
Distributed Caching Algorithms in the Realm of
Layered Video Streaming

Konstantinos Poularakis, Member, IEEE, George Iosifidis, Member, IEEE, Antonios Argyriou, Senior
Member, IEEE, Iordanis Koutsopoulos, Senior Member, IEEE, Leandros Tassiulas, Fellow, IEEE

Abstract—Distributed caching architectures have been proposed for bringing content close to requesters, and the key problem is to
design caching algorithms for reducing content delivery delay, which determines to an extent the user Quality of Experience (QoE).
This problem obtains an interesting new twist with the advent of advanced layered-video encoding techniques such as Scalable Video
Coding. In this paper, we show that the problem of finding the caching configuration of video encoding layers that minimizes delivery
delay for a network operator is NP-Hard, and we establish a pseudopolynomial-time optimal solution by using a connection with
the multiple-choice knapsack problem. Next, we design caching algorithms for multiple network operators that cooperate by pooling
together their co-located caches, in an effort to aid each other, so as to avoid large delays due to fetching content from distant servers.
We derive an approximate solution to this cooperative caching problem by using a technique that partitions the cache capacity into
amounts dedicated to own and other operators’ caching needs. Trace-driven evaluations demonstrate up to 25% reduction in delay over
existing caching schemes. As a side benefit, our algorithms achieve smoother playback for video streaming applications, with fewer
playback stalls and higher decoded quality.

Index Terms—Distributed caching, Cooperation, Layered-video encoding.

F

1 INTRODUCTION

1.1 Motivation

On-demand video is the driving force of the data
tsunami that we are witnessing nowadays [2], and one
of the main revenue sources for wireline and wireless
network operators and providers. Therefore, it is critical
for network operators to satisfy this increasing volume
of video requests with the minimum possible delay, since
delay constitutes a prime factor that determines the user
quality of experience (QoE). A method to achieve this
goal is to cache video content as close as possible to end-
users. Such distributed caching architectures have been
proposed for content delivery networks (CDNs) [3] and
recently also for wireless mobile networks [4].

A key challenge in these architectures is to design
the optimal caching policy: for a given anticipated video
content demand, determine which content should be
placed in each cache, so as to reduce the average video

• Part of this work appeared in the proceedings of IEEE International
Conference on Computer Communications (Infocom), April 2016 [1].
K. Poularakis acknowledges the Bodossaki Foundation, Greece, for a
postdoctoral fellowship. G. Iosifidis acknowledges support by a research
grant from Science Foundation Ireland (SFI) under Grant Number
17/CDA/4760. The research of I. Koutsopoulos was supported by AUEB-
RC under the internal project “Original Scientific Publications”. The work
of L. Tassiulas was supported by the US Office of Naval Research (ONR)
under award N00014-14-1-2190.
K. Poularakis and L. Tassiulas are with the Department of Electrical
Engineering and Yale Institute for Network Science, Yale University,
USA. G. Iosifidis is with the School of Computer Science and Statistics,
Trinity College Dublin, Ireland. A. Argyriou is with the Department of
Electrical and Computer Engineering, University of Thessaly, Greece. I.
Koutsopoulos is with the Department of Informatics, Athens University
of Economics and Business, Greece.

delivery delay1 over all requests. If these requests are not
satisfied by the locally available cache, content needs to
be fetched from distant back-end servers, which induces
significantly larger delay. Optimal caching is a well
known NP-hard problem, and many heuristic or ap-
proximation algorithms have been proposed to address
it [3], [4], [6], [7].

Nevertheless, a specific aspect has been hitherto over-
looked. Today more often than not, networks deliver
video files that are encoded at different qualities to their
customers. Users may implicitly or explicitly ask for
certain video quality (e.g., certain resolution for YouTube
videos [8]), while in other cases the delivered video
quality is determined by the user equipment (e.g., based
on the mobile device model and screen size [9]) or by
the operator (e.g., based on agreements with content
providers [10]). User mobility and the wireless channel
further increase the need to have different qualities for
streaming video to users. Depending on the wireless
channel conditions, it makes sense to dynamically adapt
the quality of the video stream, for example, high quality
for good channel conditions, lower quality as channel
conditions deteriorate.

These developments together with stringent require-
ments for higher user QoE and advances in video-
encoding technology have led to the incorporation of
advanced video encoding techniques, which in turn,
affect the performance of existing caching algorithms.
One such encoding technique is Scalable Video Coding
(SVC) [11], which allows for multiple spatial resolutions

1. Video delivery delay refers to the time it takes from the moment
the first packet of a video has been transmitted by the source until all
the packets are delivered to the destination [5].

2

(frame sizes), different frame rates, or different signal-
to-noise ratio (SNR) qualities. With SVC, each video
file is encoded as a set of segments, the layers, which,
when combined, achieve the requested video quality.
A user asking the lowest video quality receives only
the basic layer (layer 1), while users asking for higher
qualities receive multiple layers, starting from layer 1 up
to the highest necessary enhancement layer to achieve
that quality. Moreover, with SVC, the user device has
the option to adapt the playback quality of video stream
by dynamically adding or dropping layers (e.g., always
streaming the basic layer and optionally the enhance-
ment layers).

SVC is considered today one of the emerging video
technologies [12], and it is already used for video stream-
ing [13], [14], web services [15], and video storage [16],
among other applications. For completeness, we stress
that an alternative to SVC technique is to perform
transcoding of a video to lower bitrate versions in order
to satisfy user requests [17], [18]. Although transcoding
is often preferred in industry, it requires the real-time
processing of the videos in the network before delivered
to users. On the other hand, SVC alleviates the need for
in-network processing, requiring only from user devices
to combine the different layers together.

With SVC, it is possible to store different layers of a
certain video at different caches. For a user that requests
a video at a given quality level, the different required
layers are received, decoded and set to play at the same
time, rather than serially. In this setting, video delivery
is constrained by the layer delivered last, and hence the
video delivery delay metric is determined by the largest
delay needed to deliver a layer among all layers required
from a cache or a back-end server.

Due to SVC, the repertoire of caching policies increases
significantly, as the caching decisions must be taken per
layer and not per video file, while the video delivery
delay experienced depends jointly on retrieval delays of
all layers of the video for the required quality. Hence
all previous theoretical results (e.g., approximation ra-
tios [3], [4], [6], [7]) need to be revisited, as those caching
algorithms do not take into account layered video con-
tent and interdependencies among different layers that
all need to be fetched, possibly from different caches, so
as to achieve the requested video quality.

Although the SVC caching problem has already been
studied for various network architectures [19]-[27] these
pioneering works do not provide optimal solutions
and/or approximation ratio guarantees against optimal
caching policies. In this work, we fill this gap by addressing
precisely the problem of minimizing user perceived video
delivery delay for a network operator through optimized
caching of layered video content.

Moreover, going one step further, we study the de-
lay performance benefits that may arise when different
network operators cooperate in caching. Today there
exist many network operators (e.g., Wireless Service
Providers) that often deploy their own caches in the

same locations so that each of them serves its users-
clients. These caches may be amenable to joint coordina-
tion. Thus, it is meaningful to explore the possibility for
a local cache that belongs to a certain network operator
to retrieve a video layer from the co-located cache of
another operator, instead of fetching it from a distant
server of its own, which would cause larger delay. In fact,
such cooperation scenarios between the caches attract
increasing interest, especially in the context of wireless
mobile networks [28], [29], [18]. However, the diverse
user demands that different network operators must
serve render this cooperative caching problem particu-
larly challenging. The second problem we tackle is to derive a
joint caching policy of a set of involved network operators that
minimizes the total delivery delay for all operators, considering
the global content demand.

1.2 Methodology and Contributions

We consider a general (abstract) distributed caching
architecture comprising several local nodes with caching
capability such as mobile switching centers [28], cellular
base stations [29] or mobile edge computing servers [18],
in the proximity of end-users. Requests for SVC-encoded
video files at different quality levels are randomly gen-
erated by users that are associated to these local nodes.
A request can be satisfied by the local node if it has
cached the complete set of required layers. Otherwise,
the missing layers are fetched from a distant content
server, and this introduces additional delay.

Our first goal is to design the optimal caching policy
for such a network, aiming to minimize the aggregate
delay for delivering requested videos to users. This is a
challenging problem since taking decisions per layer adds
up to the complexity of traditional caching problems where
copies of the entire videos are cached. We show that this
problem is NP-hard and develop a pseudopolynomial-
time optimal as well as a Fully Polynomial Time Ap-
proximation (FPTA) algorithm using a connection with
the multiple-choice knapsack (MCK) problem [30].

Next, we introduce the problem of cooperation of
different network operators in such distributed caching
architectures, where the goal is to derive a joint caching
policy that minimizes total video delivery delay for all
operators. We assume that users of different operators
request the same set of video files (or, a common subset)
with possibly different rates and quality requirements.
Therefore, the cooperative policy may on average reduce
the video delivery delay for users of some networks,
and increase it for some others. Using a technique that
partitions the space of a cache owned by an operator into
two parts, dedicated to own and other operators’ caching
needs respectively, we present a solution algorithm with
established approximation ratio.

The contribution of this work can be summarized as
follows:
• Layered Video Caching. We model the problem that

designs per-video-layer caching policies, aimed at

3

optimizing the aggregate video delivery delay of
users in a distributed caching network. This is a
problem of increasing importance due to the mo-
mentum of layered-video encoding, especially in
mobile networks where users often need to receive
videos in different qualities depending on the wire-
less channel conditions. We reduce this to the MCK
problem and provide a pseudopolynomial-time op-
timal and a FPTA algorithm [30].

• Operator Cooperation. We propose cooperation poli-
cies among different network operators (e.g., Wire-
less Service Providers [28], [29], [18]) and formulate
the respective optimization problem for designing
the globally optimal caching policy. Using a novel
cache-partition technique, we establish an approxi-
mation algorithm that achieves at least half of the
optimal performance for a symmetric case with
equal transmission rates of the links between cache-
nodes.

• Benefits in Average Delivery Delay. We evaluate nu-
merically the proposed schemes using system pa-
rameters driven from real traces. We show that our
approach reduces average video delivery delay up
to 25% over existing schemes for typical cache sizes
and video popularity distributions.

• Benefits in Video Streaming Performance. Although
the proposed algorithms are not designed to di-
rectly optimize performance metrics related to video
streaming, we show that in practical scenarios they
can indeed smoothen video playback by achieving
fewer playback stalls and higher decoded quality.
The benefits are more pronounced when the band-
width capacity is relatively low.

The rest of the paper is organized as follows. Section
2 describes the system model and formalizes the layered
video caching problem. Section 3 and Section 4 describe
our solution algorithms when network operators serve
their requests independently from each other and when
they cooperate respectively. Section 5 presents the eval-
uation results, while Section 6 reviews our contribution
compared to related works. We conclude our work in
Section 7.

2 SYSTEM MODEL AND PROBLEM STATEMENT

We consider a general (abstract) network architecture
wherein a set K of K Network Operators (NOs), e.g.,
Wireless Service Providers, provide internet access to
their subscribers, or users, distributed in a set M of
M geographical regions. For each region, each NO has
installed a cache at a certain location along the path from
its subscribers to the back-end content server (e.g., at
a mobile switching center [28], a base station [29] or a
mobile edge computing server [18]). The NOs may act
independently or in cooperation as we will explain in
the sequel. An example caching network is depicted in
Figure 1 and the key notation is summarized in Table I.

Users

NO 1 NO 2 NO K

...
Content

servers

...

Caches

Internet

Region 1 Region 2 Region M

Fig. 1. A distributed caching architecture with K network
operators and M geographical regions. Each cache is
connected with a back-end content server and possibly
with other caches in the same region.

2.1 Independent Caching by Network Operators
We first consider the case when NOs act indepen-

dently from each other and focus on a single NO k ∈ K
and its subscribers. We denote by Nk the set of caches,
or cache-nodes, of NO k, each one located at a different
region. The capacity of cache n ∈ Nk is denoted by
Cn ≥ 0 (bytes). The average user demand for each pre-
recorded video in a set V = {1, 2, ..., V } of V video files
and within a certain time period (e.g., a few hours or
days) is assumed to be fixed and known in advance,
as in [3], [4]. For example, the demand can be learned
by analyzing previous time statistics of user request
patterns to infer future demand or by using machine-
learning techniques [31]. We consider that each video is
available at some specific quality levels, indexed in a
list Q = {1, 2, ..., Q}. Each quality level may represent
a different combination of temporal, spatial and SNR
qualities. With SVC, there is a set L of layers, Q layers
for each video, which when accrued realize the different
quality levels. Layer 1 by itself realizes quality 1, layer
1 combined with layer 2 realize quality 2, and so on.
The size of the lth layer of video v is denoted with
ovl > 0 (bytes), which typically decreases with l, i.e.,
ov1 ≥ ov2 ≥ ... ≥ ovQ [11], [32].

User requests for videos in V with possibly different
qualities arrive at the nodes in Nk. For example, there
may exist Q = 2 quality levels, and half of the users
choose to request videos at low-definition quality (q = 1),
while the other half ask for high-definition (HD) quality
(q = 2), as in Figure 1. The user requests for different
quality levels can also account for the wireless channel
conditions. For example, users in certain regions may
experience on average worse channel conditions than
in the other regions, and hence the average requested
video quality is lower in the former. To capture these
factors, we denote by λnvq ≥ 0 the average user demand
associated with node n for the qth quality level of video
v. In other words, the λnvq values can capture both

4

the expected preferences of the users and the wireless
channel conditions [23]. We define the request vector for
each cache node n, and the total demand vector for NO
k, respectively:

λn = (λnvq : v ∈ V, q ∈ Q), λk =
(
λn : n ∈ Nk

)
. (1)

In order to deliver to a user the qth quality of video
v, all layers of that video from layer 1 up to q need
to be delivered, i.e.,

∑q
l=1 ovl bytes in total. In a video

streaming system, segments of the different layers are
received, decoded and set to play at the same time, rather
than serially. In this setting, video delivery is constrained
by the layer that is delivered last, and hence the delay
for delivering the entire video at the given quality will
be equal to the maximum delay needed for each of these
layers to be delivered2.

Ideally, the user would like to receive all the required
layers from the locally available cache-node n of NO k
which leads to the lowest delay possible. Without loss
of generality, we assume this reference delay to be zero.
If a layer cannot be found locally, node n can fetch it
from a back-end content server that contains all videos
and layers. Similarly to the works in [3], [4], [6], [7], [22]
we consider this fetching to induce on average a large
per unit data delay of dn seconds, which depends on
cache location. In other words, each layer requested from
the server will be delivered with an average rate that
is constant and given by 1/dn. This for example can
be realized by using parallel TCP connections [33], one
connection for each layer, with fixed average bandwidth
allocated per connection.

Let the binary decision variable xnvl indicate whether
the lth layer of video v will be placed at node n (xnvl = 1)
or not (xnvl = 0). Then, the caching policy for NO k is
given by the vector:

xk =
(
xnvl : ∀n ∈ Nk, v ∈ V, l ∈ L

)
. (2)

Clearly, each node n ∈ Nk cannot cache more data than
its capacity, i.e., it should hold that:∑

v∈V

∑
l∈L

ovlxnvl ≤ Cn. (3)

Our goal is to design the caching policy that minimizes
the aggregate video delivery delay3 for all users of NO
k, denoted by Jk(xk):

Jk(xk) =
∑
n∈Nk

∑
v∈V

∑
q∈Q

λnvq · max
l∈{1,...,q}

{
(1−xnvl) ·ovl ·dn

}
,

(4)
where the delay for delivering layer l of video v is zero
if this layer is cached at the local node n (i.e., xnvl = 1);
otherwise the delay is ovl·dn. The delay for delivering the

2. We note that in a non-streaming system, the required layers could
be received serially (rather than in parallel) by the user. In this case
the delay would be the sum (rather than the max) of the respective
layer delays.

3. We focus on the video delivery delay to study the impact of the
network on user service. The delay introduced by other applications
like decoding and buffering processes is neglected.

TABLE 1
Key Notations

Symbol Physical Meaning
K Set of K network operators (NOs)
V Set of V video files
Q Set of Q qualities
L Set of L layers
M Set of M geographical regions
N Set of cache-nodes
Nk Cache-nodes belonging to NO k
Nm Cache-nodes located at region m
Mn Region where cache-node n is located
Cn Cache capacity at node n (bytes)
λnvq Average demand at node n for video v at quality q
ovl Size of layer l of video v (bytes)
dn Per unit data delay for serving requests at node n by a server
dnn′ Per unit data delay for serving requests at node n by node n′

xnvl Caching decision for layer l of video v to node n
Jk(xk) The aggregate user delay for NO k in independent setting
Jc
k(x) The aggregate user delay for NO k in cooperative setting

entire video v at quality level q equals to the maximum
of the delays needed to deliver layers 1 to q.

2.2 Cooperative Caching among Network Operators

Let us now consider the case that the NOs have
decided to jointly coordinate their caches in the same
region4. Therefore, one cache can send video layers
to the other to satisfy the other’s demand through
wireline or wireless backhaul links as it is described
in [28], [29], [18]. Assume that each NO in K serves
requests for the same set V of videos5. Nevertheless,
each NO has its own subscribers and may need to serve
different demand, i.e., λk1 6= λk2 . We define the set of
all cache nodes

N =
⋃
k∈K

Nk (5)

and the total expected demand

Λ =
⋃
k∈K

λk. (6)

If a layer cannot be found at the local cache node n,
then n can download it from another node n′ in the
same region that has already cached it. We denote with
dnn′ the per unit data delay incurred for this transfer,
where it trivially holds that dnn = 0, ∀n ∈ N . As a last
resort for node n, the content server can deliver the layer
with per unit data delay dn > dnn′ , ∀n, n′ in the same
region. Clearly, a user may download the required layers
from different caches or servers. The user experienced
video delivery delay will be equal to the maximum of
the respective delays.

The objective of the cooperating NOs is to minimize
the total video delivery delay for satisfying the entire

4. We note that still cache-nodes at different regions act indepen-
dently each other. This is because the regions are in general far away
each other and hence the delay required for exchanging content can
be very large in practice.

5. Our model captures also the case that the network operators
provide different, yet overlapping sets of videos, in which case V
stands for the overlapping video set.

5

Node 1

 l11, l12,
l21, l22

 l11, l12,
l21, l22

l21 l21

Node 2

 l11, l12

Server 1 Server 2

Fetch &

Deliver
 l11, l12

(a) Independent Caching.

 l12

 l11
Node 1

 l11, l12,
l21, l22

 l11, l12,
l21, l22

l12 l11

Node 2

 l21 l21

Server 1 Server 2

Fetch &

Deliver

Exchange

(b) Cooperative Caching.

Fig. 2. An example illustrating the benefits of cooperative
caching for two network operators.

set of requests Λ. We denote the joint caching policy by
x = (xk : k ∈ K). Then, the total delay can be written as

JcT (x) =
∑
k∈K

Jck(x), (7)

where:

Jck(x) = (8)

=
∑
n∈Nk

∑
v∈V

∑
q∈Q

λnvq max
l∈{1,...,q}

{ ∏
n′∈N :
M

n′=Mn

(1− xn′vl)ovldn

+
(

1−
∏
n′∈N :
M

n′=Mn

(1− xn′vl)
)
ovl min

n′∈N :
M

n′=Mn, x
n′vl

=1

{dnn′}
}
.

In the above expression, Mn ∈ M indicates the re-
gion where node n is located. Every required layer
l ∈ {1, ..., q} will be delivered to local node n by the
content server with per unit data delay dn if none of
the nodes in the same region with n have cached it, i.e.,
if
∏
n′∈N :Mn′=Mn

(1 − xn′vl) = 1. Otherwise, among the
nodes that have cached l, the one with the lowest delay
will deliver it.

2.3 Motivating Example
The benefits that such cooperation policies may yield

can be easily understood through the simple example in
Figure 2. There exist V = 2 videos and Q = 2 quality
levels. The latter can be realized by combining L = 2
layers per video; l11, l12 for video 1, and l21, l22 for video
2. Each layer is of size 1 (based on some normalized size
scale). There is also a region with two nodes, indexed by
1 and 2, that belong to two different NOs. Each node is
equipped with a unit-sized cache. The delay coefficients
are: d1 = d2 = 2 and d12 = d21 = 1. The demand at node
1 is given by: λ111 = 0, λ112 = 10, λ121 = 1, λ122 = 0,
while at node 2 it is: λ211 = 9, λ212 = 9, λ221 = 10,
λ222 = 0.

Ideally, each node would store the two layers of video
1 (l11, l12) and the first layer of video 2 (l21) in order to
serve all its requests locally. However, this is not possible
due to the cache capacity limitations. When NOs operate
independently from each other, we can show that the op-
timal caching policy dictates both nodes to cache l21. The
total delay will be: λ112 ·d1+λ211 ·d2+λ212 ·d2 = 56. Here,
we note that caching l12 at node 1 would not improve

user delay at all, since l11 layer would still be delivered
by the content server yielding λ112 ·d1 delay. However, if
NOs cooperate, then the optimal caching policy changes; it
places l12 to node 1 and l11 to node 2. Now, the cached
layers are different between the two nodes. Hence, they
can be exchanged to reduce further delay. The total delay
will be: λ112 ·d12+λ121 ·d1+λ212 ·d21+λ221 ·d2 = 41 < 56.

Before we present our layer caching solutions, we
remark that our model considers the delay required for
delivering the entire video at certain quality asked by
the user. We choose this metric (delay) for mathematical
tractability in an optimization framework in a time-
average sense, with the understanding that this metric
and its optimization will also have positive repercussions
on QoE performance metrics related to video streaming.
We explore this issue numerically in Section 5 and
further discuss it in the online Appendix [34].

3 INDEPENDENT CACHING BY NETWORK OP-
ERATORS

In this section, we address the layered video caching
problem for the case that different network operators
design independently their caching policies. Specifically,
each NO k solves the following problem:

min
xk

Jk(xk) (9)

s.t.
∑
v∈V

∑
l∈L

ovlxnvl ≤ Cn,∀n ∈ Nk, (10)

xnvl ∈ {0, 1}, ∀n ∈ Nk, v ∈ V, l ∈ L. (11)

3.1 Problem Decomposition
The local nodes of a NO k are in different regions

and they cannot send content each other. Hence, caching
decisions at a node n ∈ Nk do not affect the rest and
the problem can be decomposed into |Nk| independent
subproblems, one for each node. For a specific node
n ∈ Nk, we note that without caching the aggregate user
delay would be

∑
v∈V

∑
q∈Q λnvqovldn where l = 1. This

is because, all requests are served by the remote server
(with per unit data delay dn), and video delivery is
constrained by the largest layer, i.e., layer l = 1. Caching
can reduce the aggregate delay by serving a fraction of
the requests locally. Namely, caching only layer l = 1
of a video v ensures that the delay will be reduced by∑
q∈Q λnvq · dn · (ov1 − ov2), since l = 2 will be the layer

delivered last. In the same sense, caching both l = 1
and l = 2 layers, moves the bottleneck point for video
delivery to the layer l = 3, thus reducing the delay by∑
q∈Q λnvq · dn · (ov2 − ov3) more, and so on. Hence, the

equivalent problem of maximizing the delay savings for
node n (named Pn) can be expressed as follows:

Pn : max
xn

∑
v∈V

∑
q∈Q

λnvqdn

q∑
l=1

(ovl − ov,l+1)

l∏
i=1

xnvi (12)

s.t. constraint: (3),

xnvl ∈ {0, 1}, ∀v ∈ V, l ∈ L, (13)

6

where xn = (xnvl ∈ {0, 1} : ∀v ∈ V, l ∈ L), and, with a
slight abuse of notation, we set ov,l+1 to be equal to zero
for l = q in the above summation.

Subsequently, we characterize the complexity of prob-
lem Pn, and present efficient solutions.

3.2 Complexity and Solution to Problem Pn

We first prove the intractability of the problem Pn in
Theorem 1.

Theorem 1: Problem Pn is NP-Hard.
Proof: We prove the NP-Hardness of the problem

Pn by reduction from the Knapsack problem, which is
NP-Hard [30]. The latter is defined as follows: Given
a knapsack of capacity W , and a set of T items with
nonnegative weights w1 to wT and values p1 to pT , the
objective is to place in the knapsack the subset of items
of total weight no more than W with the largest total
value. Every instance of the knapsack problem can be
written as a special case of the problem Pn, where there
is one video for each item (V = T), each video has one
quality level (Q = 1), each layer is of size equal to the
weight of the mapped item (ov1 = wv , ∀v ∈ V) and
the demand for each video is equal to the value of the
mapped item (λnv1 = pv , ∀v ∈ V). Given a solution to
the problem Pn one can find a solution to the knapsack
problem of the same value by placing in the knapsack
the items corresponding to the layers placed in the cache
of node n.

The following lemma provides information about the
structure of the optimal solution.

Lemma 1: There is an optimal solution to Pn such that,
if a layer l is cached, then all the previous layers l′ < l
of the same video are also cached.

Proof: Let us assume that the optimal solution to
problem Pn caches at node n the layer l of video v
without caching a layer l′ < l of the same video. Then,
removing l from the cache n would have no impact on
the objective value of Pn, since the users that download
l from n need to download also l′ from the content
server, which incurs delay ovl′ · dn ≥ ovl · dn. Filling the
cache space left free with a layer of another -previously
uncached- video would improve the objective value of
Pn. This contradicts the assumption.

Inspired by Lemma 1, we identify a connection of the
problem Pn to the following variant of the knapsack
problem [35]:

Definition 1: Multiple-Choice Knapsack (MCK): Given R
classes E1, E2, . . . ,ER of items to pack in a knapsack of
capacity W , where the ith item in class Er has value pri
and weight wri, choose at most one item from each class
such that the total value is maximized without the total
weight exceeding W .

Then, we describe the connection between Pn and
MCK problems in the following lemma.

Lemma 2: The problem Pn is polynomial-time re-
ducible to the problem MCK.

Proof: Given an instance of the problem Pn, we
construct the equivalent instance of the problem MCK

as follows: There is a knapsack of size equal to Cn and
V item classes E1, E2, ..., EV , one class for each video.
Each class contains Q items, one item for each quality.
The ith item in class Ev has a weight:

wvi =

i∑
l=1

ovl (14)

and a value

pvi =
∑
q∈Q

λnvqdn

q∑
l=1

(ovl−ov,l+1)

l∏
j=1

(1{j∈{1,2,...,i}}), (15)

where 1{.} is the indicator function, i.e. it is equal to 1
if the condition in the subscript is true; otherwise it is
zero. We also set ov,l+1 = 0 for l = q.

Each maximum-value solution to the MCK instance
can be mapped to a solution to the Pn instance of the
same value as follows: For each item i in class Ev packed
in the knapsack, place the i first layers of video v to
the cache-node n. Clearly, the obtained solution stores
no more data than the cache capacity and satisfies the
property in Lemma 1. By eq. (15), the values of the items
placed in the knapsack are equal to the delay savings
obtained by the cached layers. Hence, the value of the
solution to the problem Pn is equal to the solution value
of the problem MCK.

Conversely, for every feasible solution to the problem
Pn there is a feasible solution to the MCK instance of
the same value. That is, for each sequence of i layers of
video v placed in the cache-node n, we pack the item i
of class v in the knapsack. Clearly, the obtained solution
packs no more item weight than the knapsack capacity,
and at most one item from each class is packed in the
knapsack.

Lemma 2 provides a valuable result, since it paves the
way for exploiting a wide range of efficient algorithms
that have been proposed for problem MCK in order
to solve problem Pn. Specifically, although MCK is NP-
hard, there exists a pseudopolynomial-time optimal algo-
rithm and a fully-polynomial-time approximation (FPTA)
algorithm to solve it [35]. Pseudopolynomial means that
the time is polynomial in the input (knapsack capacity
and item weights), but exponential in the length of it
(number of digits required to represent it). The FPTA
algorithm finds a solution with a performance that is
provable no less than (1− ε) times the optimal, while its
running time is polynomial to 1

ε , ε ∈ (0, 1). Therefore,
the FPTA algorithm complexity and performance are
adjustable, which makes it preferable compared to the
first algorithm for large problem instances. Hence, we
obtain the following result:

Theorem 2: There exists a pseudopolynomial-time op-
timal algorithm and a FPTA algorithm for problem Pn.

4 COOPERATIVE CACHING AMONG NETWORK
OPERATORS

In this section, we focus on the layered video caching
problem when multiple network operators come in of-

7

fline agreement to cooperate. We stress again that coop-
eration amounts to putting together their local pools of
resources (caches in our case) in order to cache layered
video destined also for users of other network operators.
The problem of determining the caching policy that
minimizes the total user delay of all NOs can be expressed
as follows:

min
x

JcT (x) (16)

s.t.
∑
v∈V

∑
l∈L

ovlxnvl ≤ Cn,∀n ∈ N , (17)

xnvl ∈ {0, 1}, ∀n ∈ N , v ∈ V, l ∈ L, (18)

where x = (xnvl : ∀n ∈ N , v ∈ V, l ∈ L).

4.1 Problem Decomposition
Since content can only be transferred between nodes in

the same region, the above problem can be decomposed
into M independent subproblems, one for each region m ∈
M. We denote with Nm ⊆ N the set of nodes located at
region m. For a specific region m, we observe that the
total user delay without caching would be

Dm
wc =

∑
n∈Nm

∑
v∈V

∑
q∈Q

λnvqovldn, where l = 1, (19)

since all requests are served with layer 1 (which is the
largest among all layers) downloaded by the content
servers. Caching can reduce the total delay by delivering
some of the required layers by the caches instead of
the servers. We can express the equivalent problem of
maximizing delay savings for region m (named Rm) as
follows:

Rm : max
xm

Dm
wc −

∑
n∈Nm

∑
v∈V

∑
q∈Q

λnvq max
l∈{1,...,q}

{
∏

n′∈Nm

(1− xn′vl)ovldn + (1−
∏

n′∈Nm

(1− xn′vl))ovldnn∗
}

(20)

s.t.
∑
v∈V

∑
l∈L

ovlxnvl ≤ Cn,∀n ∈ Nm (21)

xnvl ∈ {0, 1}, ∀n ∈ Nm, v ∈ V, l ∈ L (22)

where xm = (xnvl : n ∈ Nm, v ∈ V, l ∈ L). Here, a
required layer l of a video v will be delivered to node n
by the content server with delay ovldn if none of the
nodes have cached it, i.e., if

∏
n′∈Nm

(1 − xn′vl) = 1.
Otherwise, among the nodes that have cached l, the
one with the lowest delay will deliver it, i.e., the node
n∗ = argminn′∈Nm:xn′vl=1{dnn′}.

4.2 Solution to Problem Rm

Rm is a very challenging problem, since the already
NP-Hard problem Pn defined in the previous section is
further perplexed in order to account for all the scenarios
of cooperation among the nodes in the same region,
i.e., ∀n ∈ Nm. Namely, each node should seek the best
tradeoff between caching the layers of the videos that

are popular for its own users (optimizing local demand),
and caching the ones that are frequently requested by
users of other nodes in the same region (optimizing global
demand, i.e., the sum of local demands across nodes).
Subsequently, we present an algorithm that achieves an
approximation ratio for this important problem.

The algorithm partitions the cache space of each node
based on an input parameter F ∈ [0, 1]. At a high level, F
represents the portion of each cache that is filled in with
globally popular video content (i.e., layers of videos that are
popular with respect to the global demand), while the
rest 1 − F portion is filled in with locally popular video
content (i.e., layers of videos that are popular with respect
to the local demand). Clearly, if F = 0, then each node
n caches the locally popular video layers independently
from the others (i.e., by solving problem Pn), while when
F = 1 all nodes put together their caches and they fill
in the union cache space with globally popular video
layers.

The proposed algorithm uses as components the solu-
tions to the following two problems:

1. MCK(m): The instance of the problem MCK com-
prising a knapsack of capacity F ·

∑
n∈Nm

Cn and V
classes of items, each with Q items. The ith item of the
vth class has weight

w′vi =

i∑
l=1

ovl (23)

and value

p′vi =
∑
n∈Nm

∑
q∈Q

λnvqdn

q∑
l=1

(ovl−ov,l+1)

l∏
j=1

(1{j∈{1,2,...,i}}).

(24)
In the above expression 1{.} is the indicator function, i.e.
1{c} = 1 if condition c is true; otherwise it is zero, and
ov,l+1 = 0 for l = q. Here, the ith item of the vth class
corresponds to the first i layers of video v.

2. Pn(An): The instance of the problem Pn in which
the layers in the set An ⊆ L are already placed in cache
n.

Problem MCK(m) represents the placement of glob-
ally popular video layers in the F portion of the caches.
To this end, a knapsack is formed of size equal to
the aggregate size of these portions. The item values
w′vi and p′vi represent the cache space needed and the
possible delay savings of delivering the first i layers
of video v from a cache instead of the remote servers.
Similarly, problem Pn(An) represents the placement of
locally popular videos in the remaining portion (1− F)
of the caches. To this end, it has to take into account the
placement of layers of globally popular videos (set An),
to avoid wasting resources in placing again the same
layers in the same cache.

We now present the proposed Layer-aware Cooperative
Caching (LCC) algorithm, which operates in two stages:

8

• Stage 1: Solve the problem MCK(m). For
each item picked in the knapsack, place the
corresponding set of layers into the node n ∈
Nm with the highest local demand for the
respective video. Ensure at each step that at
most F · Cn + s amount of data is placed at
each node n, where s is the maximum size of
an item.

• Stage 2: For each node n ∈ Nm, fill in its
remaining cache space by solving the problem
Pn(An), where An consists of the layers placed
at n in stage 1.

Theorem 3 summarizes one of the main contributions
of this paper:

Theorem 3: LCC algorithm achieves an approximation
ratio of min{ ρµ, ρ′µ′ } for the problem Rm, where:

ρ = F − s∑
n∈Nm

Cn
, µ = min

n∈Nm

min
n′∈Nm\n

{dn − dnn′}

max
n′∈Nm\n

{dn − dnn′}
,

ρ′ = 1− F − 2s

min
n∈Nm

Cn
, µ′ = min

n∈Nm

min
n′∈Nm\n

dnn′

max
n′∈Nm\n

dnn′
.

The proof of Theorem 3 is deferred to the Appendix. The
tightness of the approximation ratio of LCC algorithm
depends on the delay coefficients (dn, dnn′ , ∀n, n′ ∈ Nm),
the cache sizes (Cn,∀n ∈ Nm) and the input value F . In a
symmetric case where dn = d and dnn′ = d′, ∀n, n′ ∈ Nm it
becomes: µ = 1 and µ′ = 1. When additionally the caches
are relatively large, i.e., s

minn∈Nm Cn
→ 0, setting F = 0.5

yields an approximation ratio of 0.5, i.e., LCC algorithm
achieves at least half of the optimal performance.

We note that F is passed as an input to LCC algorithm.
A reasonable choice for F is the value that yields the
best possible approximation ratio. This requires solving
the following optimization problem:

max
0≤F≤1

min{ ρµ, ρ′µ′ }. (25)

Here, the objective function is pointwise minimum of
finite number of affine functions and therefore it is con-
cave. Hence, this problem can be solved using standard
convex optimization techniques [36].

The complexity of LCC algorithm stands for solving
the MCK(m) and the P (An) problems, ∀m ∈ M,
n ∈ Nm. Like MCK(m) and Pn, the problem Pn(An)
can be expressed as a MCK problem, as we show in
the following lemma, and hence it can be solved in
an efficient manner. Besides, these problems can be
solved in a distributed fashion which reduces the overall
complexity.

Lemma 3: Problem Pn(An) is polynomial-time re-
ducible to the problem MCK.

Proof: It is easy to show that the property in Lemma
1 holds for problem Pn(An), since it has the same objec-
tive with the problem Pn. Therefore, given an instance
of the problem Pn(An), we can construct the equivalent

instance of the problem MCK as follows: There is a
knapsack of size equal to Cn− |An|, where |An| denotes
the total size of the layers in An, and the item classes
E1, E2, ..., EV , each with Q items. The ith item in class
Ev has a weight

w′′vi =
∑

l∈{1,2,...,i},l/∈An

ovl (26)

and a value

p
′′
vi =

∑
q∈Q

λnvqdn

q∑
l=1

(ovl−ov,l+1)
l∏

j=1

(1{j∈{1,2,...,i}})·(1{{1,2,...,j}*An}),

(27)

where 1{.} is the indicator function, i.e. it is equal to 1
if the condition in the subscript is true; otherwise it is
zero, and ov,l+1 = 0 for l = q. The reduction is similar
to the one in Lemma 2, differing in that here placing
a sequence of layers in the knapsack will not increase
further the weight and the value of the knapsack for the
layers that are already in it.

Finally, we note that the cooperative caching policy
targets the total (across all NOs) delay, and, hence, it
may result in increased aggregate delay for a certain NO,
or in the best case, in uneven delay reductions across
the different NOs. Considering that delay performance
may be directly translated to revenue, some NOs may
be unwilling to endorse the cooperation. This issue can
be resolved through side-payments, or money transfers,
from the NOs that enjoy the largest delay reductions to
the NOs with fewer benefits in terms of delay reduction,
or even delay increases. We further discuss this issue in
the Appendix.

5 TRACE-DRIVEN EVALUATION

In this section, we present the evaluation results of
the experiments that we have conducted to show the
superiority of the proposed algorithms over state of the
art methods. Specifically, we implement the following
three caching algorithms:
• Independent Caching (IC): Each NO serves only its

own subscribers. For each cache-node n, the caching
is performed independently from the rest, by solv-
ing the problem Pn that is defined in Section 3.

• Layer-aware Cooperative Caching (LCC): The proposed
cooperative algorithm in Section 4, according to
which all nodes dedicate a fraction F of their cache
space for storing layers of videos that are globally
popular. The remaining space is filled in based on
the local video demand.

• Femtocaching [4]: This cooperative caching algorithm
starts with all the caches being empty. Iteratively, it
performs the placement of a layer to a cache that
achieves the maximum performance improvement,
in terms of total delay (JcT). The procedure termi-
nates when there does not exist any cache space
available to store content.

We emphasize that the Femtocaching algorithm has
been extensively used as a benchmark by previous

9

20 25 30 35 40
10

1

10
2

10
3

10
4

QP

C
um

ul
at

iv
e

La
ye

r
si

ze
 (

M
B

s)

Fig. 3. The cumulative size of the layers required at each
quality level for the videos in the library [32]. Each video
is encoded into 5 quality levels corresponding to different
quantization parameters; QP ∈ {20, 25, 30, 35, 40}.

works. It is well-known that this algorithm achieves
near-optimal delay for the traditional (layer-agnostic)
video caching problem. Therefore, a natural question is
whether the efficiency of Femtocaching is maintained
or novel algorithms are needed when the delivery of
layered video is considered. Our evaluation study targets
to answer this question.

Before we proceed with the evaluation results, we re-
mark that, in order to solve the problem MCK in IC and
LCC schemes, we used the Mosek Optimization Toolbox.
The execution time is in the scale of minutes. Our
code is written in C language in the Visual Studio 2010
environment and it is publicly available online in [37].
We expect that the reproducibility of the results will
encourage future experimentation with video caching
algorithms for the benefit of the research community. In
the sequel, we describe the evaluation setup used in the
later evaluations.

5.1 Evaluation Setup

The evaluation is carried out for K = 3 NOs and
a single geographical region (M = 1). Each NO has
installed a cache of capacity equal to C (bytes). The rate
with which a layer is delivered over the link between
a content server and a cache is 1/dn = 1Mbps, while
between any pair of caches it is 1/dnn′ . As a canonical
scenario we set 1/dnn′ = 5Mbps, while our evaluation
also covers the cases where: 1/dnn′ ∈ {1, 2, ..., 10} Mbps.
We later explore the impact of dynamic rate, where the
rate varies with the link load.

Requests for V = 10, 000 popular videos are randomly
generated by the users that are associated to the caches.
Each video is realized in Q = 5 quality levels using SVC.
We set the sizes of the 50, 000 respective layers randomly
using the real-world trace in [32]. This dataset contains
detailed information about 19 SVC-encoded popular
movies spanning 5 SNR quality levels (boxplot in Figure
3). We believe that this is representative of a realistic
video delivery system, since layer sizes span two orders
of magnitude, and videos of various source formats and
publish times are included. The time duration of each

video is between 5.5 minutes and 111 minutes. The total
size of the 50, 000 layers is slightly lower than 10TBs.

Following empirical studies in VoD systems, we
spread the user requests across the videos using a Zipf
distribution, i.e., the request rate for the ith most popular
video is proportional to i−z , for some shape parameter
z > 0 [38]. We further spread the requests across the
Q = 5 quality levels uniformly at random. Unless
otherwise specified, we set: C = 1TB [3] and z = 0.8
[38], while we run the LCC algorithm for each value of
F at 0.1 granularity, and pick the value that results the
lowest total delay.

5.2 Benefits in Average Delivery Delay
We first explore the impact of varying the bandwidth

rate between the caches on the average (over all user re-
quests) video delivery delay. In the experiment in Figure
4(a), the rate spans a wide range of values, starting from
1 to 10 Mbps, reflecting different operating conditions.
We note that the performance of the IC algorithm is un-
affected by this variation, since the caches are excluded
from transmitting content one another. On the other
hand, increasing the rate between caches reduces delay
for the cooperative caching algorithms (Femtocaching
and LCC), since the layers can be exchanged faster
between the caches. The proposed algorithm (LCC) performs
better than its counterparts for all the rate values. The delay
gains are up to 33% and 20% when compared to IC and
Femtocaching algorithm respectively.

We analyze the impact of cache sizes on performance
in Figure 4(b). As expected, increasing cache sizes re-
duces delay for all the algorithms as more requests are
satisfied without the involvement of the content server.
The proposed LCC algorithm performs better than its
counterparts for all the cache sizes. The gains over IC
algorithm increase with cache sizes starting at 14% for
0.2TBs and reaching 43% for 2TBs. On the other hand,
the gains over Femtocaching initially increase with cache
sizes (from 10.5% for 0.2TBs up to 21% for 0.8TBs), but
then they slightly reduce (down to 17.5% for 2TBs). In
other words, LCC initially reduces delay at a higher pace
than Femtocaching, but its performance starts to saturate first
as the cache sizes increase.

We show the impact of the Zipf shape parameter z
on algorithms’ performance in Figure 4(c). As the z
value increases the video demand distribution becomes
steeper and a few videos attract most of the demand.
On the other hand, a small z value corresponds to an
almost uniform video demand distribution. The delay
decreases with z for all the algorithms, reflecting that
caching effectiveness improves with the steepness of video
demand distribution. LCC performs significantly better
than IC and Femtocaching for all the values of z. The
gains over IC are relatively stable over z (25−26%), while
the gains over Femtocaching steadily increase with z (from 7%
for z = 0.4 up to 25% for z = 1.2).

In addition to delay, another metric of caching algo-
rithm performance is the cache hit rate, i.e., the percentage

10

0 2 4 6 8 10
Average rate between caches (Mbps)

15

20

25

30

35
A

ve
ra

ge
 d

el
iv

er
y

de
la

y
(m

in
ut

es
)

IC
Femtocaching
LCC

(a) Impact of rate between caches.

0 0.4 0.8 1.2 1.6 2
Cache size (TBs)

10

15

20

25

30

35

40

45

A
ve

ra
ge

 d
el

iv
er

y
de

la
y

(m
in

ut
es

) IC
Femtocaching
LCC

(b) Impact of cache sizes.

0.4 0.6 0.8 1 1.2
Zipf shape parameter

0

10

20

30

40

50

A
ve

ra
ge

 d
el

iv
er

y
de

la
y

(m
in

ut
es

) IC
Femtocaching
LCC

(c) Impact of demand steepness.

Fig. 4. (a) The average video delivery delay achieved by IC, Femtocaching and LCC algorithms as a function of (a) the
delivery rate of the links between caches, (b) the cache sizes, and (c) the shape parameter of the Zipf distribution.

0 2 4 6 8 10
Average rate between caches (Mbps)

55

60

65

70

75

80

H
it

ra
te

 (
%

)

IC
Femtocaching
LCC

(a) Impact of rate between caches.

0 0.4 0.8 1.2 1.6 2
Cache size (TBs)

40

50

60

70

80

90

100
H

it
ra

te
 (

%
)

IC
Femtocaching
LCC

(b) Impact of cache sizes.

0.4 0.6 0.8 1.0 1.2
Zipf shape parameter

20

40

60

80

100

H
it

ra
te

 (
%

)

IC
Femtocaching
LCC

(c) Impact of demand steepness.

Fig. 5. Cache hit rate achieved by IC, Femtocaching and LCC algorithms as a function of (a) the delivery rate of the links
between caches, (b) the cache sizes, and (c) the shape parameter of the Zipf distribution.

0 2 4 6 8 10
Aging factor (%)

30

40

50

60

70

80

G
ai

ns
 (

%
)

IC
Femtocaching
LCC

Fig. 6. Impact of content aging.

of video data delivered by the caches instead of the
remote servers. To explore this, we repeat the evaluations
and depict the achieved cache hit rate in Figures 5 (a)-
(c). We find that the proposed algorithm (LCC) achieves
higher cache hit rate than its counterparts for all the scenarios.
This, to some extent, indicates that the optimization of
the considered delay metric has positive implications on other
metrics as well.

Another issue is the timescale that the caching algo-
rithms are applied. As the time passes, the demand for
video content changes with new videos becoming pop-
ular and taking the place of older videos in the library
F . This content aging process impacts the efficiency
of the caching decisions. Figure 6 depicts the delay
gains achieved by the three caching algorithms when

IC Femtocaching LCC
0

10

20

30

40

50

A
ve

ra
ge

 d
el

iv
er

y
de

la
y

(m
in

ut
es

) Before failure After failure

9.6%17.4%

Fig. 7. Impact of node failure.

0−10% of the most popular videos are replaced with new
(uncached) videos. Here, the new videos are positioned
in the end of the demand vector λn, ∀n, i.e., they become
the least popular videos. We find that, although the gains
decrease, the presented algorithms still achieve significant
gains. Depending on the scenario, injection of new videos
can take hours or days. Hence, proactive caching can be
a practical approach.

It would be also interesting to quantify the impact of
failure of a cache-node on the efficiency of the proposed
caching algorithms. Figure 7 demonstrates that although
the average delay increases after a node failure, still sig-
nificant benefits are achieved. Importantly, the proposed
caching algorithm (LCC) continues to perform better
than the other two algorithms. Hence, our approach can

11

20 40 60 80 100 120 140 160 180 200
Pre-buffering delay (seconds)

60

65

70 Femtocaching

65

66

67

Sm
oo

th
ly

 p
la

ye
d

vi
de

os
 (%

)

IC

92

93
LCC

(a) Impact of pre-buffering delay.

LCC Femtocaching IC
0

10

20

30

40

50

60

70

80

90

100

Pl
ay

ba
ck

 ti
m

e
(%

)

Stall

Q5

Q3

Q2

Q1

Q4

Stall

Stall

Q1

Q2

Q3

Q4

Q5

Q2

Q1

Q3

Q4

Q5

4x

2.3x

(b) Playback time distribution.

0 200 400 600 800

0.7

0.8

0.9

1

C
D

F

LCC
Femtocaching
IC

0 100 200 300 400 500 600 700 800 900
Number of playback stalls

0.7

0.8

0.9

1

C
D

F LCC
Femtocaching
IC

10Mbps case

20Mbps case

(c) CDF of playback stalls.

Fig. 8. (a) Impact of pre-buffering delay on number of smoothly played videos. (b) Playback time distribution across video
stalls and qualities (quality 1 (Q1) to quality 5 (Q5)). (c) CDF of number of playback stalls for 10Mbps (top subplot) and
20Mbps (bottom subplot) rate of server links.

be valuable even in these cases.

5.3 Benefits in Video Streaming Performance

The evaluation results presented so far focused on
the delay and cache hit rate associated to the delivery
of videos at certain qualities asked by users. For video
streaming applications, though, the user satisfaction de-
pends on other metrics as well. In such cases, the user
watches the video at the same time that it is downloaded.
In order for playback to start there is a need to buffer
a certain number of video frames that can be translated
to either a portion of the file in bytes or seconds. We
call this the pre-buffering delay measured in seconds.
Due to network bandwidth fluctuations, the decoder
might experience a buffer underrun which means that
it requires data for decoding and playback but they
have not yet been received. This is typically addressed
with the undesired playback video stalls. Using advanced
video streaming mechanisms, like dynamic adaptive
streaming over HTTP (DASH) [39], video quality can be
dynamically selected to ensure continuous playback. For
example, if packets of a required layer are missing from
the buffer, DASH can avoid a playback stall by decoding
the video at a lower quality. In the extreme case that the
base layer (quality level 1) is missing, the video playback
will be inevitably stalled.

We implement such an adaptive video streaming
mechanism and compare the performance achieved by
the presented caching algorithms. Specifically, we con-
sider a dynamic scenario where one video request is
generated every minute for an overall period of 10 hours.
The requests are distributed across the videos, quality
levels and local nodes as in the previous experiments.
The bandwidth capacities of the links between the caches
and to the server are shared across the requested layers.
In other words, at each time the delivery rate of a layer
is not constant but it is given by the capacity of the
respective link over the number of pending requests.
This allows us to study the impact of bandwidth fluc-
tuations. Each requested layer will be delivered either
by the server or by a cache that has stored that layer.

The decision is taken in a way that ensures the highest
bandwidth for the request. A requested layer will not be
set to play for the next second if the layer’s portion that
is already buffered is below the portion of the video that
is already played. More advanced scheduling algorithms
that adaptively determine the duration of the time that
the player should wait for more data are out of the
scope of this paper. Unless otherwise specified, we set
the overall bandwidth capacity of the server links to
10Mbps each, and 100Mbps for the links between the
caches.

Figure 8(a) shows the percentage of video streams that
are played smoothly, i.e., without any playback video
stalls or quality degradations, for each caching algo-
rithm. Here, different pre-buffering delays are evaluated
(from 20 to 200 seconds). As expected, the number of
smoothly played videos increases with the pre-buffering
delay for all the caching algorithms. With LCC, more
than 90% of the requested videos are played smoothly,
while the respective values are below 70% for the rest
caching algorithms. Overall, LCC achieves up to 45% more
smoothly played videos than its counterparts.

Moving one step further, we explore how the playback
time distributes across the different decoded video qual-
ities and video stalls. Figure 8(b) shows the results for
pre-buffering delay equal to 100 seconds. With LCC, the
video stalls take 5.5% of the playback time, which is 4
times lower than Femtocaching, and 9.2 times lower than
IC. Moreover, with LCC, videos are played more often at
the high quality level (Q5) than with the rest algorithms.
Particularly, the playback time at Q5 is 16.6%, 11.0%
and 8.5% for LCC, Femtocaching and IC respectively.
Overall, with LCC video playback is stalled for shorter time
and videos are played at higher quality than with the rest
algorithms.

Finally, we quantify the exact number of times that
videos experience stalls during their playback. Figure
8(c) shows the respective Cumulative Distribution Func-
tion (CDF) for pre-buffering delay equal to 100 seconds.
Here, two different cases are studied; when the rate
between a cache and a server is 10Mbps (top subplot)
and 20Mbps (bottom subplot). In both cases, LCC achieves

12

fewer playback stalls for more streams compared to the rest
algorithms. Certain videos experience hundreds of play-
back stalls, which means that these videos are stalled
during almost all their playback time (so they are not
practically available for streaming). In the 10Mbps case,
about 5%, 25% and 30% of the streams experience over a
hundred playback stalls for the LCC, Femtocaching and
IC algorithm respectively. These numbers are drastically
reduced in the 20Mbps case; 2% for LCC and Femto-
caching, and 6% for IC. Overall, LCC achieves significantly
fewer playback stalls than the rest algorithms. The gains are
more pronounced when the bandwidth capacities are relatively
low.

6 RELATED WORK

6.1 Online and Offline Caching
The schemes for caching content can be classified

into online (or reactive) and offline (or proactive). Online
caching is a popular technique that stores content in
caches on-demand. Examples include simple cache re-
placement algorithms such as the Least Frequently Used
(LFU) and Least Recently Used (LRU), and other variants
[40]. On the other hand, offline caching requires a priori
knowledge of the popularity distribution of content, and
based on that it optimizes caching decisions. This work
focuses on offline caching.

Offline caching is in general an NP-Hard problem.
Optimal solutions are limited to special cases with:
(i) a few content files [41], (ii) ultra-metric costs be-
tween cache-nodes [42], (iii) single-hop groups of cache-
nodes [43], and (iv) line caching networks [44]. The
proofs of optimality are based on totally unimodular
constraint matrices, reductions to variants of the match-
ing problem, or, of the maximum-flow problem. For
the general case, approximation algorithms have been
proposed in [3], [4], [6], [7]. The approximation ratios
are derived by applying linear relaxation and rounding
techniques, by expressing the objective function as a
submodular set function or by dynamic programming
techniques. Nevertheless, all the above results are not
applicable for the case of layered video files, as in this
case caching decisions are made per layer and the delay
metric is determined by the layer delivered last. Hence,
both the solution space and the objective function of the
caching problem are different.

6.2 Caching in Wireless Mobile Networks
Caching in wireless mobile networks is a relatively

new trend. The caches can be installed at several lo-
cations such as mobile switching centers [28], cellular
base stations [29] or mobile edge computing servers [18].
Wireless mobile networks posse several unique features
that can affect the efficiency of the caching policies.
These include the (i) broadcast/multicast nature of the
wireless medium, (ii) interference between the wireless
links, and (iii) mobility of the end-users. Schemes that de-
sign caching policies jointly with the multicast schedule

have been proposed in [45], [46]. A joint caching, channel
assignment and routing algorithm has been proposed in
[29]. Here, the caching solution takes into consideration
the interference graph that dictates which transmissions
of cached content are blocked by other transmissions.
A scheme that combines caching with coordinated mul-
tipoint (CoMP) transmission, an interference mitigation
technique, was proposed in [47]. In this case, the nodes
can engage in CoMP and increase throughput if the
same file is cached at many nearby nodes. Besides, a
caching scheme that exploits predictions about the future
mobility patterns of the users has been proposed in [48].
This scheme disperses parts of popular files to many
cache-nodes that are likely to be encountered sequen-
tially by the users as they move. Although the above
works revealed some fundamental differences between
wireline and wireless caching, they did not consider
encoding of videos into different qualities.

6.3 Caching of Encoded Video

The video caching problem attracts increasing inter-
est. The work of [17] and [18] proposed to serve the
requests for different qualities of a video by caching
a high bitrate version of that video and do rate-down
conversion (transrating) for each request requiring a
lower rate version. However, this method requires to use
a processing resource to do the conversion at the cache
side. If such a resource is not available, all the possible
bitrate versions of the video need to be available in
the cache, which consumes significant amount of cache
space. An alternative method is to encode the video into
multiple SVC layers which when combined achieve the
requested video quality. SVC has been shown to improve
video streaming performance by always downloading
the base layer and optionally downloading the enhance-
ment layers when there is enough available throughput
[49]. Various schemes have been proposed for optimizing
SVC video streaming including dynamic quality control
based on network bandwidth conditions, user prefer-
ences and buffering capacities of client devices [50], [51].
Nevertheless, these works do not consider caching.

Exploiting SVC in video caching has been recently
proposed in several contexts including CDN [19],
IPTV [20], helper-assisted VoD [21], Software-defined
RAN [22], Cloud-RAN [23] and small-cell wireless net-
works [24], [25], [26], [27]. These works either com-
pared SVC with other video encoding technologies, or
they proposed heuristic-based or numerically evaluated
layer caching schemes. For example, the work of [25]
considered the same delay objective as ours and pro-
posed a convex programming relaxation based heuristic
algorithm for a set of non-collaborating cache-nodes.
The work of [22] regarded the same delay metric as a
constraint (instead of objective), and proposed a two-
stage rounding heuristic algorithm that maximizes a
reward function for a set of collaborating cache-nodes.
The work of [23] considered an hierarchical setup where

13

a parent node collaborates with child nodes in caching
video layers. For this special scenario, an approximation
algorithm was presented to maximize the overall cache
hit rate. The work of [26] studied the channel diversity
gains brought by caching the same layers in neighbour
base stations and proposed another heuristic solution.
Finally, the implications on security of layered video
caching were investigated in [27]. Deviating from the
above, in this work, we use a general (abstract) model
that can potentially apply to different network architec-
tures, and provide layered video caching algorithms that
are provably optimal or have tight approximation ratios.

7 CONCLUSION

We studied distributed caching policies for layered
encoded videos aiming to reduce the video delivery
delay. The proposed framework captures also cooper-
ative scenarios that may arise, and which can further
improve the user-perceived performance. To overcome
the NP-Hardness nature of the problem, we derived
novel approximation algorithms using a connection to a
knapsack-type problem and a cache-partition technique.
The results demonstrated up to 25% delay gains over
conventional (encoding layer-agnostic) caching schemes,
as well as side benefits in QoE performance metrics
related to video streaming (e.g., fewer playback stalls
and higher decoded quality).

We believe that this paper opens exciting directions for
future work. Among them, it is interesting to relax the as-
sumption of constant delay parameters that is commonly
used in caching problems (e.g., see [3], [4], [6], [7], [22])
or change the objective to directly optimize QoE perfor-
mance metrics related to video streaming and study how
the results are affected.

REFERENCES
[1] K. Poularakis, G. Iosifidis, A. Argyriou, I. Koutsopoulos, L. Tas-

siulas, “Caching and Operator Cooperation Policies for Layered
Video Content Delivery”, in Proc. IEEE Infocom, 2016.

[2] Ericsson, “Mobility Report”, February 2018.
[3] S. Borst, V. Gupta, and A. Walid, “Distributed Caching Algorithms

for Content Distribution Networks”, in Proc. IEEE Infocom, 2010.
[4] N. Golrezaei, K. Shanmugam, A. Dimakis, A. Molisch and G.

Caire, “FemtoCaching: Wireless Video Content Delivery through
Distributed Caching Helpers”, in Proc. IEEE Infocom, 2012.

[5] G. Almes, S. Kalidindi, M. Zekauskas, “A One-way Delay Metric
for IPPM”, 2016, [Online] https://www.rfc-editor.org/rfc/pdfrfc/
rfc7679.txt.pdf

[6] I.D. Baev, R. Rajaraman, “Approximation Algorithms for Data
Placement Problems”, SIAM Journal on Computing, vol. 38, pp. 1411-
1429, 2008.

[7] A. Khreishah, J. Chakareski, “Collaborative Caching for Multicell
Coordinated Systems”, in Proc. IEEE Infocom Workshops, 2015.

[8] YouTube, “Live encoder settings, bitrates and resolutions”, [online]
https://support.google.com/youtube/answer/2853702?hl=en

[9] Binvisions, “List of Tablet and Smartphone Resolutions and
Screen Sizes”, [online] http://www.binvisions.com/articles/
tablet-smartphone-resolutions-screen-size-list

[10] NY Times, “Comcast and Netflix Reach Deal on Service”, Febru-
ary 2014.

[11] H. Schwartz, D. Marpe, T. Wiegand, “Overview of the Scalable
Video Coding Extension of the H.264/AVC Standard”, IEEE Trans-
actions on Circuits and Systems for Video Technology, vol. 17, no. 9, pp.
1103-1120, 2007.

[12] Cisco Webcasts, “Emerging Video Technologies: H.265, SVC, and
WebRTC”, 2014, [online] https://www.ciscolive.com

[13] Vidyo, [online] http://www.vidyo.com
[14] RADVISION, [online] http://www.radvision.com
[15] Nojitter, “Google, Skype, and WebRTC”, 2013, [on-

line] http://www.nojitter.com/post/
240160776/google-skype-and-webrtc

[16] Strech Inc, [online] http://www.stretchinc.com
[17] H.A. Pedersen, S. Dey, “Enhancing Mobile Video Capacity and

Quality Using Rate Adaptation, RAN Caching and Processing”,
IEEE/ACM Transactions on Networking, 2016.

[18] T.X. Tran, P. Pandey, A. Hajisami, D. Pompili, “Collaborative
Multi-bitrate Video Caching and Processing in Mobile-Edge Com-
puting Networks”, in Proc. IEEE WONS, 2017.

[19] F. Hartanto, J. Kangasharju, M. Reisslein, K. Ross, “Caching video
objects: layers vs versions?”, Multimedia Tools and Applications, vol.
2, pp. 45-48, 2006.

[20] Y. Sanchez, T. Schierl, C. Hellge, D. Hong, D. D. Vleeschauwer,
W. V. Leekwijck, Y. Lelouedec, T. Wiegand, “Improved caching for
HTTP-based Video on Demand using Scalable Video Coding”, in
Proc. CCNC, 2011.

[21] P. Ostovari, A. Khreishah, and J. Wu, “Multi-Layer Video Stream-
ing with Helper Nodes using Network Coding”, in Proc. IEEE
MASS, 2013.

[22] S. Qin, M. Bennis, X. Chen, G. Feng, Z. Han, G. Xue, “Enhancing
Software-Defined RAN with Collaborative Caching and Scalable
Video Coding”, in Proc. IEEE ICC, 2016.

[23] Z. Zhang, D. Liu, Y. Yuan, “Layered hierarchical caching for
SVC-based HTTP adaptive streaming over C-RAN”, in Proc. IEEE
WCNC, 2017.

[24] K. Poularakis, G. Iosifidis, A. Argyriou, L. Tassiulas, “Video
Delivery over Heterogeneous Cellular Networks: Optimizing Cost
and Performance”, in Proc. IEEE Infocom, 2014.

[25] C. Zhan, Z. Wen, “Content Cache Placement for Scalable Video
in Heterogeneous Wireless Network”, IEEE Communication Letters,
vol. 21, no. 12, 2017.

[26] T. Zhen, Y. Xu, T. Yang, B. Hu, “QoE-Aware Proactive Caching
of Scalable Videos Over Small Cell Networks”, arXiv:1604.07572,
2016.

[27] L. Xiang, D.W.K. Ng, R. Schober, V.W.S. Wong, “Secure Video
Streaming in Heterogeneous Small Cell Networks with Untrusted
Cache Helpers” in Proc. Globecom, 2017.

[28] J. Dai, F. Liu, Bo Li, B. Li, J. Liu, “Collaborative Caching in Wire-
less Video Streaming Through Resource Auctions”, IEEE Journal on
Selected Areas in Communications, vol. 30, no. 2, pp. 458-466, 2012.

[29] A. Khreishah, J. Chakareski, A. Gharaibeh, “Joint Caching, Rout-
ing, and Channel Assignment for Collaborative Small-Cell Cellular
Networks”, IEEE Journal on Selected Areas in Communications, vol.
34, no. 8, pp. 2275-2284, 2016.

[30] Y. Lien, “Some Properties of 0-1 Knapsack Problems”, in Proc.
Conference on Combinatorics and Complexity, 1987.

[31] E. Bastug, M. Bennis, and M. Debbah, “Anticipatory caching in
small cell networks: A transfer learning approach”, in 1st KuVS
Workshop on Anticipatory Networks, 2014.

[32] Video Trace Library, [online] http://trace.eas.asu.edu
[33] N. Bouten, S. Latre, J. Famaey, F. De Turck, W. Van Leekwijck,

“Minimizing the impact of delay on live SVC-based HTTP adaptive
streaming services”, in Proc. IFIP/IEEE IM, 2013.

[34] Appendix, https://www.dropbox.com/s/43f7m31u35nqzfy/
Appendix.pdf?dl=0

[35] M.S. Bansal, V.C. Venkaiah, “Improved Fully Polynomial time
Approximation Scheme for the 0-1 Multiple-choice Knapsack Prob-
lem”, in Proc. SIAM Conference on Discrete Mathematics, 2004.

[36] S. Boyd and L. Vandenberghe, “Convex optimization”, Cambridge
University Press, 2004.

[37] Publicly available code, [online]
https://www.dropbox.com/s/s9yequ71ytlkylz/infocom16code.
rar?dl=0

[38] M. Hefeeda and O. Saleh, “Traffic Modeling and Proportional
Partial Caching for Peer-to-Peer Systems”, IEEE/ACM Transactions
on Networking, vol. 16, no. 6, pp. 1447-1460, 2008.

[39] T. Stockhammer, “Dynamic adaptive streaming over HTTP :
Standards and design principles”, in Proc. ACM MMSys, 2011.

[40] S. Li, J. Xu, M. Schaar, W. Li, “Trend-Aware Video Caching
through Online Learning”, IEEE Transactions on Multimedia, 2016.

14

[41] M. Dehghan, A. Seetharam, B. Jiang, T. He, T. Salonidis, J. Kurose,
D. Towsley and R. Sitaraman, “On the Complexity of Optimal
Routing and Content Caching in Heterogeneous Networks”, in
Proc. IEEE Infocom, 2015.

[42] M. Korupolu, C.G. Plaxton, R. Rajaraman, “Placement Algorithms
for Hierarchical Cooperative Caching”, in Proc. ACM/SIAM SODA,
1999.

[43] M. Taghizadeh, K. Micinski, C. Ofria, E. Torng, S. Biswas, “Dis-
tributed Cooperative Caching in Social Wireless Networks”, IEEE
Transactions on Mobile Computing, vol. 12, issue 6, pp. 1037-1053,
2013.

[44] K. Poularakis, L.Tassiulas, “On the Complexity of Content Place-
ment in Hierarchical Caching Networks”, IEEE Transactions on
Communications, vol. 64, no. 5, 2092-2103, 2016.

[45] M.A. Maddah-Ali, U. Niesen, “Fundamental Limits of Caching”,
IEEE Transactions on Information Theory, vol. 60, no. 5, pp. 2856-2867,
2014.

[46] K. Poularakis, G. Iosifidis, V. Sourlas, L. Tassiulas, “Exploiting
Caching and Multicast for 5G Wireless Networks”, IEEE Transac-
tions on Wireless Communications, vol. 15, no. 4, pp. 2995-3007, 2016.

[47] A. Liu and V. K. N. Lau, “Mixed-timescale precoding and cache
control in cached MIMO interference network”, IEEE Transactions
on Signal Processing, vol. 61, no. 24, pp. 6320-6332, 2013.

[48] K. Poularakis, L. Tassiulas, “Code, Cache and Deliver on the
Move: A Novel Caching Paradigm in Hyper-dense Small-cell
Networks”, IEEE Transactions on Mobile Computing, 2016.

[49] J. Famaey, S. Latre, N. Bouten, F.D. Turck, “On the Merits of SVC-
based HTTP Adaptive Streaming”, in Proc. IFIP/IEEE International
Symposium on Integrated Network Management, 2013.

[50] X. Wang, J. Chen, A. Dutta, and M. Chiang, “Adaptive Video
Streaming over Whitespace: SVC for 3-tiered Spectrum Sharing”,
in Proc. Infocom, 2015.

[51] X. Li, B. Veeravalli, “A Differentiated Quality Adaptation Ap-
proach for Scalable Streaming Services”, IEEE Transactions on Par-
allel and Distributed Systems, vol. 26, no. 8, pp. 20892099, 2015.

[52] J. F. Nash, “The Bargaining Problem”, Econometrica: Journal of the
Econometric Society, vol. 18, no. 2, pp. 155-162, 1950.

Konstantinos Poularakis obtained the
Diploma, and the M.S. and Ph.D. degrees
in Electrical Engineering from the University
of Thessaly, Greece, in 2011, 2013 and
2015 respectively. Currently, he is a Post-doc
researcher and a member of the Institute
for Network Science at Yale University. His
research interests lie in the broad area of
network optimization. Dr. Poularakis has been
honored with several awards and scholarships
during his studies, from sources including the

Greek State Scholarships foundation (IKY), the Center for Research
and Technology Hellas (CERTH) and the “Alexander S. Onassis Public
Benefit Foundation”. He received the Best Paper Award in IEEE Infocom
2017.

George Iosifidis received the Diploma degree
in electronics and telecommunications engineer-
ing from the Greek Air Force Academy in 2000,
and the M.S. and Ph.D. degrees in electrical en-
gineering from University of Thessaly, Greece,
in 2007 and 2012, respectively. He worked as
a post-doctoral researcher at CERTH, Greece,
and Yale University, USA. He is currently the
Ussher Assistant Professor in Future Networks
with Trinity College Dublin, and also a Funded
Investigator with the national research centre

CONNECT in Ireland. His research interests lie in the broad area of
wireless network optimization and network economics.

Antonios Argyriou (S’99-M’06-SM’15)
received the Diploma in electrical and computer
engineering from Democritus University of
Thrace, Greece, in 2001, and the M.S. and
Ph.D. degrees in electrical and computer
engineering as a Fulbright scholar from the
Georgia Institute of Technology, Atlanta, GA,
USA, in 2003 and 2005, respectively. Currently,
he is an Assistant Professor in the Department
of Electrical and Computer Engineering,
University of Thessaly, Volos, Greece. From

2007 to 2010, he was a Senior Research Scientist at Philips Research,
Eindhoven, The Netherlands. From 2004 to 2005, he was a Senior
Engineer at Soft.Networks, Atlanta, GA, USA. He currently serves in the
editorial board of the Journal of Communications. He has also served
as Guest Editor for the IEEE TRANSACTIONS ON MULTIMEDIA
special issue on Quality-Driven Cross-Layer Design, and he was
also a lead Guest Editor for the Journal of Communications, special
issue on Network Coding and Applications. Dr. Argyriou serves in the
TPC of several international conferences and workshops in the area
of communications, networking, and signal processing. His current
research interests are in the areas of wireless communication systems
and networks, and signal processing.

Iordanis Koutsopoulos (S’99-M’03-SM’13) re-
ceived the Diploma degree in electrical and com-
puter engineering from the National Technical
University of Athens (NTUA), Athens, Greece,
in 1997, and the M.S. and Ph.D. degrees in
electrical and computer engineering from the
University of Maryland, College Park, College
Park, MD, USA, in 1999 and 2002, respec-
tively. He is now an Associate Professor with
the Department of Informatics, Athens University
of Economics and Business (AUEB), Athens,

Greece. He was an Assistant Professor (2013-2015) with AUEB. Before
that, he was an Assistant Professor (2010-2013) and a Lecturer (2005-
2010) with the Department of Computer Engineering and Communi-
cations, University of Thessaly, Volos, Greece. His research interests
include network control and optimization, with applications on wireless
networks, social and community networks, crowd-sensing systems,
smart-grid, and cloud computing. He was the recipient of the single-
investigator European Research Council (ERC) Competition Runner-
Up Award for the project RECITAL: Resource Management for Self-
coordinated Autonomic Wireless Networks (2012-2015).

Leandros Tassiulas (S’89-M’91-SM’05-F’07) is
the John C. Malone Professor of Electrical Engi-
neering and member of the Institute for Network
Science at Yale University. His research interests
are in the field of computer and communication
networks with emphasis on fundamental mathe-
matical models and algorithms of complex net-
works, architectures and protocols of wireless
systems, sensor networks, novel internet archi-
tectures and experimental platforms for network
research. His most notable contributions include

the max-weight scheduling algorithm and the back-pressure network
control policy, opportunistic scheduling in wireless, the maximum lifetime
approach for wireless network energy management, and the consider-
ation of joint access control and antenna transmission management in
multiple antenna wireless systems. Dr. Tassiulas is a Fellow of IEEE
(2007). His research has been recognized by several awards including
the IEEE Koji Kobayashi computer and communications award (2016),
the inaugural INFOCOM 2007 Achievement Award for fundamental
contributions to resource allocation in communication networks, the IN-
FOCOM 1994 best paper award, a National Science Foundation (NSF)
Research Initiation Award (1992), an NSF CAREER Award (1995),
an Office of Naval Research Young Investigator Award (1997) and a
Bodossaki Foundation award (1999). He holds a Ph.D. in Electrical
Engineering from the University of Maryland, College Park (1991). He
has held faculty positions at Polytechnic University, New York, University
of Maryland, College Park, and University of Thessaly, Greece.

