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Abstract

Characterizing and evaluating the performance of Mobile Broadband (MBB) networks is a vital need for today’s societies. Testbed-
based measurements are of great significance in this context, since they allow for controlled and longitudinal experimentation. In
this work, we focus on “speed” as an important Quality of Service (QoS) indicator for MBB networks, and work with MONROE-
Nettest, an open source speedtest tool running as an Experiment as a Service (EaaS) on the Measuring Mobile Broadband Networks
in Europe (MONROE) testbed. We conduct an extensive longitudinal measurement campaign spanning 2 countries over 2 years,
and provide our experiment results together with rich metadata as an open dataset. We characterize this open dataset in detail, as
well as derive insights from it regarding the impact of network context, spatio-temporal effects, roaming, and mobility on network
performance. We describe our experiences about conducting speedtest measurements in MBB, and discuss the challenges associated
with large scale testbed experimentation in operational MBB networks. Tackling one of the said challenges further, we introduce
the notion of adaptive speedtest duration, and leverage a Machine Learning (ML) based algorithm to provide a proof-of-concept
implementation called “Speedtest++". Finally, we describe the lessons we have learned, as well as provide an overall discussion
of how open datasets can support MBB research, and comment on open challenges, in the hope that these can serve as discussion
points for future work.
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1. Introduction tem contracted by Body of European Regulators for Electronic
Communications (BEREC) to be deployed in European coun-
tries [2]. Other organizations, such as the Internet Engineering
Task Force (IETF) have also published relevant documents and
Requests for Comments (RFC) about large-scale measurement
infrastructures [3]. These systems, however, might mainly tar-
get fixed broadband networks, and require the use of “white-
box” devices that plug into cable or DSL modems to measure
the speed and quality of home Internet connections.

There are multiple approaches for assessing the performance
of MBB networks. MNOs can rely on passive network-side
monitoring, which fails to capture the end-to-end performance
due to measurement probes traditionally being located within
the core network. MNOs and independent agencies can also
perform drive-tests, which help identify coverage holes or per-
formance problems. However, drive-tests are expensive, do not
scale well, and also do not provide a completely end-to-end
measurement.

Another approach is to rely on end-users to run performance
tests directly, by visiting a website or running a special mea-
surement application on their smartphones. The main advan-
tage of this crowdsourced approach is scalability. Millions of
measurements can be collected from different regions, networks
and user device models. However, with such approaches, mea-
surement data can only be collected at users’ own will, with no
*Corresponding author email address: cise@simula.no possibility to either monitor or control the measurement pro-

Mobile Broadband (MBB) networks underpin numerous vi-
tal operations in today’s societies, ranging from healthcare to
education, transport, business communications, energy, secu-
rity, and many more. Correspondingly, these networks are
becoming increasingly prevalent and critical, surpassing fixed
networks, and arguably becoming the most important piece of
the communications infrastructure. Given the importance of
MBB networks, there is a strong need to objectively assess their
performance and reliability. Such assessments are valuable to
multiple interested parties, including Mobile Network Opera-
tors (MNOs), content/service providers, national/international
regulatory authorities and policy makers, businesses whose ser-
vices depend on the underlying mobile communication infras-
tructures, application developers, researchers and innovators, as
well as individual consumers, and the society at large.

Characterizing the performance of broadband networks in
general, as well as the Quality of Service (QoS) provided by
these networks to end-users, requires systematic end-to-end
measurements. Several regulators have translated this need into
ongoing nationwide efforts, such as the Federal Communica-
tions Commission (FCC)’s Measuring Broadband America ini-
tiative in the USA [1], and the Reference Measurement Sys-
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cess. Due to the lack of control, such setups lack repeatability
and longevity. Longitudinal measurements which reveal im-
portant information about the stability and availability of MBB
networks over time, might not be possible with crowdsourced
tools since they require periodic measurement sessions. Fur-
thermore, mostly due to privacy reasons, crowdsourced mea-
surements might not provide rich context information and meta-
data, such as user location, type of user equipment, Operating
System (OS) build, mobile subscription, and connection mode.
However, metadata is critical in putting measurement results
into the right context.

These challenges have driven the research community to-
wards testbed-based experimentation, which allows for con-
trolled, scalable measurements over long periods of time. In
this regard, Measuring Mobile Broadband Networks in Eu-
rope (MONROE) is the first hardware-based European plat-
form for open, independent, multi-homed, and large scale mon-
itoring/assessment of MBB performance, allowing for custom
experimentation in operational networks (measurements “in
the wild”), over extended periods of time [4, 5]. Although
testbeds such as MONROE provide a controlled environment,
the main disadvantage is scalability, as the number of mea-
surement nodes might be limited, and much fewer compared
to crowdsourced approaches.

Performance measurements in MBB often rely on speedtest
tools, which can be used for many purposes such as network
performance monitoring, benchmarking (over locations, net-
work operators, technologies, etc.), bandwidth estimation for
interface selection purposes (e.g., multi-path scheduling), and
more. As listed in Section 2, there are a plethora of speedtest
tools, provided by different interested parties. However, most
of these are closed source with incompatible measurement
methodologies. In order to address this challenge, we have de-
signed and implemented MONROE-Nettest in [6]. MONROE-
Nettest is an open source, Docker-based speedtest tool, which is
compatible with most of the existing regulatory speedtest tools.
It is built as an Experiment as a Service (EaaS) on top of the
MONRGOE platform, but can also work standalone.

In this work, we employ the MONROE-Nettest tool on the
MONRGOE testbed to conduct a longitudinal evaluation of end-
to-end QoS in a number of prominent MBB networks in Eu-
rope. Our goal is not to compare the performance of the MNOs
at scale, but rather to understand how to evaluate mobile net-
work performance correctly. Using MONROE- Nettest, we
conduct a large scale measurement campaign and quantify QoS
across multiple MNOs over time and space, followed by an
analysis of the impact of network context, spatio-temporal ef-
fects, roaming and mobility on “speed”.

Finally, we tackle one of the most crucial challenges asso-
ciated with speedtests: mobile data consumption due to the
active transfer of data during measurements, which increases
with increased measurement duration. To address this prob-
lem, we introduce the notion of adaptive speedtest duration.
We leverage the Machine Learning (ML) based methodology
introduced in [7] to implement Speedtest++, a lightweight and
configurable framework capable of estimating the available data
rate in considerably less time than the full MONROE-Nettest

measurement duration. The tradeoff between its prediction ac-
curacy and mobile data consumption is the basis for adaptively
selecting the optimal speedtest duration.

Overall, this work is an extension and merge of [6] and [7],
wherein the added novelty is that we employ the software tool
described in [6] in a large scale measurement campaign, charac-
terize and open the resulting dataset, leverage the methodology
described in [7] to address one of the biggest challenges asso-
ciated with large scale data collection in MBB networks, and
also present the source code for the resulting proof-of-concept
implementation. Our contributions can be listed as follows:

e Using MONROE-Nettest [6], we run an extensive longi-
tudinal measurement campaign, spanning multiple MBB
network configurations in 2 countries over 2 years. We
provide our experiment results together with rich metadata
as an open dataset.

e We characterize this dataset in detail, and derive insights
from it regarding the temporal evolution of different net-
works, as well as the impact of network context, spatio-
temporal effects, roaming and mobility on network perfor-
mance. We report on our experiences about conducting
speedtest measurements in MBB, and discuss the chal-
lenges associated with large scale testbed experimentation
in operational MBB networks.

e We use the ML based methodology introduced in [7]
on our dataset to implement Speedtest++, a framework
for minimizing the volume of data consumption dur-
ing measurements through adaptive speedtest duration.
We provide the proof-of-concept implementation as open
source [8].

The rest of this paper is organized as follows: In Section 2,
we provide a summary of related work. In Section 3, we de-
scribe the MONROE testbed and the MONROE-Nettest tool. In
Section 4, we provide an overview of the measurement setup,
the experiments making up a large scale longitudinal measure-
ment campaign, and the resulting open dataset. In Section 5,
we characterize this dataset and present a list of challenges as-
sociated with large scale testbed experimentation in MBB net-
works. We address one of the main challenges in Section 6, and
describe Speedtest++. We share the lessons we have learned in
Section 7, followed by a discussion of further compelling ap-
plications of open MBB datasets and open challenges, which
can serve as future work points, in Section 8. We conclude the
paper in Section 9.

2. Related Work

In this section, we summarize relevant literature regard-
ing the longitudinal analysis of broadband networks, speedtest
tools, and the use of ML for network performance prediction.

Longitudinal analysis of broadband networks: There are a
number of studies which analyse (mobile) broadband networks
over a long period of time. In [9], authors use the crowdsourced
tool “MobiPerf” to provide an analysis of multiple networks



over the world over 17 months, with non-controlled experimen-
tation. Annual reports by the Center for Resilient Networks and
Applications (CRNA) in Norway provide performance metrics
on all Norwegian MBB networks over the course of multi-
ple years, as measured by a designated hardware-based testbed
called “NORNET” [10, 11, 12, 13, 14, 15]. Similar testbeds
which allow for longitudinal experimentation in broadband net-
works include mLab [16] and RIPE Atlas [17]. In [18], authors
investigate the state of broadband in Africa, in the form of a sur-
vey. Other studies studies such as [19] and [20] investigate the
performance of MBB networks under roaming, mobility, etc.

However, none of the above studies observe multiple opera-
tional MBB networks from the perspective of dedicated, con-
trollable and comparable clients, with regularly executed dis-
tributed measurements over the course of multiple years, with
rich context information such as location, signal coverage, con-
nection mode and mobility, as we do in this work using the
MONRGOE platform. Our periodic measurements on compara-
ble hardware reveal information about the stability and avail-
ability of different networks over time, as well as allow for per-
formance benchmarking across MNOs.

“Speedtest” tools: Notable works on broadband measure-
ments, such as [21], indicate that “speed” is the most im-
portant metric of interest in characterizing the quality of a
broadband service. There are a plethora of speedtest tools,
including commercial third party and operator tools such as
Ookla Speedtest [22], OpenSignal [23], Zafaco Kyago [24],
and TrafficMonitor, as well as regulatory tools such as RTR-
Nettest [25], NKOM Nettfart [26], HAKOMetar [27], Net-
Metr [28], AKOS Test Net [29], and RATEL-Nettest [30],
and academic tools such as MobiPerf [31], Netalyzr, and Ne-
tradar [32]. These tools have been used to varying degrees in
association with research studies. In [33], authors discuss the
opportunities and challenges of using crowdsourced measure-
ments from such speedtests for mobile network benchmarking.
In [34], authors employ crowdsourced RTR-Nettest measure-
ments to investigate the characteristics of MNOs, and build a
ML based framework to define and determine the behavior of
different MNOs.

Most of the existing tools are closed source with incom-
patible measurement methodologies. Although the prevalence
of Transmission Control Protocol (TCP)-based testing is doc-
umented by [21] as a common element to their methodolo-
gies, there are still many differences among the existing tools
in terms of client configuration, server (network) infrastruc-
ture, and test parameters. Furthermore, as crowdsourced ap-
proaches, many of the tools are not applicable for testbed sce-
narios. In [6], we introduce the testbed-compatible and config-
urable MONROE-Nettest to address the need for large scale and
longitudinal measurements over operational MBB networks.
MONROE-Nettest is a highly cofigurable Docker-based imple-
mentation of a speedtest using TCP, which allows for compa-
rable experimentation in both testbed and standalone senarios.
It can also be used in conjunction with other software to in-
vestigate QoS and Quality of Experience (QoE) in (mobile)
broadband, such as [35], where authors instrument MONROE-
Nettest within a video streaming experiment to assist the anal-

ysis of user QoE. In this paper, we exploit this tool to run a
longitudinal study of operational MBB networks.

Network performance prediction with ML: Network per-
formance prediction is critical for a plethora of network man-
agement tasks, which include performance optimization, traf-
fic management, application provisioning and crowdsourced
benchmarking. Over the years, several attempts to model and
predict performance have been proposed. Even though differ-
ent studies tackle the problem from slightly different angles,
they share a common goal, which is to provide high accuracy
and minimize the prediction error. Experimental approaches to-
ward performance prediction have been addressed in [36], [37],
[38], [39], [40], [41] and [42]. The authors in [43] leverage
constant rate probing packets for a very short duration to es-
timate available bandwidth in a controlled Long Term Evolu-
tion (LTE) environment while in [44] they extend their work by
further testing and validating the developed framework in live
LTE networks. In [45], Maier et al. introduce a novel Artificial
Intelligence (AI) model that leverages feed-forward neural net-
works to estimate downlink and uplink bandwidth, with the aim
of minimizing data consumption during speedtests. The authors
make use of relatively complex neural network architectures
which increase the implementation and training time complex-
ity compared to simpler models. In [46], authors present a ML
approach trying to predict the latency in an operational MBB
network. Besides empirical solutions, theoretical models have
also been proposed. In [47], Gao et al. introduce a theoretical
learning based throughput prediction system for reactive flows,
while authors in [48] propose a novel stochastic model for user
throughput prediction in MBB networks that considers fast fad-
ing and user location.

While all of the above studies address the same problem, that
of accurate network performance prediction, most do not pin-
point its relevance to the selection of an optimal measurement
duration. We approach the problem from this specific angle:
our goal is to reduce the amount of data consumed while run-
ning speedtests on MBB networks, by using high-accuracy data
rate predictions. More specifically, we would like to find out
the shortest possible measurement duration which is adequate
for an estimation of the “true” data rate with reasonable accu-
racy. In Section 6 of this paper, we make use of the super-
vised ML based solution for data rate prediction that we have
proposed in [7]. We present Speedtest++, a proof-of-concept
implementation based on [7], which exploits the tradeoff be-
tween prediction accuracy and data consumption. Speedtest++
allows for the dynamic configuration of several hyperparame-
ters and algorithms. This is of utmost importance, as sensitive
use cases may require a more accurate data rate estimation and
consequently a higher amount of data to be transferred, whereas
it is possible to opt for a relatively short duration, as low as a
couple of seconds, if a rough estimation of the network capac-
ity is adequate. We provide indicative results that can be used
as a guideline by experimenters to decide upon a test duration,
which offers an appropriate trade-off between measurement ac-
curacy and data consumption for their specific purposes. Sub-
sequently, we make the source code open for the community.



Figure 1: MONROE-Nettest system architecture.
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3. Infrastructure and Tool Design

In this section, we provide an overview of our experiment
infrastructure and measurement tool design, detailing the con-
figuration and usage of MONROE-Nettest.

3.1. MONROE Platform

MONRGOE [4, 5, 49] is a European transnational open plat-
form, and the first open access hardware-based platform for in-
dependent, multi-homed, and large scale MBB measurements
on commercial networks. The platform comprises more than
150 measurement nodes, both mobile (e.g., operating in de-
livery trucks and on board public transport vehicles, such as
trains or busses) and stationary (e.g., volunteers hosting nodes
in their homes). Nodes are multi-homed to multiple different
MBB operators using commercial-grade subscriptions in sev-
eral countries in Europe. Each MONROE node integrates two
small programmable computers (PC Engines APU2 board in-
terfacing with three 3G/4G MC7455 miniPCI express modems
using LTE CAT6 and one WiFi modem). The software on the
node is based on Debian GNU/Linux “stretch” distribution and
each node collects metadata from the modems, such as carrier,
technology, signal strength, GPS location and sensor data. This
information is made available to the experimenters during exe-
cution. Experiments running on the platform uses Docker con-
tainers (light-weight virtualized environment) to provide agile
reconfiguration. All software components used in the platform
are open source and available online.

MONRGOE provides a controlled environment to conduct re-
peatable and reproducible experiments. In contrast to crowd-
sourced tools which cannot produce datasets for performance
characterization of MNOs due to the amount of noise in their
results or because of app permission requirements, MONROE
provides a clean dataset collected from identical devices that
require no maintenance on the part of the end user.

3.2. MONROE-Nettest Overview

MONROE-Nettest is a flexible speedtest tool built as an EaaS
over the MONROE platform, which is based on and compati-
ble with a number of European regulatory measurement tools.
Below, we provide brief information on its system architecture,
application flow, and configuration. More details can be found
under [6, 8].

Figure 1 provides a system overview, including the possibil-
ity of running the MONROE-Nettest client on different plat-
forms through Docker virtualization. The traffic flow between
the client and the server can be accomplished through multi-
ple (wired or wireless) interfaces, depending on availability of

Figure 2: MONROE-Nettest application flow.
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client hardware and configuration parameters. The connectivity
between the measurement server and the Internet should ideally
be accomplished through a high-bandwidth dedicated line, so
that the performance of the data service under test is primar-
ily determined by the performance of the mobile network side
of the connection. [50] presents a detailed discussion on these
lines, avoiding system bottlenecks, and appropriate scheduling
algorithms.

3.3. Application Flow

The MONROE-Nettest client container [S1] is a wrapper
around the client core, combining a number of functionalities,
and making the core compatible for large scale testbed exper-
imentation. Figure 2 depicts the application flow which is as
follows: (1) the client container makes a measurement request
to the server, (2) the measurement server replies with the notion
of availability, (3) the measurement, composed of 6 phases, is
run between the client and the server, (4) the results are gath-
ered at the client side. This flow is easily applicable to testbeds,
as well as highly scalable.

Within (3), the client container first establishes that metadata
information is available, then it runs a traceroute against the
selected measurement server, after which it runs the client core,
and at the end, manages the output files. The main wrapper
functionality has been written in Python, with a number of bash
scripts to aid in the management of files.

A MONROE-Nettest core measurement consists of 6 phases:
Initialization, Pre-Test Downlink, Ping Test, Downlink Test,
Pre-Test Uplink, and Uplink Test. Phases are illustrated in more
detail in Figure 3 with Message Sequence Charts (MSCs).

Initialization consists of the client connecting to the measure-
ment server and establishing the desired number of TCP flows.
This exchange is very brief and consists of an almost-constant
number of packets. Once the client establishes a connection
with the server, the pre-test DL phase follows. Pre-test phases
are undertaken with the same purpose: to ensure that the In-
ternet connection is in an “active” state, i.e. that dedicated ra-
dio resources are available. In the pre-test DL phase, for each
TCP flow, the client requests data in the form of chunks that
double in size for each iteration. The duration of this phase is
configurable. The ping test consists of the client sending a de-
sired number of TCP “ping”s in short intervals to the server
to test the Round-Trip Time (RTT) of the connection. This
exchange is also very brief and consists of an almost-constant
number of packets. The number of pings are configurable. The
pre-Test UL phase works analogously to the pre-test DL phase,
but with the client as the sender and the server as the receiver.
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Figure 3: Message Sequence Charts (MSCs) for MONROE-Nettest measurement phases [6]

The DL and UL tests are the main components of the measure-
ment wherewithin multiple TCP flows, the receiver side simul-
taneously requests and the sender side continuously sends data
streams consisting of fixed-size chunks. After the nominal du-
ration, the sender stops sending further chunks on all connec-
tions, the last chunk per each thread is allowed to transmit com-
pletely, and the DL/UL data rate of the connection is estimated.

Notes on compression and encryption: The chunks that
are sent and received consist of random data to prevent any
compression of the measurement data. The random data is pre-
generated on the server side and the client reuses the received
random data for the uplink measurement. Transport Layer Se-
curity (TLS) is used on top of the TCP streams to increase the
probability that the measurement can be performed even within
networks protected by firewalls and proxy servers, and to addi-
tionally prevent compression. Data security for the transmitted
data per se is not a reason for using TLS. Our internal bench-
marking showed no significant difference for the measurement
results using TLS compared to measurements not using TLS.
The cryptographic handshakes performed during TLS connec-
tion establishment are not performed during the actual measure-
ment phase.

Data rate calculation: For the calculation of the data rate
to be reported, the client uses an aggregation of all flows, with
a granularity of one data chunk (which is also a configurable
parameter). Let n be the number of TCP flows used for the
measurement and F := {1, ..., n} be the set of these flows. All
transmissions start at the same time, which is denoted as relative
time 0. For each TCP flow f € F, the client records the relative
time tEf.) and the total amount bgf) of data received in Bytes on
this flow (per chunk), from time O to t}") for successive values
of i, starting with i := 1 for the first chunk received. For each
TCP flow f € F, the time series begins with t(fo) := 0 and bjf)) =

0, where m is the number of pairs (t}i) s bi? ) which have been

recorded for flow f.

£ = min ({t}’”fﬂ v feF}) (1)

(d) Pre-test Uplink (UL) (e) UL
VfeF:ip:=min({ieN|1<i<ms ALl > 1)) )

iy being the index of the chunk received on flow f at t* or right
after *. Then the amount by of data received over TCP flow f
from time O to time ¢* is approximately

(ir=1
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The data rate for all TCP flows combined is given by Eq.4,
where R is used as the final reported data rate.

1 n
R :=— b 4
t*;f (4)

This particular calculation does not target the application
data rate (e.g., including the SSL overhead if enabled), rather
it measures the transport capacity by counting the bytes trans-
mitted by the flows directly from the socket, as in Equation 4.
It is possible to get both the application data rate and the trans-
port capacity using MONROE-Nettest, where the latter can
be calculated using the detailed TCP_INFO available from the
stats.json output file. Also, the current calculation includes the
slow-start phase of all TCP flows. It is known that some of the
existing speedtest tools cut out the TCP slow start, which yields
a more optimistic data rate estimate.

RTT calculation: For every TCP “ping”, the RTT is calcu-
lated on both the client and server side. The client computes the
difference between sending the PING and receiving the PONG,
whereas the server computes the difference between sending
the PONG and receiving the OK (see Figure 3(b)). Afterwards,
the median of all pings are computed (therefore odd number of
pings are encouraged in the client configuration), and the ag-
gregate is provided in the summary output along with each in-
dividual result. This is referred to as the “TCP payload RTT”.

3.4. Configuration

Client: The MONROE-Nettest client is highly customiz-
able with over 20 configuration parameters, including the num-
ber of flows for DL and UL tests, measurement durations for



Figure 4: Measurement setup.
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DL, UL and pre-test phases, number of pings, and measure-
ment server (hostname and port). It is also possible to use the
multi_config parameter, which enables setting groups of con-
figuration parameters together, to be executed in batches. The
configuration parameters can be passed to the Docker container
as a JavaScript Object Notation (JSON)-formatted string.

Server: Configurable parameters of the server include the
port numbers, and the allowed number of parallel client con-
nections. The configuration parameters have to be set while the
server code is being compiled.

The full list of MONROE-Nettest configuration parameters
and default values can be found under [8]. In Section 4.1, we
list the parameters we explicitly set for our measurement cam-
paign on the client side.

4. Measurement Setup, Experiments and Dataset

In this section, we describe the longitudinal measurement
campaign we have been running using MONROE-Nettest, as
well as the corresponding massive dataset we are making pub-
licly available with this work as open data.

4.1. Experimental Setup

Figure 4 illustrates our measurement setup. As clients, we
have employed 24 stationary nodes in Norway, 36 stationary
nodes in Sweden, 31 nodes on trains in Norway, and 48 nodes
on buses in Sweden. As servers, we have employed 2 well-
provisioned MONROE-Nettest servers in Norway and Swe-
den, deployed on virtual machines hosted by the MONROE Al-
liance, which are indicated as NO and SE in Table 1. The idea
for employing multiple measurement servers in different coun-
tries is to make sure that during measurements, a client node
connects to the server towards which it has the lowest network
latency. Geographical vicinity has been shown to have a nega-
tive correlation with network latency [21], therefore each node
targets the physically closest server.

We have scheduled MONROE-Nettest as a base experiment
on all available nodes in Norway and Sweden for over 2 years,
starting from 2018 (see Section 4.3 for notes on availability).
This corresponds to running the client container with the fixed
configurations provided in Table 1, two or more times a day
on all available nodes. As mentioned above, client nodes in
Sweden (including mobile nodes) have been configured to run
measurements against the server in Sweden, where client nodes
in Norway (including mobile nodes) have been configured to
run measurements against the server in Norway.

Parameter Description Value
cnf_dl_pretest_duration_s | Pre-test DL duration 1s
cnf_rtt_tcp_payload_num Number of pings 11
cnf_dl duration_s DL test duration 10s

cnf_dl _num_flows Number of TCP flows || 5

cnf_server_host Measurement server SE/NO

Table 1: Configuration parameters employed throughout the measurement cam-
paign.

We have exported MONROE-Nettest base experi-
ment results, as well as the metadata stream of interest
(MONROE.META .DEVICE.MODEM) corresponding to the times
of the experiments, from the MONROE repository using a
consortium experimenter certificate. We process this raw data
and present it as an open dataset, as described in Section 4.2.

4.2. Dataset

In order to generate our longitudinal MBB dataset, we have
used a part of the raw data from MONROE-Nettest measure-
ments between 01.01.2018 and 31.12.2019, along with experi-
ment metadata from the MONROE platform, to produce 2 types
of files as described below.

Summary results per day: Daily aggregate
monroe-nettest-<yyyy-mm-dd>.CSV files combine the
configuration parameters, reported performance metrics (DL
data rate, UL data rate, RTT), and corresponding metadata
(Received Signal Strength Indicator (RSSI), Reference Signal
Received Power (RSRP), Reference Signal Received Qual-
ity (RSRQ), mobile technology, and mobility indicator) for
each MONROE-Nettest measurement within a given day day,
and include one line per measurement.

Detailed results per measurement: The
<measurement-id>.JSON files per each MONROE-Nettest
measurement provide all the information pertaining to the
measurement in the corresponding daily aggregate file speci-
fied above, as well as detailed time series for all phases (e.g.,
timestamped records of downloaded bytes per chunk in the DL
phase). One JSON file is generated for each measurement, and
files are sorted into daily folders.

‘We provide these CSV and JSON files as a compressed archive
under [8]. Overall, our dataset contains over 150K MONROE-
Nettest measurements from 6 SIM and network operators. Ta-
ble 2 lists the measurement statistics.

4.3. Technical Limitations

The limitations of our dataset in terms of hardware, spatio-
temporal coverage, and mobility are addressed below.

Hardware: Since all deployed MONROE nodes integrate
MC7455 modems, our measurements only consist of a single
type of device category (LTE CAT6). As a fixed hardware setup,
this was not possible to modify during our measurements. LTE
CAT®6, as a relatively non-recent device category, has limited
representativity over next generation mobile devices. However,
this property of our dataset provides an invaluable opportunity
to investigate the QoS as experienced by legacy devices in to-
day’s networks (see Section 5).



Scenario 2018 | 2019
NO-opl 12370 | 7342
NO-op2 13115 | 8783
Native NO-op3 7173 6537
SE-opl 24596 | 12217
SE-op2 24053 | 12641
SE-op3 22035 | 12142
SE-opl in NO-op2 3003 250
Roaming | NO-op3 in NO-op2 0 244
NO-opl1 in SE-op3 26 8
Total Stationary 70994 | 34280
Mobile 35386 | 25895

Table 2: Number of measurements in native scenarios (top), roaming scenarios
(middle), and in total on stationary and mobile nodes (bottom).

Scale: Since our experiments rely on the MONROE platform
as the underlying infrastructure, our measurements are limited
to the physical setup and scale of its deployment. As of June
2020, the testbed geographically covers 4 European countries
(Italy, Norway, Spain, Sweden), with a total of 24 nodes avail-
able for development and 173 nodes available for experimenta-
tion. Among these, 38 are deployed on trains and buses. Roam-
ing is enabled on all SIMs, but it is not possible to control when
this occurs. The middle section of Table 2 shows the uneven
number of measurements performed in roaming for the top 3
operator pairs (in terms of measurement count).

SIM quotas: As a very large platform providing end-to-end
measurements in operational MBB networks, MONROE is re-
alistically limited to commercial SIM subscriptions. These of-
ten incur monthly quotas on the volume of mobile data that can
be consumed. This has affected the temporal and spatial scale
of our measurements in the following ways: (1) we have sched-
uled the MONROE-Nettest base experiment only 2 (and later
3) times per day on the nodes, (2) we have not been able to
schedule as many experiments in Italy and Spain as we have in
Norway and Sweden since the monthly quotas from MNOs in
Italy and Spain were lower, measurements from these countries
were therefore omitted in this study. We have tried to compen-
sate for these limitations by the sheer longitude of our campaign
(2.5 years), as well as by using nodes from all available loca-
tions in Norway and Sweden, in order to make sure the mea-
surements are geographically well dispersed despite being in
the same country.

Mobility: The main assumption in our analysis of the “mo-
bile” nodes was to consider these nodes as constantly mobile,
which later transpired to be false. A preliminary visualization
showed that the vehicles on which the nodes were deployed
could at times, and quite often, be stationary (either due to
mandatory maintenance in the garage, or simply having idle
times between trips). In this regard, the MONROE metadata,
which also includes real-time location measurements from the
external GPS antennas associated with the nodes, has played a
very important role. We have filtered out MONROE-Nettest
measurements which were started while the “mobile” nodes
were stationary, in our analysis.

5. Open Dataset Characterization and Analysis

In this section, we highlight the main properties of the dataset
that was described in Section 4.2, while using its longitudinal
characteristics to make some observations and derive insights
about the state of a number of prominent MBB networks in
Europe.

We begin by looking at network context, which is a repre-
sentation of the physical characteristics of the underlying com-
munications infrastructure. We derive insights about the ef-
fect of mobile technology, network operator, and signal cov-
erage on reported network performance in Section 5.1. Next,
we focus on spatio-temporal features, which represent user be-
haviour. We investigate the impact of location, time of day and
day of week on network performance in Section 5.2. Finally,
in Section 5.3, we consider the impact of roaming (national and
international) and mobility on network performance.

5.1. Network Context

Impact of mobile technology: We start by investigating the
impact of mobile technology on network performance in terms
of DL data rate and RTT. For this analysis, we consider 44K
stationary and non-roaming measurements that were performed
in 2018 and 2019. Among these measurements, 39K have been
conducted in 4G, and 5K have been conducted in 3G.

Figure 5 presents the distribution of all samples with respect
to the two performance metrics, grouped according to mobile
technology (with no distinction with respect to network). We
observe that 3G and 4G measurements have a different range
for both performance metrics as expected, with the majority of
4G measurements distributed around 38ms RTT - 10Mbps DL
data rate, and 3G measurements distributed around 51ms RTT -
7Mbps DL data rate. The difference between 3G and 4G access
technologies are irrespective of MNO, i.e., all operators show
more or less the same characteristics in terms of the difference
between 3G and 4G.

Impact of network operator: Next, we look at a number
of selected MNOs, and characterize their performance in na-
tive (non-roaming) 4G scenarios. For this analysis, we consider
DL and ping measurements run in 3 MNOs from Norway and
Sweden each. Figure 6 presents the Empirical Cumulative Dis-
tribution Function (ECDF) of DL data rate and RTT per MNO.
We observe that there is a difference in performance between
different operators, although they might be from the same coun-
try/region. Overall, MNOs in Sweden operate with higher me-
dian DL data rate (43Mbps for SE-op1, 22Mbps for SE-op2,
20Mbps for SE-op3), but they also have a higher median RTT
(40ms for SE-op1, 39ms for SE-op2, 55ms for SE-op3).

Impact of signal coverage: In order to observe the effect
of signal coverage on DL data rate, we consider the reported
DL data rate value from each MONROE-Nettest measurement,
together with the last signal strength value reported by the cor-
responding MONROE client node interface before the start of
the measurement. As the signal strength metric, we use RSSI
for measurements conducted in 3G, and RSRP for measure-
ments conducted in 4G. Figure 7 presents the distribution of
DL data rate with respect to signal coverage in the form of a
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Figure 5: Heatmap of the distribution of performance in terms of downlink data rate and round-trip time, per mobile access technology.
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Figure 6: Performance in terms of downlink data rate and round-trip time, per operator.

scatter plot, jointly for all operators, per mobile access tech-
nology. The smoothed mean and max envelopes indicated on
the individual subfigures help us observe that there is a more
prominent positive correlation between signal strength and data
rate in 4G, as compared to 3G.

Takeaways: Overall, network context plays a significant
role in determining performance, as measured by DL data rate
and RTT. Network performance is impacted most by the mo-
bile access technology (with 4G performing better than 3G in
terms of both metrics) and signal coverage (with higher signal
strength values corresponding to higher performance overall).
We also observe that different MNOs have different data rate
and RTT profiles, which we are able to express quantifiably.
Our dataset allows for making detailed profiles of data rate vs.
signal strength per MNO as well, similar to what is demon-
strated in Figure 7.

5.2. Spatio-Temporal Effects

Impact of location: Next, we investigate the impact of
spatio-temporal features on the performance of MBB networks,
using the stationary nodes. When we look at the performance in
terms of DL data rate with respect to the country of the client,

we see a trend similar to what is demonstrated by the MNOs.
Figure 10(a) shows that nodes originating from different coun-
tries (equipped with SIM cards from the MNOs native to the
origin country) show different performance, in accordance with
Figure 7. The median DL data rate for nodes in Norway and
Sweden are 24Mbps and 33Mbps respectively.

Impact of day-of-week: Figure 8 shows the average re-
ported DL data rate per day of the week, for 6 operators. We see
a general trend of increased data rates during Friday and Satur-
day, compared to the rest of the week. The overall “weekday”
(Sunday-Thursday) average is 51.21Mbps whereas the overall
“weekend” (Friday-Saturday) average is 53.72Mbps.

Impact of time-of-day: Figure 10(b) shows the average re-
ported DL data rate as reported per time-of-day (hourly gran-
ularity), for 3 MNOs in Sweden. We see a general trend of
increased data rates during the night hours, and decreased data
rates during working, especially rush and evening hours (aver-
age DL data rate for 0-8am: 37Mbps, 8am-16pm: 31Mbps,
16pm-0am: 30Mbps). The same trend is displayed by the
MNOs in Norway as well.

Takeaways: The impact of location is derivative of the im-
pact of MNO, in that, for non-roaming stationary scenarios,
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performance curves closely follow the aggregate performance
of individual operators from each country. Temporality has a
significant impact of network performance, most clearly visi-
ble in terms of diurnal patterns (periodic performance fluctua-
tions with respect to time-of-day), but also as a less prominent
weekly pattern, for all networks. In a broader temporal scale,
over the course of multiple years, we do not observe a major
change in the performance of different networks or MNOs. It
is possible to conclude that the performance of existing 3G and
4G networks have converged to a relatively stabilized maximum
with respect to infrastructure.

5.3. Roaming and Mobility

Impact of roaming: Figure 9 shows the distribution of DL
data rate for 8 different operator combinations. On the left and
middle, we see 6 SIM operators in Norway and Sweden which
are using their own access network. On the right, we see (RI) an
international roaming scenario where the SIM operator SE-op1
is using the access network of NO-op2 (i.e., a Swedish opera-
tor is roaming in a Norwegian operator’s network), and (RN) a
national roaming scenario where the SIM operator NO-op3 is
using the access network of NO-op2 (i.e., a Norwegian opera-
tor roaming in another Norwegian operator’s network). It can
be observed that the median data rate tends to decrease from
native to national roaming to international roaming scenarios.

Figure 9: Downlink data rate for native and roaming scenarios (RI: international
roaming, RN: national roaming).
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Impact of mobility: Finally, we look at the reported perfor-
mance in terms of DL data rate, with respect to the mobility of
corresponding client nodes. After verifying that the measure-
ments from the mobile nodes are actually executed in mobility,
we group all measurements into 2 categories: stationary rep-
resenting stationary nodes, mobile representing mobile nodes
deployed on intra-city buses in Sweden and on high speed trains
in Norway. Figure 10(a) presents the ECDF of reported DL data
rate with respect to different mobility categories. We observe
that the difference between reported DL data rate from station-
ary and mobile nodes is around 6Mbps in the median (50%-ile)
range, and up to 9Mbps in the 75%-ile range, in favour of sta-
tionary nodes.

Takeaways: Roaming clients perform worse than native
clients on average, with no significant difference between
national and international roaming. Mobile clients perform
slightly worse than stationary clients, however the level of mo-
bility, and mobility itself has a minor impact.

5.4. Challenges

During the course of designing, implementing, scheduling
and running experiments with, as well as collecting data and
analysing results from MONROE-Nettest, we have had valu-
able experiences in tackling challenges related to next genera-
tion networks, testbed-experimentation, and TCP-based testing.
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network operators in Sweden.

In this section, we elaborate on some of these challenges which
have guided our next steps.

Increased data rates: As mentioned in Section 4.3, one
of the biggest challenges of operating a mobile testbed is the
large cost associated with maintaining numerous SIM contracts.
Limited contracts provide inaccurate data rate estimations due
to the mechanisms employed by network operators to imple-
ment tariff bottlenecks, as well as completely hinder the pos-
sibility to schedule experiments after the quotas run out. This
data consumption challenge exacerbated by the ever increasing
speed of MBB. The ever-growing mobile data traffic will main-
tain its upward trajectory as we enter the Fifth Generation (5G)
and Internet of Things (IoT) era.

According to the Cisco Global Mobile Data Traffic Fore-
cast [52], the number of global mobile devices and connections
is set to reach a staggering 13.1B by 2023. In addition, the aver-
age 5G speed will be 575 Mbps. The increasing data rates lead
to increased data volume consumption for all active measure-
ment based speedtests, proportional to measurement duration.
As a consequence, there is a strong need to design, implement
and deliver solutions that aim to restrain the excess consump-
tion of data during speedtesting, while preserving the desired
level of accuracy.

Increased use of MBB networks in mobility: Customers’
ever increasing demand from MBB networks for availabil-
ity under mobility (e.g., working and/or streaming content on
trains, cars, buses, etc.) creates a need for conducting reli-
able network measurements under mobility as well. Under high
speeds, long test durations cause lower accuracy and compli-
cations in terms of mapping performance metrics to specific
points on the map (difficulty of mapping a reported data rate
or RTT value to a single location point on a route). The longer
a measurement takes, the harder it is to pinpoint which network
infrastructures along the vehicle‘s designated route (e.g., which
cells in the vicinity of train tracks) are used, and the harder it
is to associate a certain performance metric with a certain route
segment. Therefore, it is imperative to obtain measurement re-
sults quicker, especially in mobility scenarios. A shorter mea-
surement duration can alleviate this challenge, and allow for
performance metrics to be more easily associated with route
segments.
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TCP slow start: The use of TCP for measurements can be
disputed. Due to TCP’s slow start and congestion avoidance al-
gorithms, it can require a considerable number of RTT’s, send-
ing an increasing packets per RTT until it reaches the equilib-
rium that is used as the throughput estimate. We pay for this
probing period in data quota. User Datagram Protocol (UDP)
does not suffer from TCP’s need send data for several round-
trip times until it can settle for a suitable data rate. It could
probe more aggressively or start to probe with a data rate that
was reached before. Mobile nodes and servers in our mea-
surement infrastructure are known, and UDP is not stopped by
firewalls. This could reduce the consumed data quota. How-
ever, UDP probing using our own rate adaptation algorithm [53]
would influence competing TCP flows in different ways than a
TCP probe. By choosing exteme aggressiveness, UDP could be
used to probe network capacity instead of the throughput that
is achievable by a typical application. We did therefore select
TCP-based probing to maximize realism, and reduce the con-
sumption of data quota by investigating when probing can be
terminated with a moderate loss of accuracy in throughput esti-
mation. Our estimation of throughput is representative of how
applications “see the network”™, in the sense that most applica-
tions today rely on TCP as the transport protocol.

Next steps: In the following, we attempt to create a speedtest
with adaptive duration. Our solution aims to alleviate the chal-
lenge of increased data rates and address the need for quicker
measurements, by decreasing the measurement duration while
preserving accuracy. We achieve this by by taking into consid-
eration the characteristics of data rate time series, and optimize
our measurement algorithm according to the trade-off between
mobile data volume consumption and accuracy.

6. Speedtest++: Toward Adaptive Speedtest Duration

As mentioned in the previous section, one of the biggest chal-
lenges associated with running active measurements in opera-
tional MBB networks is the huge volume of data consumed.
On the one hand, network operators face with traffic profiles
of higher requirements and can be forced to adapt their net-
work policies and resources to provide their subscribers with



the necessary service. On the other hand, end-users with lim-
ited SIM mobile contracts and high tariffs are especially threat-
ened. In this section we present Speedtest++, an open source
and lightweight ML based framework that allows for adaptive
speedtest duration toward reducing the consumed data volume
over a network connection. In a nutshell, Speedtest++ offers a
solution to accurately predict a network’s capacity by exploit-
ing passive data (i.e., extracting network information without
injecting additional traffic) and a significantly smaller portion of
active (i.e., measuring performance by initiating data exchange
over the connection) TCP traffic. Adapting the speedtest dura-
tion value is tightly coupled with the learning model’s predic-
tive accuracy. A good performing model is critical for reducing
the duration of the transmission process, and therefore, prevent
excess data volume consumption. We evaluate its performance
by drawing 2 years of data from our dataset introduced in Sec-
tion 4.2. The main results reveal a critical tradeoff between
prediction accuracy and data consumption. We argue that the
optimum speedtest duration value strongly relates to the appli-
cation’s error sensitivity requirements.

6.1. The Big Evil: Excess Data Volume Consumption

As discussed in Section 1, there exists a plethora of speedtest
solutions available on the market, with plenty of them being
commonly used by a significant share of subscribers who in-
tent to access the characteristics of their own network connec-
tion. What is not instinctive, however, is that speed monitoring
can actually be costing a significant portion of cellular data.
For example, during a + = 10 seconds speedtest, the network
will be flooded with data streams until it reaches its maximum
bandwidth capacity and transition to what it is called the satu-
ration phase. Figure 11a depicts the transmitted data (in M B)
for a sample speedtest as a function of time !. During the early
stages, we observe a nonlinear behavior between the two vari-
ables as an effect of the TCP slow start phase. However, after
exceeding the slow start threshold, the curve begins converging
to the identity line, hence, signaling that the channel reached its
maximum capacity. We highlight the importance of selecting an
appropriate speedtest duration value by drawing a vertical line
that mark the end of the speedtest at a #+ < 10 seconds. It is evi-
dent that a shorter speedtest duration will preserve a significant
portion of the data, while maintaining the accuracy of the data
rate estimate at sufficiently high levels. The pattern of evolution
is indicative and may differ in some extent between speedtests
due to the unpredictable nature of the wireless medium in MBB
networks.

In the following, we present the system design of
Speedtest++ as we strive to predict the data rate that would have
been reported during a speedtest, within a duration shorter than
the default 10 seconds. However, Speedtest++ is designed in
a modular fashion so that it can easily be configured and vali-
dated against any measurement duration value, which might be
of interest since these vary across existing speedtest tools.

'The data rate (in MB/s) counterpart can be also seen in Figure 11b.
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Figure 11: Time series evolution of a speedtest example in terms of data volume
and data rate.

6.2. Time Series Analysis

Speedtest++ is a lightweight R-based ML framework that al-
lows for data rate prediction under dynamic duration scenar-
ios. We make the source code available to the community to
accommodate reproducibility but also allow for software mod-
ifications to further boost the prediction accuracy. Speedtest++
consists of three main methodology blocks, i.e., feature engi-
neering, responsible for data cleaning, merging and transfor-
mation, feature selection, for improving accuracy and reducing
training time and probability of overfitting, and model design,
for training and testing our predictive models. We evaluate
Speedtest++ in terms of prediction accuracy and data volume
consumption.

6.2.1. Feature Engineering

First, we aim to establish a systematic methodology for ex-
pressing each time series with a smaller number of features.
Raw data (i.e., 5 TCP flows per speedtest) are available in our
dataset (flows.json) with a granularity of 100 ms. Speedtest++
utilizes, first, a linear interpolation scheme to perform partial
sub-sampling, and second, an algorithm that leverages first de-
gree polynomial curve fitting to compress each sequence and
express it by two engineered features.

Linear interpolation: In MONROE-Nettest, time series
granularity is a hyperparameter set by default to 100 ms. How-
ever, its precision may be somewhat affected by measurement
noise. To overcome this challenge, we apply a linear interpo-
lation method to partially sub-sample each sequence in equal
spaced fragments, i.e., we repeatedly generate an artificial data
point within the range of two known data points?.

First degree polynomial curve fitting: To reduce training
time and add simplicity to our models, we map each sequence
to a couple of regression coefficients by using first degree poly-
nomial curve fitting. The proposed algorithm follows the steps
below. We first congregate the available fragments in clusters
of size five. Using input data from the first cluster, we next ap-
ply linear curve fitting to capture the relationship between the
response (bytes) and the explanatory variable (time). The coef-
ficients beta0 and betal are known as intercept and slope. At

2Since speedtest duration is 10s, each sequence consists of 100 equidistant
fragments. Sequence up-sampling can be also applied, however, we argue that
it adds to the preprocessing time while it can likely cause overfitting.



the next iteration, we linearly concatenate the adjacent cluster
to form a double in size that consists of 10 fragments. Likewise,
we fit a linear model and we obtain a new pair of coefficients.
We repeatedly proceed until we merge the entire sequence. We
visualize the first three iteration of our algorithm in Figure 12.
Note that at each iteration, the updated line fit approaches the
ground-truth.

Let n represent the number of data points in a single cluster,
then the first degree polynomial curve fitting equation is ex-
pressed as Y; = B1X; + By + €, where Y;, i € Z : i € [1,n] is the
transmitted bytes and X; is time. The coefficients (5;) shows the
magnitude of the effect that the explanatory variable has on the
response variable given that the remainder of explanatory vari-
ables remain constant (if any). The sign signifies whether this
effect is positive or negative. Last, By stands for the intercept
term while ¢; is the prediction error.

b

== cluster; — fit;
== cluster, fit,
= cluster; --- fits

1stiteration

2nd iteration

3 jteration

Figure 12: Visualization example of the first three curve fitting iterations using
data point artifacts. x-axis represents time while y-axis is the accumulated data
transferred throughout the course of the speedtest. Each of the colors maps to a
single cluster while the line shape dictates the updated line fit at each iteration.

Discussion: We design the feature engineering block in a
modular fashion so that it allows for experimentation with dif-
ferent hyperparameters, such as the number of fragments and
clusters. In addition, there is enough room for exploiting differ-
ent interpolation schemes (e.g., polynomial, splines) or differ-
ent curve fitting equations (e.g., second or higher degree).

6.2.2. Feature Selection

Next, we apply feature selection to select the most relevant
features for our predictive models. Among the available op-
tions, we select forward selection, a data-driven iterative pro-
cess that leverages a model fit criterion to decide on the im-
portance of the available explanatory variables. In forward se-
lection, the starting model (known as the null model) has zero
features. At each iteration the most important feature is added
to the model until no further improvement is obtained. Exam-
ples of stopping metrics include p-values, adjusted R-squared,
Akaike Information Criterion (AIC), and so forth. In this work,
we use AIC, i.e., defined as AIC = 2k — 2In(L), where k repre-
sents the number of available features while L is the maximum
value of the likelihood function of the model.

Data collection can incur specific cost in terms of data vol-
ume required for collecting specific network attributes. In Table
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[ ID | Feature | Short Description |
1 ping med | RTT average (ms)
2 ping_std | RTT standard deviation
3 rsrp RSRP (dBm)
4 rsrq RSRQ (dB)
5 rssi RSSI (dB)
6 day Day of the week
7 time Hour of the day
8 wknd Weekend indicator
9 server Measurement server
10 | net Network operator
11 | mobility | Mobility indicator
12 | beta.0 Intercept
13 | beta_1 Slope

Table 3: Parameters in feature selection stage.

3 we label each available feature as either passive (ID € [1, 11])
or active (ID € [12,13]). As a result of this grouping, we
slightly modify the forward selection algorithm so it is per-
formed in two stages. First, we only consider the passive fea-
tures as available candidates for selection. When no improve-
ment is observed, we update the list with the active ones. To
quantify the error diversity, we show results for five different
duration scenarios (¢ € [1,5]s). We divide Figure 13 in two
parts, where each part consists of the passive and active fea-
tures, respectively. x-axis shows the ordering of the features at
each iteration of the forward selection while y-axis shows the
corresponding AIC. All five duration scenarios are represented
by a different color as sketched in the legend. Note that for the
passive part, AIC score across different duration values remains
unchanged. This is due to the fact that passive features do not
hold any dependencies with the time domain. We observe a sub-
stantial improvement when adding Sy and 3, clearly revealing
that knowledge of data volume patterns even at the early stages
of a speedtest provides significant gains to the learning model.
For higher duration scenarios, we see that AIC drops even more
rapidly, which is quite intuitive, since additional data volume
related information is incorporated in the model.
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Figure 13: Forward selection for ¢ € [1 — 5]: Features in the x-axis are listed
with the same order as they are added to the model during forward selection.
The y-axis represents the respective AIC. The grey grid divides the downlink
beta coefficients from the pool of passive features.



Discussion: A list of alternative feature selection approaches
include the backward, bidirectional and recursive feature elim-
ination. In addition, well established embedded methods, such
as the lasso or ridge regression, support inbuilt penalization
functions to reduce overfitting®. Last, feature importance can be
determined by using entropy-based solutions like information
gain. Speedtest++ can be easily modified to provide support
for any of the above. However, results may be slightly affected
as it is likely that some algorithms may provide a different view
of the most critical features.

6.2.3. Model Selection

The last piece of the framework is model selection, where
we leverage the power of ML to train, validate and test nu-
merous supervised predictive models. Our goal is to estimate
the number of transmitted bytes at each of the selected dura-
tion values using the features decided in the previous stage.
We consider Multiple Linear Regression (MLR), a simple but
rather efficient algorithm that has found application in a variety
of scientific fields including business, economics and medicine.
To approximate the optimal solution, MLR leverages the linear
least squares fitting approach that minimizes the sum of squares
between the predicted and the groundtruth data [54]. The for-
mal mathematical expression of a MLR model is a generalized
form of the equation we introduced in the feature engineering
subsection. Let f represent the number of available explana-
tory variables, then b; and X; can be altered with b; and Xj;
respectively, where je€ Z: je[1, flandieZ: i€ [l,n].

Discussion: In a similar fashion, Speedtest++ allows for ex-
perimentation with a plethora of ML algorithms, from Sup-
port Vector Regression (SVR) and Random Forests (RF) [7],
to more advanced deep learning solutions, that bring neural net-
works and a variety of artificial intelligence elements into play.

6.3. Performance Evaluation

We organize the following section in three main parts. First,
we provide a brief overview of the hardware and we describe
the ML configuration settings. Next, we present our main find-
ings by focusing on the tradeoff between predictive error and
data volume consumption under different duration values. Fi-
nally, we provide a discussion regarding model training and ac-
curacy.

Experimental design: Hardware — To accelerate data pre-
processing and training time, we conduct all experiments in
a x86-64 architecture machine with 16GB RAM and a multi-
thread CPU featuring 18 cores*. ML Configuration Settings —
We extract a subset of the dataset introduced in Section 4.2,
featuring a time period of 2 years (2018-2019). This subset
consists of 2.7M samples that we split into training (67%) and
testing (33%) data by using systematic sampling. We remove
invalid or false measurements that can affect the reliability of

3In the same category, tree-based algorithms, such as random forests, use
the notion of gini impurity to perform feature ranking, thus proving extremely
efficient.

4Our server is based on a Linux Ubuntu 16.04.6 LTS distribution.
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our results (e.g. samples with negative values for data rate or
RTT, missing RSRP or outside the valid range and so forth).
However, we do not treat extreme but rational values as outliers
since they can explain signs of variation in the data. To quan-
tify and compare between different duration values, we select
the Median Absolute Percentage Error (MdAPE) as our error
metric. Finally, to provide agility and robustness, we adopt re-
peated cross validation during the training process with 10 folds
and 3 repeats, which is a common configuration when compar-
ing ML models. Furthermore, since we do not have any base-
line to compare our models against, cross validation serves as a
validation tool that ensures a stable and generalizable solution.

Results: Figure 14a illustrates the percentage of data con-
sumption when using passive or active monitoring respectively.
Data consumption is determined as the number of bytes ex-
changed until a nominal duration divided by the total amount
of bytes they would have been exchanged if the speedtest was
run for the default 10 sec®. For all passive features data con-
sumption percentage always equals to 0%. Furthermore, we
observe that data volume is almost equally distributed through-
out the 10 seconds time window. Likewise, Figure 14b depicts
the reciprocal MdAPE values for each of the forward selec-
tion iterations. Again, we observe that the addition of the beta
coefficients highly improves the performance and significantly
contributes in reducing the MAAPE. Furthermore, we find that
higher speedtest duration values improve the accuracy levels in
an analogous manner. For example, the MAAPE decrease be-
tween the 1 and 2 sec transmission duration is 6.71% in average
which is pretty significant for highly sensitive applications.

To complement our analysis, we further train a MLR model
with downlink as the dependent variable and all the features
selected during forward selection as the explanatory variables.
This step aims to divulge the impact of higher speedtest du-
ration times on the estimation error. Figure 15 depicts error
boxplots along different duration values where each cluster rep-
resents a 500ms increase in the speedtest duration. We also
overlay the respective data consumption percentages for each of
the clusters. We observe that, consistent with our expectations,
both variance and MdAPE follow a decreasing trend for higher
duration values (i.e., the longer the measurement, the closer our
prediction comes to the groundtruth), while, data volume con-
sumption linearly increases with time.

Discussion: First we refer to the model validity and discuss
how vital model retraining is for maintaining accuracy in satis-
factory levels. Second, we comment on the optimal speedtest
duration value that should be used in Speedtest++.

In general, model retraining is required when recent data
come from a distribution different than the one the model was
originally trained from. There are three alternatives that can be
used for retraining, i.e., online, offline, or by using a batch based
approach. Hence, how often should we retrain Speedtest++?
If there is no change in the MONROE-Nettest methodology,

SWithin the scope of this work, we consider the default MONROE-Nettest
speedtest duration, i.e., 10s, as our ground truth value. However, different tools
recommend different values, hence, models need to be updated to address these
changes.
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Figure 15: Absolute error and consumption percentages along different dura-
tion values illustrated in a boxplot fashion. Outliers have been removed to
increase readability.

model retraining is not critically required. Such an action would
only marginally decrease the predictive error, e.g., in scenarios
where there are seasonal trends that haven’t been captured in
the previous training dataset. However, if MONROE-Nettest
undergoes certain modifications or even replaced by a new tool,
retraining is almost imperative as Speedtest++ would not be
able to detect new patterns in the most recent data, leading to
a significant accuracy degradation. We plan to run a detailed
analysis of the horizon of the model predictions as part of fu-
ture work.

Regarding the optimal speedtest duration value, we find that
there is no easy answer, since it is highly related to the appli-
cation’s error sensitivity requirements. For example, for appli-
cations that require a rough estimation of the network band-
width capacity without having to consume a lot of data traffic,
a duration value shorter than a couple of seconds is adequate.
However, for applications that require high precision, a longer
duration is required, though inevitably increasing data volume
consumption. We recommend that readers use the two subplots
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in Figure 14 as a guideline to decide for a duration value that
offers an appropriate tradeoff for their specific purpose.

7. Experience and Lessons Learned

Throughout our study, we have had valuable experiences
and learned lessons regarding experimentation in operational
networks. We have also became aware of possible improve-
ments in our measurement infrastructure and experimentation
methodology. In the following, we summarize our notes.

Measurement infrastructure: Observing the performance
of operational MBB networks from the perspective of dedicated
and controllable clients allows for benchmarking different end-
to-end network scenarios (e.g., access technologies, mobility
modes, roaming status, location), as well as track the evolu-
tion of end-user experience in time. However, in order for per-
formance benchmarks to be fair and comparable, the vantage
points should also be comparable. For this reason, we have used
MONROE nodes as measurement clients in our experiments.

In the course of our study, a number of issues regarding the
testbed infrastructure were also brought to light, which can be
provided as feedback to the MONROE Alliance. In terms of
mobile node deployment, we have seen the importance of estab-
lishing continuous mobility. In this regard, deployment in pub-
lic transport seems to be preferable over long distance transport.
However, a mechanism (e.g., software update to the platform
scheduler, which makes use of per-node GPS metadata), which
allows the execution of selected experiments only while a mea-
surement node is in mobility, would be a more wholesome solu-
tion. In terms of stationary node deployment, we have seen that
it is important to have a comparable number of nodes in each
geographical unit (e.g., country/city) in order for measurement
results to be usable for benchmarking. We have also see that
a more even distribution of nodes within a country/city could
provide better spatial diversity, as opposed to the natural clus-
tering of nodes around universities or research labs. In terms
of roaming, we have seen the difficulty of controlling or even
identifying roaming scenarios, on a testbed aiming for measure-



ments “in the wild”. Managing roaming scenarios could be fa-
cilitated through the use of e-SIM’s in the future. Finally, in
terms of general maintenance, we have established the impor-
tance of node inventory management. In a testbed where nodes
can be dynamically moved around, commissioned and decom-
missioned, it is of utmost importance to reserve resources for
maintaining an up-to-date and detailed inventory of node loca-
tions which preserves a retrospective history.

Longitudinal measurements: Tracing the performance of
networks over time and space is important for many network
management practices, such as troubleshooting, performance
improvement planning, and resource allocation. Section 5 pro-
vides a glimpse of factors which can influence these practices,
such as diurnal and weekly patterns.

Over the course of our analysis of the impact of spatio-
temporal features on network performance, we identified a
strong need to experiment more frequently at randomized
points in time (instead of relying on “x times a day at spe-
cific hours” type of measurements). Measurements at random-
ized times during the day provide a fuller picture into the time-
of-day effects that were investigated in Section 5.2, which are
further enhanced by increased frequency (number of measure-
ments per day on each node). In parallel with this conclusion,
we have increased the frequency of MONROE-Nettest base ex-
periments up to 6 times a day on all available nodes. We have
also increased the number of measurements conducted on mo-
bile nodes, consequently increasing the number of measure-
ments in verified mobility.

Importance of metadata: Understanding why a given net-
work performs in a certain way requires the identification of
causality with respect to influence factors. However, with the
complex networking stack of today’s communication infras-
tructures, it is almost impossible to isolate the effects of dif-
ferent parameters on end-to-end network performance individ-
ually. This is why, collecting metadata such as location, signal
coverage, connection mode, and mobility is crucial. Rich con-
text information is necessary for meaningful statistical analysis,
which in turn enables the filtering of false correlation and yields
true causality relations. The context-based approach adopted in
Section 5 demonstrates some of the potential dimensions of in-
fluence.

Speedtest tool design: The MONROE-Nettest tool was de-
signed to run as an experiment over the MONROE platform,
with its summary results being collected automatically in a SQL
database. There was little emphasis on the detailed results (such
as the RTT, data rate, and TCP metrics time series), which
later proved to be tremendously useful, as demonstrated in Sec-
tions 5 and 6. In the course of this study, we have identified
possible improvements in terms of output files (e.g., delivering
these in a format which would require less pre-processing, to
facilitate efforts such as the one described in Section 6, with
more flexibility in terms of aggregation dimensions, and a nam-
ing scheme which facilitates preliminary analysis by speedup
in parsing), as well as possible additional configuration param-
eters. We are continuously improving our tool in this regard.
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8. Future Outlook

In the following, we present a brief discussion of potential
open dataset applications and open challenges that can be ad-
dressed in future work.

8.1. Further Dataset Exploitation Potential

Open MBB datasets, such as the one we describe and char-
acterize in Sections 4.2 and 5, can be essential resources for
supporting network research. Following up on the use case pre-
sented in Section 6, below is a list of potential compelling ap-
plications.

Studying external impacts on broadband networks: Trac-
ing the performance of networks over time can also have a
wider multi-disciplinary scope and impact. Recent studies such
as [55, 56], which provide an analysis of and insights from
end-user behaviour and experience during the COVID-19 pan-
demic, are but examples of such outreach. It is therefore of ut-
most importance to have established measurement mechanisms
in place, which can facilitate the longitudinal collection of net-
work performance information, as well as open datasets such
as ours, that can be used to derive technical as well as non-
technical insights from periods of interest.

Emulation of MBB networks: Having repeated measure-
ments of network performance from a different number of
MNOs over a long period of time provides the possibility to
derive detailed models regarding their characteristics. A re-
cent study [57] demonstrates this by developing a mobile net-
work emulator, using MONROE-Nettest measurement profiles
to create Kernel Density Estimation models and deploying them
on the tc-netem tool. Authors manage to emulate dynamic
network situations successfully, offering realistic network em-
ulation in which both typical behavior and network variability
are accurately recreated. They validate their models with an
independent dataset of HTTP download measurements.

Training of ML predictors: Real, so called “in the wild”
measurements from operational networks help train ML based
predictors for different network performance metrics, such as
data rate and latency [7, 46].

Mobile network traces: TCP-based data rate measurements
are tremendously useful in generating realistic (mobile) net-
work traces for use in emulation/simulations. A common use
case for such traces is the testing of bitrate adaptation algo-
rithms designed for HTTP Adaptive Streaming (HAS) appli-
cations. For instance, authors in [58] provide commute path
bandwidth traces from 3G networks, which has been widely
used in research, but since its publication has become relatively
obsolete due to its lack of 4G coverage, as well as high speed
mobility scenarios such as measurements along national rail-
ways, which we provide in our dataset. Measurements in high
mobility have shown to be tremendously useful in identifying
network and protocol (e.g., TCP congestion control algorithm)
performance optimizations [59].

8.2. Open Challenges

With shifting MBB usage paradigms, increasing practicality
of ML based applications, and the approach of next generation



networks, there are many open challenges that can be addressed
in future work.

Testbed management: One of the biggest challenges of
managing large mobile testbeds is to keep the hardware in the
platform up-to-date with developing technologies. However,
there is a tradeoft between keeping the testbed infrastructure up-
to-date and having comparable longitudinal measurements over
time. For instance, updating measurements nodes with 4G ca-
pable wireless modems to 5G capable ones would enhance the
capabilities of the platform, but none of the previously collected
datasets (even if all measurements are in 4G for both) would not
be comparable. A second challenge regarding testbeds is the
inherent lack of human interaction. Although primarily desir-
able, this feature blocks interactive measurements in the sphere
of QoE testing (e.g., video streaming applications).

Measurements in mobility: One of the biggest challenges
for future research is conducting efficient experiments in mo-
bility. The need for shorter test durations, higher accuracy, and
analysis mechanisms to handle (cell and/or technology) han-
dovers as well as roaming scenarios, need to be explored fur-
ther.

ML applications: In Section 6, we demonstrate the effi-
ciency of simple linear regression in exploring and utilizing our
open dataset. Such analyses could be extended with different
ML algorithms, as well as deeper focus on time series analysis
(e.g., with Long Short Term Memory (LSTM) networks). The
challenge of managing the TCP slow start period on multiple
parallel flows, while aggregating data rate accurately, remains
to be open.

Transport protocols: With the increasing prevalence of
Google services over the Internet such as YouTube video
streaming, as well as dedicated research efforts, QUIC is
rapidly gaining popularity over TCP as the transport protocol of
choice for many applications. As a protocol operating in user
space, QUIC allows for configurations to be more customized,
and therefore speed measurements to be made more adaptive,
down to individual connections. The possibility of such “user-
based adaptation” is an avenue that should be further explored
by researchers. Additionally, it is possible to explore the per-
formance implications of using different TCP congestion con-
trol algorithms, such as Bottleneck Bandwidth and Round-trip
propagation time (BBR), in connection with different mobil-
ity scenarios [59], as MONROE-Nettest is able to capture and
record all TCP configurations as detailed metadata.

Next generation networks: The upcoming 5G networks
will bring forth higher data rates for MBB, causing a more
prominent data volume consumption tradeoff in speed testing,
as well as a higher number of simultaneously connected de-
vices, possibly changing typical congestion patterns in the In-
ternet. Such developments make intensive research efforts nec-
essary, in order to identify and address possible pitfalls of car-
rying over today’s speed testing paradigms directly into the fu-
ture.
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9. Conclusion

In this paper, we instrument MONROE-Nettest, an open
source speedtest tool, for testbed based experimentation in op-
erational mobile networks. We run an extensive longitudi-
nal measurement campaign with this tool over the MONROE
testbed, spanning more than 6 MBB network configurations
in 2 countries over 2 years, and provide our experiment re-
sults together with rich metadata as open data. We character-
ize the open dataset in detail, as well as derive insights from it
regarding the impact of network context, spatio-temporal ef-
fects, roaming, and mobility on network performance. We
describe our experiences about conducting speedtest measure-
ments in MBB, and discuss challenges associated with large
scale testbed experimentation in operational MBB networks.
Tackling one of these challenges further, we leverage a ML
based algorithm to implement a framework for minimizing data
consumption through adaptive speedtest duration. Lastly, we
describe the lessons we have learned, as well as provide an
overall discussion of how open datasets such as ours can sup-
port MBB research, and comment on open challenges, in the
hope that these can serve as discussion points for future work.
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