior
knowledge about the distribution of the data points. k-NN is
also a lazy algorithm (as opposed to an eager algorithm). What
this means is that it does not use the training data points to do
any generalisation. In other words, there is no explicit training
phase or it is very minimal. In other words, the training phase
is pretty fast. So, the k-NN algorithm is also useful for non-
linear data, which is the case for the data we use for training
in this study.

The Random Forest (RF) is a supervised learning algorithm,
based on decision tree models that split a subset of features at
training time and output the class that has the majority votes
of the classes of the individual trees [28]. This supervised
learning algorithm is preferred over others for the following
reasons. Firstly, it can be used for both classification and
regression tasks, providing high accuracy. Secondly, if there
are more trees, it does not allow overfitting trees in the
model. It has the power to handle a large data set with higher
dimensionality. Lastly, the RF classifier can handle missing
values while maintaining the accuracy of a large proportion
of data.

Each of the classification algorithms is able to generate
accurate results when implemented independently. However,
the combined use of these algorithms may help improve the
overall performance of an IDS [29]. Different methodologies
were evaluated to assess whether the classification results
could be improved, for instance, by applying data fusion
techniques.

Ensemble learning has been used to combine the outputs
from different classification techniques. Ensemble learning
is the process in which multiple classifiers are strategically
selected and combined in order to solve a particular compu-
tational intelligence problem. Ensemble learning is primarily
used to improve the classification performance of a model.One
of the most commonly used ensemble learning algorithms
is known as Bagging [30]. In this algorithm, bootstrapped
replicas of the training data for each classifier (RF, k-NN)
are used. During the last step of Bagging, the majority voting
combination rule is used. Since the intended output of the
IDS is a probabilistic IDS, the conditional probabilities are
estimated for each classifier in the presented IDS using the
Bayesian rule as a data fusion technique.

B. Position Verification Metric and Localization of the At-
tacker

The presented IDS uses cross-layer metrics for training from
both the PHY and APP layers. From the PHY layer we extract
the RSSI, the SINR and the PDR. From the APP layer we
extract the relative speed (∆u) and the GPS coordinates, each
one used for the generation of the Position Verification using
Relative Speed (PVRS) metric. We must also compare the
GPS location observed by the On-Board Unit (OBU) with
the estimated location using the relative speed metric. This
procedure results in a new novel metric called PVRS. All these
metrics, listed in Table I, are used in a cross-layer approach to
improve the detection accuracy of the IDS. Furthermore, for
the training-testing procedure of the proposed IDS, the data
have been divided into 70% for training and 30% for testing.

The relative speed (∆u), introduced in [23], indicates the
relative speed between an attacker EV A and the receiver EV
B:

∆uA = |~uA − ~uB | (1)

where ~uA, ~uB are the speed of the attacker and the receiver,
respectively. The metric ∆u can be effectively estimated by
the RF signals’ interchange in the PHY layer. The novelty
of this metric is that it can be estimated by the physical
properties of the wireless channel, using the effect of the
Doppler phenomenon [22].

To create the proposed PVRS metric we must make some
fundamental assumptions. Specifically, we assume as reliable
the communication between the Tx-Rx at the initial time
instant and an initial distance dx between the two nodes.
From this time onward the difference ∆(x) between distance
dx(t−1) between Tx-Rx at the time t−1 and distance dx(t)
after a verifying time interval of δ(t) = 0.1 is used as verifica-
tion distance. This relative movement ∆(x) of the transmitter-
receiver pair is calculated by their OBUs, according to the
transmitter-receiver GPS coordinates in two dimensions with
respect to the traffic ahead.

This mobility pattern can be justified by the social mobility
patterns that are introduced in [31] for clustering needs. So we
can compare the distance ∆(x) observed by the OBU with
the estimated distance ∆(x)est using the estimated relative
speed value ∆u between Tx-Rx. This estimated distance is in
essence a relative mobility parameter kijx between the nodes
i-j, which is a parameter indicating whether the force among
the nodes is positive or negative (acceleration or deceleration).
This value depends on whether the vehicles are approaching
or moving away along the corresponding axis.

∆(x)est =
∆u

δ(t)
δ(t)

2 (2)

where the kTxRx = ∆u
δ(t) is the rate of change of speed

(acceleration or the deceleration value) indicating the ratio of
divergence or convergence among moving nodes Tx-Rx at
the duration δ(t) = 0.1s. Comparing the estimated distance
∆(x)est with the distance ∆(x) that is observed by OBU, we
can get the proposed metric PVRS.

It can be seen that the Algorithm 1 for the generation of the
PVRS metric is based on position verification. The algorithm
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Table I: Metrics that are jointly processed by the classification algorithms
ID Model Feature Short Description

1 PV RS Position Verification using estimated ∆u
2 RSSI Signal Strength Indicator (dBm)
3 SINR Signal Quantity Indicator (dB)
4 PDR Packet Delivery Ratio

firstly examines if the Tx and Rx vehicles approach each other
or move away from each other. This is determined by the sign
of the ddu value, which is the difference between the previous
relative speed value at the time instant t − 1 and the current
relative speed value at the time instant t.

Afterwards, if the difference between the ∆(x)est and ∆(x)
values is in the range of an apriori average spoofing deviation
value (r=10m), this indicates the normal operation of the
system although we note this value is a quite small threshold
for the detection of a spoofing attack. So, we can set the PVRS
value equal to the previous value in Algorithm 1. Otherwise,
there is a quite large deviation between the estimated distance
and the distance observed by the GPS. In that case, the PVRS
value will be increased by one indicating the start of a spoofing
attack. The PVRS value will change again at the end of the
spoofing attack, because the legitimate transmitter is located
in a different position to the spoofer.

Using this approach, a continuous line can be constructed
which will join the points that indicate either the normal
behavior or the spoofing attack as a form of linear interpolation
technique [32]. The spoofing deviation value is an average
error which is added in the difference in distance between a
claimed position and the real physical position.

This algorithm for the PVRS metric which is based on the
position verification is presented in Algorithm 1. Therefore,
the entire area is then partitioned into small areas (called
subnetworks) that can be investigated in isolation for the
detection of a spoofing attacker. A subnetwork can be assumed
an ellipse whose foci are the Tx and Rx vehicles. This ensures
that all objects whose sum of distances from Tx and to Rx (i.e.,
from Tx to object and from object to Rx) is less than 1000m,
(this is the maximum communicating distance for 802.11p)
are accounted for.

An example in Figure 4 indicates the different values that
get the PVRS metric for a spoofing or a normal traffic during
a time interval. Every change in the value of the PVRS metric
indicates the end or the start of a spoofing attack. After

Simulation Time (sec.)

0 20 40 60 80 100 120 140 160

P
V
R
S

0

0.5

1

1.5

2

2.5

3

Normal

Spoofing Attack

Figure 4: Different PVRS value levels during the normal
operation and spoofing attack

the detection of the spoofing attack the node that launches

Algorithm 1 PVRS Algorithm

M = number of observations at consecutive time instants
r = 10m
t = 0
PVRS← matrix(nrow = M,ncol = 1)
∆(x)← matrix(nrow = M,ncol = 1) maxtrix of OBU’s
observations
∆u← matrix(nrow = M,ncol = 1) maxtrix of estimated
relative speed
t+ +
while (t <= M) do

ddu(t) = ∆uest(t− 1)−∆uest(t)
if ddu(t) > 0 then

∆(x)est(t)← ∆(x)est(t− 1)− ddu(t)
δ(t) δ(t)

2

if ∆(x)est(t)− r <= ∆(x) then
PVRS(t)← PVRS(t− 1)

else
PVRS(t)← PVRS(t− 1) + 1

end if
else

∆(x)est(t)← ∆(x)est(t− 1) + ddu(t)
δ(t) δ(t)

2

if ∆(x)est(t) + r >= ∆(x) then
PVRS(t)← PVRS(t− 1)

else
PVRS(t)← PVRS(t− 1) + 1

end if
end if

end while
return PVRS

this type of attack must be localised and excluded from the
system. Given the initial distance dx(t = 0) between Tx-Rx
as reference distance and the estimated distance ∆(x)est after
the specific time interval that is estimated in Algorithm 1,
we can estimate the accurate location of the attacker. We have
already mentioned that the transmitter’s GPS coordinates are
known to the Rx. This technique for the localisation of the
attacker can be seen as being similar to the one proposed
in [19] where the spatial correlation of the received RSSI
inherited from wireless nodes can be used for determining the
true location. Both techniques use the values of the wireless
communication in the physical layer of the 802.11p protocol
for the localisation. Either the estimated relative speed value
∆u that is estimated through the physical layer or the RSSI
value at the Rx.

V. EXPERIMENTAL EVALUATION

To evaluate the effect of a spoofing attack on the Dynamic
Wireless Charging of EVs, our experimental evaluation has
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Figure 5: Section of the Erlangen city map used to conduct
the simulations. The MED route is marked in yellow. The
position of the SCS is marked in green. The arrows in cyan
point at the journey starting points of the EVs. The buildings
are represented for the Non-Line of Sight (NLOS) links to be
considered in the V2V communication.

been conducted using simulations in the city of Erlangen,
as shown in Figure 5. We used the Simulation of Urban
Mobility (SUMO) and the OMNET++/VEINS [33]. SUMO
is adopted as our traffic simulator and OMNET++ is used to
simulate the wireless communication. Furthermore, the GEMV
(a geometry-based efficient propagation model for V2V) [34]
tool was integrated into the VEINS network simulator for a
more realistic simulation of the PHY layer. For describing the
modeled area GEMV uses the outlines of vehicles, buildings
and foliage. Based on the outlines of the objects, it forms R-
trees. R-tree is a tree data structure in which objects in the field
are bound by rectangles and are hierarchically structured based
on their location in space. Hence, GEMV employs a simple
geometry-based small-scale signal variation model and calcu-
lates the additional stochastic signal variation and the number
of diffracted and reflected rays based on the information about
the surrounding objects. GEMV was configured and modified
to be portable to the VEINS simulator and incorporated into
this. Last, to setup and test our classification algorithms for
the spoofing attacks detection on the previously obtained data,
we chose to use the programming language R [35].

A. Evaluation Setup

As can be seen in Figure 5, a bus which follows a specific
route acts as MED. The route followed by the MED is
represented in yellow. Furthermore, an SCS is found at a fixed
location at the road side of the corresponding city district. All
the parametric side roads of the area in which the SCS and
MED charging models are located are used as starting points
(sk) for the Dynamic Wireless Charging System with the
same probability. The point at which the EVs are introduced
in SCS or MED system is shown in Figure 5 with (mb, sb
respectively).

There are between 50 and 200 EVs in the simulated
environment. Additionally, each EV k entering the simulation
has starting energy charge (εks ) defined according to a uniform
distribution with values between 1 and 6 kWh. 60% of the EVs
need recharging and are considered as anxious drivers (i.e the
starting energy charge is smaller than the energy required to
complete its travel).

The only communication paths available are via the ad-hoc
network and there is no other communication infrastructure.

Table II: Evaluation parameters
Independent parameters Range of values

Number of vehicles 50-200
Initial Energy (εks ) 1-6 kWh

Ptx 18dBm
f 5.9Ghz

Packet length 750 bits
Packet Header length 256 bits

Minimum sensitivity (Pth) -69dBm to -85dB
Transmission range 1000 meters

All the above parameters and the selected evaluated area were
chosen in way that does not favour any charging method (MED
or SCS). The power of the antenna is Ptx = 18dBm and the
communication frequency f is 5.9Ghz. In our simulations,
we use a minimum sensitivity (Pth) of −69dBm to −85dB,
which gives a transmission range of about 1000 meters, as can
be seen in Table II. As a result of the above transmission range,
there is no communication with a few EVs. So, a number
of EVs are excluded from the charging procedure because
of the communication lost between EVs. This happens when
the SINR threshold is below 10 dB due to attenuation that is
caused by the building obstacles of the city.

After 60 seconds of normal operation of the proposed Dy-
namic Wireless Charging a spoofing attacker node is inserted
in the systems and conducts a spoofing attacks with duration
about 25 seconds. The overall simulation utilizes a set of 1000
observations equally split into the two implemented scenarios
examined (normal operation and spoofing attack). To avoid
overfitting1 only 30% of the total number of the observations
are used for training while the remaining 70% for testing.

B. Effect of Spoofing Attack in the V2V MAC layer

In order to show the effect of the spoofing attack on the
communication between the Transmitter (Tx) and Receiver
(Rx) vehicles, the throughput has been plotted in Figure 6.
The Y-axis represents the throughput in Mbps, whereas the
X-axis represents the time in seconds. The normal (i.e.,
without attack) communication between the Tx - Rx vehicles
is represented in pink and the spoofing attack is represented in
blue. The effective packets interchange without interfering the
attacker between the Tx and Rx vehicles is the time interval
between 0-60 seconds. The spoofing attack is launched during
the time interval 60-85 seconds.

As can be seen in Figure 6, the average throughput for the
normal communication is 18 Mbps, approximately. When the
spoofing attack is launched, the average throughput drops to
8 Mbps. This change in the throughput clearly shows that the
modification of the GPS coordinates and speed values within
the CAM messages has a clear effect upon the communication
between the connected vehicles.

Focusing on the effect of the spoofing attack on the IEEE
802.11p MAC layer, the IEEE 802.11p protocol employs Hy-
brid Coordination Function (HCF) contention-based channel
access Enhanced Distributed Channel Access (EDCA) as the
MAC method. This is an enhanced version of the Distributed

1Overfitting occurs when the classifier tends to memorize the training set
and thus generalize poorly when facing previously unseen data
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Figure 6: Throughput (Mbps) of the communication between
the Tx and Rx vehicles during the experimental simulation. The
normal communication without attack in pink and spoofing
attack in blue.

Coordination Function (DCF) of the IEEE 802.11 protocol.
The EDCA uses Carrier Sense Multiple Access with collision
avoidance (CSMA/CA). In the EDCA scheme, a node willing
to transmit will sense the medium, and if the medium is idle
for greater than or equal to an Arbitration Inter-Frame Space
[Access Class] (AIFS[AC]) period, the node starts transmitting
directly. If the channel becomes busy during the AIFS[AC], the
node will defer the transmission by selecting a random backoff
time. The spoofing attack of node EV A has as effect when the
legitimate EV I wants to transmit and find the channel busy
initiating the backoff procedure. In Figure 7, the busy time for
every MAC transmission every Time Step (in total 200 Time
Steps) from the victim node EV I to the receiver EV B is
shown. From the results in Figure 7, the effect of the spoofing
attack in MAC layer is evident. Without the spoofing attack,
the maximum busy time value reaches only 3.8ms, whereas the
maximum busy time reaches about 8.5ms when the spoofing
attack is conducted, increasing substantially the probability of
collisions.
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Figure 7: Busy Time (ms) of the communication between
EV I and EV B vehicles during the experimental simulation.
The normal communication without attack in pink and has
a duration of 200 Time Steps (20 sec), whereas the spoofing
attack in blue has a duration of 170 Time Steps (17 sec).

Figure 8 shows the average MAC delay TMAC for different
density of vehicles with the standard central control channel
(CCH) interval setting of 50ms. The TMAC is the time delay
that occurs at the MAC layer since the safety message arrived
to MAC layer until the message is finally sent out. The end-to-
end delay TE2E depends mostly on TMAC and the propagation
delay. This work only focuses on TMAC increase caused by

spoofing attacks. As it can be seen in Figure 7, the TMAC

increase is is directly proportional to the density of vehicles.
An increase in the number of vehicles, as well as a decrease of
the CCH interval will cause more contention and more backoff
time. Hence, the MAC delay TMAC is mostly driven by the
backoff time.

Moreover, the MAC delay is always less than 100ms in all
the simulated scenarios. It indicates that IEEE 802.11p MAC
protocol can satisfy the latency requirement (i.e. less than
100ms) in VANET safety applications [26]. It can be observed
in Figure 8 that, with the presence of spoofing attack in
Dynamic Wireless Charging System, the TMAC delay reaches
over 45ms with a traffic density of 200 EVs per kilometer
(EV s/km) in need of charging in the area. This value of
MAC delay is very close to the CCH interval, which is 50ms.
As a result, it becomes difficult for EV I to have access to one
of the six service channels (SCH) channels. This combination
of the MAC delay with the traffic density can be assumed
as a marginal threshold for the proposed dynamic charging
system. This is because if the TMAC delay exceeds the 50ms
(CCH interval) the established wireless connection using the
IEEE 802.11p MAC protocol between two EVs in fact will be
questionable due to the collision probability increase.
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Figure 8: MAC Layer Delay TMAC (ms) of the communica-
tion between EV I and EV B vehicles during the experimental
simulation using a range of 200EV s/km. The normal com-
munication without attack in pink. While the spoofing attack
in blue.

C. Effect of Spoofing Attack on the Overall Travel Time

This section compares two different charging system sce-
narios, with and without a spoofing attack. The first charging
system scenario contains only an SCS, and the second scenario
contains both an SCS and a MED. In the two scenarios with
a spoofing attack, the malicious node replicates the identity of
the EV A (ID = 40). Figure 9 represents average travel times
for a total number of 100 EVs in the system. It is obvious
from the results that the insertion of the spoofing node with
ID = 40 causes a significant increase in average travel time.
The routing optimisation [8] which is applied to the Dynamic
Wireless System is negatively affected. The optimum EVs
charging order is altered, which causes an increase in the
average travel time value of the system.

Focusing specifically on the system that uses only an SCS,
the difference of the average overall travel time with and
without the presence of spoofing attack is about 5min, which
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increases the average total travel time by 10%. This increase is
even more noticeable in the scenario with an SCS and a MED.
In this case, travel time difference with and without the pres-
ence of spoofing attack is about 8min, increasing the average
total travel time by 13%. The travel time difference is slightly
higher in this second scenario because the MED, which is a
mobile node, contributes with additional propagation delay in
the V2V communication. This is also caused by the spoofing
attack.
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Figure 9: Average Travel Time comparison between the two
different charging system scenarios, with and without a spoof-
ing attack.

Additionally, Figure 10a compares the average waiting time
of each EV at the point that it is planned to meet and follow the
MED when the spoofing attack is conducted with the average
waiting time of each EV after the mitigation of the spoofing
attack. It can be seen that the spoofing attack increases the
waiting time by 10%. Similarly, Figure 10b compares the
average queue time in the SCS when a spoofing attacker enters
the system and the average queue time after the exclusion of
this node from the charging process after the mitigation of the
spoofing attack. The effect of the attack is clearly shown with
the high difference between the two values. The queue time
increases about 30% after the EV with ID = 40 launches the
spoofing attack. This is due to the re-ordering of the dynamic
charging process after the presence of the spoofing attacker.
Hence, this delays the overall dynamic charging process. As
a consequence, most EVs would select the SCS for charging,
which in turn increases significantly the queue time.

Finally, it is also noticeable that, with the presence of a
spoofing attacker in the system, the average waiting time
increases with the same rate as the average queue time.
This finding also verifies that the spoofing attack violates the
right order of charging process having as consequence the
increase of the waiting time for the proposed charging system
(SCS+MED), as the number of EVs is increased. Therefore,
this balances the performance of the two charging system
scenarios (i.e. SCS and SCS+MED). On the contrary, after
the mitigation of the spoofing attacker, as the simulation time
increases, the waiting time for MED and the queue time for
SCS both increase and decreases irregularly. This happens
because there are two choices for charging of EVs (MED or
SCS) that are quickly interchanged.

D. IDS Performance
We evaluated the performance of our attack detector by

using a detection rate and receiver operating characteristic
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Figure 10: Average Waiting Time for MED, Queue Time of
SCS with the presence of spoofer and after the mitigation
procedure; (a) Average Waiting Time for MED with the
presence of spoofer attacker vs Average Waiting Time for
MED after the mitigation with excluding the EV with ID = 40
from the charging process; (b) Queue Time of SCS with the
presence of spoofer attacker vs Queue Time of SCS after the
mitigation with excluding the EV with ID = 40 from the
charging process.

(ROC) curve, which is a probability curve since the proposed
system is probabilistic. Another evaluation metric used is
the area under curve (AUC) which represents the degree or
measure of separability between classes. Thus, the higher AUC
score, the better our model can distinguish between classes.
The last metric that we use for the evaluation of the proposed
cross-layer IDS is the accuracy. Informally, accuracy is the
fraction of predictions our model got right in the total of
predictions.

In order to evaluate the adaptability of the presented IDS in
detecting a spoofing attack in a Dynamic Wireless Charging
System, additional experiments have been conducted. These
experiments combine the implemented spoofing attack with
the normal operation of Dynamic Wireless Charging System
as two separates classes. Our proposed IDS, using the k-NN
and RF algorithms, was trained and tested on both the absence
and presence of the PVRS feature. The presence of the PVRS
feature in our data set played a major role in detecting the
attack, since both k-NN and RF algorithms achieved high,
and equal, accuracy scores of 91.3%. Although the accuracy
of each model is the same, they produce very different AUC
scores. The RF algorithm excels, having a score of 0.986 as
can be seen in Figure 12, while the k-NN algorithm has an
AUC score of 0.935. On the other hand, the absence of the
PVRS feature impacts our results negatively. The accuracy
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Table III: Classification accuracy percentages exploiting the
usage of the PVRS metric or not

k-NN RF
PVRS metric 91.3% 91.3%
without PVRS metric 84.9% 85.6%

of both the k-NN and RF algorithms drops to 84.9% and
85.6% respectively. The AUC score drops slightly (0.956) for
the Random Forest in comparison to the higher drop (0.839)
noticed in the k-NN algorithm. This is shown in Figure 11.

Figure 11: Spoofing Attack Detection: ROC curve for cross-
layer approach using the k-NN algorithm

It can be seen from the previous experiments that most of
the discrepancies between the two ML algorithms used for
the classification results are observed when the PVRS is not
used for training and testing. So, a data fusion method for
our Dynamic Wireless Charging System could be used in this
case. The Data Fusion approach combines the outcome of the
two supervised ML classifiers. As observed in Figure 13, the
data fusion method combines the two algorithms and actually
produces a better result.

Last, in Table III we summarize the classification accuracy,
exploiting the usage of the proposed PVRS metric as an extra
feature for training and testing or not using both the k-NN
and k-NN algorithm. Comparing the accuracy results with
the usage of the PVRS metric with those without the usage
of PVRS metric we can observe an 6.4% accuracy increase
for the k-NN algorithm and a corresponding 5.7% accuracy
increase for the RF algorithm.

VI. DISCUSSION

Today security and anonymity in group communications
play even more vital role due to the increased level of threats
that appear on a daily basis. A strong difference is that now
the new generation networks possess highly dynamic char-
acteristics through information exchange among automated
vehicles. Moreover, when specific time critical applications
are running on top of communication between cars, as the
dynamic charging framework described in this article, security
is even more important. Authentication and key-distribution
methods can be used in order to strengthen and secure the
communication process amongst the various entities of the

Figure 12: Spoofing Attack Detection: ROC curve for cross-
layer approach using the RF algorithm

Figure 13: Spoofing Attack Detection: ROC curves for cross-
layer approach using the Data Fusion between two supervised
ML algorithms

system. Many research works that can provide security and
privacy in VANETs have been proposed during the last years.
Authors in [36] proposed the use of anonymous certificates
and a modification of Public Key Infrastructure (PKI) for the
provision of authentication and integrity. The OBUs which
are on board the vehicles are equipped with a large number of
public and private key pairs that can use for communicating
with neighbouring cars. Authors in [37] came out with an
anonymous authentication scheme in order to make a VANET
robust to several attacks, including an impersonation attack.
Finally authors in [38] present a detailed analysis of privacy
preservation methods for ad hoc social networks, including
VANETs. As future work we plan to combine the proposed
IDS with a Key Distribution System that would increase the
security without increasing computational cost thus demanding
central entities, such as RSUs to act as central authorities.

VII. CONCLUSIONS

In this paper, an Intrusion Detection System (IDS) based
on supervised Machine Learning (ML) algorithms was de-
veloped to detect spoofing attackers and exclude them from
the proposed system for Dynamic Wireless Charging with
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Mobile Energy Disseminators (MEDs), as a mitigation ap-
proach. Specific showcases of the proposed Dynamic Wireless
Charging with MEDs are investigated with the presence of
an inner node of the system as a spoofing attacker. These
cases show that the average total time is increased by about
13% in the system (SCS+MED), because of the re-ordering of
the charging process Dynamic Wireless Charging System with
MEDs. This re-ordering of the charging process with MEDs
increases the requests for charging with SCS, and results in
an increase of the average queue time in SCS by about 30%.
While the increase of the average waiting time for MED due
to the spoofing attack is at about 10%.

The above results point to the need of a probabilistic IDS
to detect and mitigate the spoofing attacker. The proposed
cross-layer IDS achieves a good accuracy at about 91% using
either the k-NN or the RF algorithm. Moreover, a new metric
Position Verification using Relative Speed (PVRS) is proposed
that compares the distance between two communicated nodes
that is observed by on-board Units (OBU) and the estimated
distance that is estimated using the ∆u value estimated by the
interchanged signals in the PHY layer. The effect of this new
PVRS metric in the performance of the proposed probabilistic
IDS has proved to be an increase in accuracy by about 6%,
using both supervised ML algorithms. Furthermore, due to the
discrepancies that occurred in the classification performance
of the two ML algorithms without using the PVRS metric, a
data fusion method between these algorithms (k-NN, RF) has
proved to have clearly superior performance compared with
each individual ML algorithm.

Lastly, this paper has demonstrated the communication
problem that is provoked on Dynamic Wireless Charging
System with MEDs with an attacker, and can be considered
as a trigger for more complex attacks with more attackers.
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