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A B S T R A C T   

Currently, VR video delivery over 5G systems is still a very complicated endeavor. One of the major challenges 
for VR video streaming is the expectations for low latency that current mobile networks can hardly meet. 
Network caching can reduce the content delivery latency efficiently. However, current caching schemes cannot 
obtain ideal results for VR video since it requests the viewport interactively. In this paper, we propose a tiled 
scalable VR video caching scheme over 5G networks. VR chunks are first encoded into multi-granularity quality 
layers, and are then partitioned into tiles to facilitate viewport data access. By accommodating the 5G network 
infrastructure, the tiles are cooperatively cached in a three-level hierarchal system to reduce delivery latency. 
Furthermore, a quality-adaptive request routing algorithm is designed to cater for the 5G bandwidth dynamics. 
Experimental results show that the proposed scheme can reduce the transmission latency over conventional 
constant bitrate video caching schemes.   

1. Introduction 

VR video applications are increasingly popular today and are grad
ually becoming one of the main types of video that people prefer. To 
create an immersive experience for the end user, VR video provides a 
super high resolution 360-degree field of view (FoV), and thus usually 
tends to consume a large amount of storage space and transmission 
bandwidth [40]. As a result, present-day online VR applications usually 
cannot meet user expectations because of the limited network band
width. Furthermore, due to the interactive viewport-requesting nature, 
VR video systems usually have a very strict latency requirement [1]. This 
brings a great pressure on the network, especially the wireless network 
that is the last hop in the entire delivery chain to the end user. 

The 5G wireless communication system is going to be commercial
ized in the next few years. Though the capacity of 5G mobile networks 
has been significantly improved, it is still very difficult to transmit VR 
video over 5G networks due to the high volume of data. Especially, with 
multiple users competing for one shared network channel, it is more 
challenging to deliver high-quality VR video over 5G networks. 

To deal with such ‘elephant flows’, i.e. the VR video traffic over 5G 
networks, many research works have exploited the novel techniques of 

5G networks so as to improve the communication performance. The 
broadcast/multicast Point-to-Multipoint transmissions in 5G networks 
enable multi-user wireless VR applications. In [2], Prasad et al. inves
tigated the specific challenges for delivering VR videos or games to a 
large number of audience using broadcasting technologies in 5G net
works. A newer element of 5G in spectrum utilization, i.e. millimeter 
wave (mmWave) small cells, can provide the super high transmission 
bitrates. This is naturally in line with the demand of the ultra-low delay 
VR video transmission. However, millimeter wave data transmission is 
easy to be blocked. To cope with the problem of VR transmission 
intermittence caused by blockages, the authors in [3] proposed to add a 
mmWave mirror device to relay the blocked signal. By utilizing a multi- 
connectivity-based mmWave cellular network, Liu et al. [4] proposed a 
cross-layer optimization approach to improve VR video streaming per
formance. In 5G networks, mobile edge computing can also be utilized to 
reduce the increased computational requirements of the mobile device. 
Schmoll et al. in [5] demonstrated offloading of VR rendering to the 
mobile edge cloud for 5G applications. By offloading the viewport 
rendering to a mobile edge server, VR rendering computational delay 
can be significantly reduced by optimizing the trade-off between 
computational gains and communication costs. 
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VR videos are usually experienced through a head-mounted display 
(HMD). The viewport (also indifferently called FoV) is only a fraction of 
360-degree view of the scene. In one moment, only one viewport in the 
whole frame is requested for viewing. By moving the HMD dynamically 
with the head motion, different viewpoints of scenes in the VR video are 
viewed. This interactive nature of VR video is fundamentally different 
from that of the conventional planar video that renders the full-frame 
data on a screen. To cater for the way that data are requested by the 
HMD, the tiling scheme that is often unnecessary for conventional 
planar video, is utilized to enable the spatially random access func
tionality within one VR video frame. Tiling facilitates bandwidth 
reduction, since only the necessary viewport data are delivered to the 
user equipment (UE) at one moment. Tiling of VR video also raises new 
challenges for migrating the traditional full-frame caching approach to 
VR video. Interactive viewing requires timely data updates in the HMD. 
To measure the timeliness of data updates in the HMD, Motion-to- 
Photon (MTP) latency is defined as the delay between the movement 
of the user’s head and the change of the VR device’s display reflecting 
the user’s movement. According to an investigation in [6], optimal VR 
experience requires MTP latency to be less than 20 ms. Contrary to the 
conventional planar video, this strict latency requirement is an addi
tional challenge for high-quality VR video delivery. Besides the other 
processing (including the video decoding and viewport rendering at the 
receiver) delays, the transmission latency in 5G networks is still a crucial 
problem. Even worse, there is resource competition among the multiple 
wireless users. 

Regarding video streaming latency, video caching has been proposed 
to push the duplicate videos near the end user and relieve the pressure 
on backhaul links. In [7], Xie et al. studied the effects of different access 
types on Internet video services and their implications on Content De
livery Network (CDN) caching. Franky et al. in [8] studied a video cache 
system which can reduce the video traffic and the loading time. 
Furthermore, two key problems were concerned by prior work [9][10]. 
One is the video content placement i.e., determining which content 
should be placed at which cache nodes for a given topology and file 
popularity distribution. Another is the video cache routing during the 
delivery, i.e. scheduling the video requests [11] inside the cache system. 

As the last mile during video transmission, the mobile network is 
closest to the end user. Consequently, video caching was further 
extended to mobile networks [12][13]. With the development of 5G 
networks, 5G mobile in-network caching has also been considered as a 
technique suitable for reducing the video delivery latency [14][15]. To 
deal with the huge demand of VR video streaming in 5G systems, 5G 
caching technology was also used to optimize the VR video delivery. Sun 
et al. in [16] developed a framework for mobile VR delivery by utilizing 
the caching and computing capabilities of the mobile VR device. In [17], 
Sukhmani et al. presented an edge caching strategy for 5G VR applica
tions. These approaches are effective in reducing the delivery latency to 
some extent. However, they neglected the VR video tiling during cach
ing, and cannot obtain the optimal results for VR video delivery over 5G 
networks. 

Several recent video caching works have considered the particular 
features of VR video. In [18], Liu et al. studied the joint EPC and RAN 
caching for tiled VR videos. Mahzari et al. in [19] proposed a caching 
policy based on the users’ FoV, called FoV-aware caching policy, and 
trained a probabilistic model of common-FoV for each 360-degree video 
to improve caching performance. In [20], Papaioannou et al. studied the 
problem of tile-based panoramic video caching optimization, that de
termines which tiles and tile resolutions to cache. Even though the above 
studies can optimize VR video caching efficiency, they ignored the 
adaptation of VR video request routing to the dynamic channel. 

In the current literature additional features of VR video have been 
utilized to optimize VR video streaming. Commonly, VR video is parti
tioned into several tiles spatially to facilitate viewport-adaptive 
streaming. Gaddam et al. in [21] applied a tiling scheme to deliver 
different quality levels for different parts of panoramic VR video. In 

[22], Skupin et al. used dynamic adaptive streaming over http (DASH) to 
transmit VR tiles for HMD. In [23], Concolato et al. presented an 
adaptive streaming of tiled High Efficiency Video Coding (HEVC) videos 
using MPEG-DASH. The above-mentioned approaches optimized the 
viewport by adaptively selecting the quality level of viewport to adapt to 
the network. Motivated by these approaches,we propose to utilize quality- 
scalable tiled VR video as the cache source content and then couple multi- 
bitrate caching with fine-granularity network-adaptive streaming to further 
optimize the VR video delivery performance. 

In this paper, by linking the characteristics of salable VR video with 
mobile networks, a tiled scalable VR video caching scheme over 5G 
networks is presented. The contributions of this paper are summarized 
below. 

(1) Taking into account the fact that only a small portion of 360-de
gree VR video is visible to a viewer at one moment, we propose to 
cache tiles of scalable VR video in 5G networks. Compared to the 
conventional full-frame video caching approaches, a tile caching 
strategy significantly improves the cache hit ratio, while reducing 
the viewport fetching latency by quickly responding to the 
interactive request.  

(2) To leverage the 5G network architecture, the tiled multi-bitrate 
VR video chunks are cooperatively cached into a three-tier 
(including the source server) caching system. The matching of 
the tile popularity and quality with the hierarchy of caching 
system is optimized during the stage of VR video tile placement. 
Thus, the video tiles with higher popularity and higher quality 
(higher bitrate) are more likely to be cached in the radio access 
network (RAN) which is closer to the UEs. This raises the cache 
hit ratio and saves significant bandwidth.  

(3) Based on the multi-bitrate VR video tile caching, a quality- 
adaptive viewport request routing algorithm is proposed that 
adapts to the fluctuations of 5G channel. Under the channel 
bandwidth constraint, the appropriate quality combination (bit- 
rate combination) of viewport and non-viewport tiles in one 
frame that maximizes the homogeneous viewport quality is 
selected for satisfying the user’s request. This scheme achieves 
the desired trade-off between the requested viewport quality and 
the corresponding data delivery latency. 

The rest of the paper is organized as follows. The proposed tiled 
scalable VR video caching framework over 5G networks is presented in 
Section 2. Specifically, the tile cache placement of scalable VR video is 
introduced and quality-adaptive request routing algorithm is described. 
Experimental results are shown in Section 3. Finally, Section 4 concludes 
the paper. 

2. Multi-bitrate VR Video Tile Caching Framework 

The proposed scalable VR video tile caching system over 5G net
works is shown in Fig. 1. Since the Stand-Alone (SA) new radio (NR) 
specification for 5G has been adopted [24], the proposed caching system 
is based on SA architecture. The caching system is composed of three 
parts: the Internet VR video server, 5G Core (5GC) network cache node 
and Next Generation RAN (NG-RAN) cache nodes. The source server on 
the Internet stores all of the multi-bitrate versions of VR video tiles. In 
the 5GC network, there is a cache node attached to the AMF (Access and 
Mobility Management Function)/UPF (User Plane Function). In the NG- 
RAN, 5G NR base stations (gNBs) are used as cache nodes. The cache 
space in gNBs is extended by accompanying the mobile edge computing 
(MEC) servers [25][26], which enable not only the enhanced computing 
capabilities but also the enlarged storage at the edge of the cellular NG- 
RAN. In the 5G SA architecture, the gNBs are connected to each other via 
the Xn interface. NG-RAN connects to 5GC network using the NG 
interface. 

In the 5GC network, there is a logical centrally-deployed entity, 
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namely the content controller, which is connected to the AMF/UPF. The 
content controller is responsible for recognizing VR video viewport 
request from UEs and then executes the caching optimization algorithm 
based on information collected from each cache node. 

To provide fine-granularity scalability of quality for VR video de
livery, VR source videos were encoded by SHVC (Scalable High effi
ciency Video Coding). After encoding, the multiple bitrates VR video 
streams can be extracted from the compressed stream. In order to enable 
fast access to viewport data in one full-frame, one VR video is segmented 
into tiles spatially in one frame during encoding. Furthermore, in the 
temporal dimension, the encoded VR video tiles are divided into 
different chunks with equal playback length. Thus, for each chunk 
period in the VR video, different combinations of tile qualities over the 
whole frame can be obtained. Unequal quality allocation among view
port tiles and non-viewport tiles under the given bandwidth constraint is 
also supported. 

Usually, contemporary caching systems are essentially networks of 
interconnected caches [41]. The cache placement solves which content 
to cache at each server and the content routing handles how to route 
content from caches to the end users. The caching and routing decisions 
are inherently coupled, as a request can only be routed to cache where 
the requested item is available. Therefore, the caching problem in its 
entirety includes decisions about content placement, and content rout
ing once the cache server is fixed. 

During the cache placement stage, the tiles of the VR videos are 
stored in the video source server, 5GC cache node (AMF/UPF) and NG- 
RAN cache nodes. Usually, to ensure that the end user can obtain the 
maximum allowable quality of VR video, high-bitrate tiles should be 
cached closer to UE and low-bitrate tiles can be cached farther from the 
UE. When one UE requests a VR video for watching, the caching system 
will utilize the request routing algorithm to select a combination of 
viewport quality and non-viewport quality over the whole frame under 
the constraint of available channel bandwidth. In particular, the tiles in 
the range of viewport are chosen with higher bitrates than those out of 
the range of viewport due to the higher access probability of these 
viewport tiles. 

Now we formally introduce our framework. Assume that a total 
number of K VR videos will be cached in the 5G mobile network. We 
denote p0, p1,⋯, pi,⋯, pI as the total I+1 cache nodes available for the 
VR video tile caching. As shown in Fig. 2, p0 denotes the caching node in 
5GC and p1,⋯, pi,⋯, pI denote the cache nodes in NG-RAN, respectively. 
r1, r2,⋯, rj,⋯, rJ denote the different bitrates of the VR video tiles. vk,m,n

t 
denotes the VR video tile at the mth row and nth column at time slot t for 

the kth VR video. For one tile vk,m,n
t , we define a 0–1 variable xk,m,n

t,pi ,j to 
indicate whether it is cached in pi with bitrate rj. If pi had already cached 
the tile vk,m,n

t with bitrate rj,xk,m,n
t,pi ,j = 1; otherwise xk,m,n

t,pi ,j = 0. Based on the 
above definitions, the caching result of the tiles with different bitrates 
for one video sequence in all caching nodes can be described as a vector 
of 0–1 variables, that is Xp,r = {x1,1,1

1,0,1, x
1,1,2
1,0,1, x

1,2,1
1,0,1,⋯, xk,m,n

t,pi ,j ,⋯, xK ,M ,N
T ,pI ,J } , 

where T is the total number of time slots, M the tile row number and N 

the tile column number in one frame. For the cache placement, there are 
a lot of candidate choices, and they form a candidate solution set X̃. In 
the routing stage, we define a 0–1 decision variable yk,m,n

t,pi ,j to indicate 

whether the request of tile vk,m,n
t in pi with bitrate of rj is routed to the end 

user. At each time slot, the candidate request routing result for all tiles in 
one frame is denoted as Yt = {y1,1,1

t,0,1 , y
1,1,2
t,0,1 , y

1,2,1
t,0,1 , ⋯, yk,m,n

t,pi ,j , ⋯, yK ,M ,N
t,pI ,J }. 

Similar to the cache placement, the candidate solution set of request 
routing is denoted by Ỹt. 

The hierarchical topology of tile caching is illustrated as a graph in 
Fig. 2. Now let cpi denote the unit cost for transferring a VR video tile 
from the 5GC cache node to an NG-RAN cache node pi, cp0 the unit cost 
when transferring VR video tile from the source server to 5GC cache 
node, and cpi ,pj the unit cost when transferring a VR video tile between 
the NG-RAN cache nodes pi and pj. By saving the delivery bandwidth 
cost, the tiled multi-bitrate VR video chunks can be cooperatively 
cached into a three-tier system to make the tile popularity match with 
the hierarchy topology of the network. In this premise, the viewport 
request can be routed to the suitable cache node where the requested tile 
is available. We consider video quality within the viewport of each user 
as the objective for VR video delivery optimization. Thus, the joint 
optimization problem of tiled multi-bitrate VR video tile cache place
ment and quality-adaptive request routing can be mathematically 
formulated as 

max
Xp,r∈X̃,Yt∈Ỹt

∑

vk,m,n
t ∈Vk,VP

t

rj⋅yk,m,n
t,pi ,j ,∀t⩽T (1)  

subjectto
∑M

m=1

∑N

n=1
rj⋅yk,m,n

t,pi ,j ⩽Wt, ∀t⩽T (1a)  

max
vk,m,n

t ∈Vk,VP
t

{
rj⋅yk,m,n

t,pi ,j ⋅tc

wi

}

⩽Td (1b)  

∑K

k=1

∑T

t=1

∑M

m=1

∑N

n=1

∑J

j=1
rj⋅tc⋅xk,m,n

t,pi ,j ⩽Bpi (1c)  

yk,m,n
t,pi ,j ∈

{
0, 1

}
, ∀m⩽M ,∀n⩽N ,∀t⩽T ,∀pi⩽pI ,∀j⩽J, ∀k⩽K (1d)  

Fig. 2. Hierarchical topology of tile caching over 5G networks.  

Fig. 1. Tiled scalable VR video caching system over 5G networks.  
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xk,m,n
t,pi ,j ∈

{
0, 1

}
,∀m⩽M , ∀n⩽N , ∀t⩽T , ∀pi⩽pI , ∀j⩽J, ∀k⩽K (1e)  

yk,m,n
t,pi ,j ⩽xk,m,n

t,pi ,j ,∀m⩽M ,∀n⩽N ,∀t⩽T ,∀pi⩽pI ,∀j⩽J, ∀k⩽K (1f)  

Yt =
{

y1,1,1
t,0,1 , y1,1,2

t,0,1 , y1,2,1
t,0,1 ,⋯, yk,m,n

t,pi ,j ,⋯, yK ,M ,N
t,pI ,J

}
(1g)  

Xp,r =
{

x1,1,1
1,0,1, x1,1,2

1,0,1, x
1,2,1
1,0,1,⋯, xk,m,n

t,pi ,j ,⋯, xK ,M ,N

T ,pI ,J

}
, (1h)  

where Vk,VP
t denotes the set of VR video tiles within the viewport at time 

slot t for the kth VR video, Wt denotes the downlink bandwidth of the 
mobile networks for the UE during the time slot t,wi denotes the 
available bandwidth from the caching node pi to the UE, Td denotes the 
maximum limitation of transmission latency that is allowed by the VR 
video application, tc denotes the playback length of chunk at the t-th 
time slot, and Bpi denotes the storage constraint for cache node pi. 

In our optimization formulation Eq. (1), constraint Eq. (1a) is the 
bandwidth restriction. It ensures that the sum of bitrates for all the 
requested VR video tiles at t-th time slot should be no more than the 
downlink bandwidth Wt. Constraint Eq. (1b) is the latency restriction for 
VR tile delivery. It means that the transmission latency of every tile 
should be equal to or smaller than the maximum transmission latency 
Td. The inequality in Eq. (1c) represents the total amount of tile data 
placed in a cache node must not exceed its storage capacity. Constraints 
Eq. (1)d and Eq. (1e) describe the cache placement decision variable 
xk,m,n

t,pi ,j and the routing decision variable yk,m,n
t,pi ,j , respectively. The 

inequality in Eq. (1f) means that in order for the tile request from UE to 
be routed to a cache node, the tile needs to be placed in the latter. It 
indicates that the requests from UEs should be responded with the 
cached VR video tiles as much as possible. Finally, the equations in Eq. 
(1)g and Eq. (1h) characterize the cache placement decision variable 
vector Xp,r and the routing decision variable vector Yt, respectively. 

Originally, the cache placement and viewport requests are two 
events that happen sequentially in the VR video delivery chain, and their 
time granularity of update is also different. Usually, cache content is 
periodically updated with a interval that depends on the tile popularity 
changes. Unlike traditional request routing, viewport request routing 
needs to be scheduled immediately for each request. Based on the pre
vious discussion on cache data placement and viewport requests, the 
multi-bitrate VR video tile caching optimization problem is divided into 
two decoupled sub-problems, which are the multi-bitrate tile placement 
sub-problem and the viewport request routing sub-problem. First, under 
the latency constraint and the caching space constraint, different bitrate 
versions of VR video tiles are cooperatively cached to different hierar
chical cache nodes in terms of their popularity. Second, under the la
tency constraint, the requested VR video tiles that constitute one 
viewport for the user are fetched to the UE from different cache nodes by 
respecting the real-time bandwidth constraint of the wireless network. 

2.1. VR Tile Placement Optimization 

We first deal with the problem of VR video tile placement optimi
zation. The optimization goal of VR video tile placement is to reduce the 
total bandwidth cost of the caching system when compared to fetching 
tiles from the source server. In our previous work [18], we proposed a 
tile-based VR video cache optimization framework for 4G LTE networks. 
In the following, we extend our previous work [18] to multiple-bitrate 
VR video tile caching in 5G networks. Similar with 4G mobile network 
caching, there are basically four ways to fetch a VR video viewport for 
viewers in 5G networks:  

• If the cache node pi can fulfill the request from UE locally for VR 
video tile vk,m,n

t , the unit cost saving is cp0 + cpi .  

• If the request cannot be fulfilled by the directly connected gNB pi, but 
can be fulfilled by other adjacent gNB that is directly connected to 
the gNB to which UE belongs, for instance the cache node 
pj(pi ∕= pj), the unit cost savings can be computed as cp0 + cpi − cpi ,pj .  

• If the request can be fulfilled by the 5GC cache node p0, the unit cost 
saving is cp0 .  

• If the request can only be fulfilled from the source server on the 
Internet, the unit cost saving is zero. 

We define the bandwidth cost savings as Gk,m,n
pi ,j when the request for 

VR video tile vk,m,n
t with bitrate rj at node pi is fulfilled by the EPC cache 

node. Gk,m,n
pi ,j is given by 

Gk,m,n
pi ,j = cp0 × xk,m,n

t,p0 ,j (2)  

Also, the maximal saving cost Hk,m,n
pi ,pj ,j when the request for VR video tile 

vk,m,n
t with bitrate rj at node pi is fulfilled by another node pj is defined as 

Hk,m,n
pi ,pj ,j = max

pj∈I⧹{pi}

{(

cp0 + cpi − cpi ,pj

)

⋅xk,m,n
pi ,pj ,j

}

(3)  

where I is the set of cache nodes which can be expressed as I = {p0,p1,

⋯pi,⋯pj,⋯pI}. 
Based on the above discussion, the total saved bandwidth cost τfor all 

cached tiles compared to the way that obtains VR video tiles from the 
source server can be calculated as 

τ = τ
(
Xp,r

)

=
∑K

k=1

∑T

t=1

∑I

pi=0

∑J

j=1
λk,m,n

t,pi ,j ⋅rj⋅tc⋅
[
xk,m,n

t,pi ,j ⋅
(

cp0 + cpi

)

+
(

1 − xk,m,n
t,pi ,j

)
⋅max

{
Gk,m,n

pi ,j ,Hk,m,n
pi ,pj ,j

}]

(4)  

where λk,m,n
t,pi ,j denotes the request probability of VR video tile vk,m,n

t with 

bitrate rj at node pi. The request probability λk,m,n
t,pi ,j for VR video tile vk,m,n

t 

from UE who connects to cache node pi is given by 

λk,m,n
t,pi ,j = πk

pi
⋅θk,m,n

t,j (5)  

where πk
pi 

indicates the probability of requesting the kth VR video from 
the UE who connects to cache node pi, which follows the Zipf’s law [27] 
and θk,m,n

t,j denotes the request probability for vk,m,n
t in the kth VR video, 

which can be obtained from the viewport popularity data by estimating 
the saliency map of the VR video [28][29]. The subscript j in θk,m,n

t,j in

dicates the jth bitrate version of vk,m,n
t . In this paper, we assume the 

probabilities of requesting for vk,m,n
t in the kth VR video for different 

bitrate versions are the same. According to the above knowledge, the 
video tile placement optimization sub-problem of maximizing the saving 
cost τ can be mathematically formulated as 

max
Xp,r∈X̃

τ (6)  

subjectto
∑K

k=1

∑T

t=1

∑M

m=1

∑N

n=1

∑J

j=1
rj⋅tc⋅xk,m,n

t,pi ,j ⩽Bpi

xk,m,n
t,pi ,j ∈

{
0, 1

}
, ∀m⩽M , ∀n⩽N , ∀t⩽T ,∀pi⩽pI , ∀j⩽J, ∀k⩽K

Xp,r =
{

x1,1,1
1,0,1, x

1,1,2
1,0,1, x1,2,1

1,0,1,⋯, xk,m,n
t,pi ,j ,⋯, xK ,M ,N

T ,pI ,J

}
,

The problem formulation in Eq. (6) can be explained as follows. Given a 
set of multiple bit-rate versions of tiles, that each tile has a bit-rate value 
(weight) and a profit value λk,m,n

t,pi ,j , and a set I of cache spaces, that each is 
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with capacity of Bpi , a subset of multiple bit-rate versions of tiles can be 
found by maximizing the total profit such that they can be placed into 
the cache space set I, without exceeding the capacities. The above 
observation shows that Eq. (6) is exactly in line with the definition of 
standard multiple-knapsack problem. Hence, the multi-bitrate video tile 
placement optimization is a typical 0–1 multiple-knapsack problem. 

Due to its combinatorial nature, the 0–1 multiple-knapsack is a NP- 
hard problem. It is well known that NP-hard problems cannot be 
solved in a polynomial time. However, we can find a subset of solutions 
that can be the largest target value from the candidate solution set under 
the premise of satisfying various resource constraints. In the past years, 
researchers proposed many approximation algorithms to solve the 0–1 
multiple-knapsack problem for obtaining near-optimal solutions [30]. 
When the number of constraints and decision variables is large in the 
formulation, the efficiency of traditional approximation optimization 
approaches [30] is limited in both execution time and quality of final 
solutions. Comparably, genetic algorithms (GA) have shown to be very 
well suited for solving larger knapsack problems [31][42][43]. As we all 
know, GA has the advantage of the global optimization and the paral
lelism in seeking the solutions to the optimization problem, which in
dicates the solution-searching process can be implemented in parallel. 
Thus, to find the final result of VR video tile placement optimization 
problem, we adopt a genetic algorithm. 

Usually, the standard GA adopts the evolutionary biology tech
niques, such as inheritance, mutation, selection, and crossover. The 
evolution happens in generations with starting from a population of 
randomly generated individuals (also represented by chromosome). In 
each generation, the fitness of every individual in the population is 
evaluated first, and multiple individuals are then selected from the 
current population and modified to form a new population. The new 
population is used for evolution in the next iteration of the algorithm. 
The algorithm terminates when a maximum number of generations has 
been produced. 

For the specific multi-bitrate tile cache placement problem, the 
objective is to maximize the saving cost τ(a nonnegative value), which 
can quantitatively measure how well a given cache placement solution 
is, and thus the fitness function is defined as f(x) = τin GA. Corre
spondingly, the final result is to find the cache placement solution Xp,r, 
which has the highest value of fitness function. 

To represent the solution space of the problem in the GA, each 
possible solution is regarded as a individual in one generation of pop
ulations. The individual is generally represented by a binary encoding 
string that also called chromosome. In our algorithm, the solution is 
naturally characterized by a binary vector. Thus the binary encoding 
string X = {x1,1,1

1,0,1, x
1,1,2
1,0,1, x

1,2,1
1,0,1,⋯, xk,m,n

t,pi ,j , ⋯, xK ,M ,N
T ,pI ,J }is used as the chro

mosome and xk,m,n
t,pi ,j is taken as the gene in the chromosome. The chro

mosome length l denotes the number of 0–1 variables xk,m,n
t,pi ,j in one 

solution result and l = K × M × N × T × (pI + 1)× J. First, some 
input parameters are assigned values towards achieving a tradeoff be
tween the quality of solution and the convergence speed of the algo
rithm. Specifically, the population size spop is set to 50, the probability of 
performing crossover pc is equal to 0.8, the probability of the mutation 
pm is set to 0.02 and the maximal number of generations nge for termi
nating the algorithm is set to 500. Then, the first generation of the 
population is initialized by generating the candidate solutions of the 
caching result. Next, the fitness value τ of each chromosome X is 
calculated. If the chromosome X doesn’t satisfy the constraints in Eq. 
(6), the fitness value τ will be zero. In the following, the crossover and 
mutation operations are performed to generate a new generation. 
Finally, after nge loops, we can achieve the caching result Xp,r. Since the 
GA belongs to a non-deterministic class of algorithms, the obtained so
lution may vary for each run of the algorithm with the same input pa
rameters. Thus the final result Xp,r is rather sub-optimal. Regarding the 
details of the specific algorithm flow the reader can refer to [18]. 

2.2. Quality-Adaptive Request Routing 

In the VR video delivery system, the near-optimal cache placement 
provides low-delay response for VR video tile requests. To further adapt 
the bit-rate of VR video tile that is currently requested to the fluctuated 
5G channel, a quality-adaptive tile request routing can be employed. The 
quality-adaptive viewport requests are scheduled in a time granularity 
according to each request. The optimization objective for quality- 
adaptive request routing is to maximize the homogeneous video qual
ity within the user’s viewport under the constrained channel bandwidth. 
In other words, the optimization goal of the request routing problem is 
to maximize the bitrates of all the tiles covered by the users’ viewport. 
Under the premise of near-optimal multi-bitrate VR video tile place
ment, the problem of maximizing the bitrate of tile that the user 
currently demands by request routing optimization can be mathemati
cally formulated as 

max
Yt∈Ỹt

∑

vk,m,n
t ∈Vk,VP

t

rj⋅yk,m,n
t,pi ,j ,∀t⩽T (7)  

subjectto
∑M

m=1

∑N

n=1
rj⋅yk,m,n

t,pi ,j ⩽Wt, ∀t⩽T

max
vk,m,n

t ∈Vk,VP
t

{
rj⋅yk,m,n

t,pi ,j ⋅tc

wi

}

⩽Td

yk,m,n
t,pi ,j ∈

{
0, 1

}
,∀m⩽M ,∀n⩽N , ∀t⩽T , ∀pi⩽pI ,∀j⩽J, ∀k⩽K

yk,m,n
t,pi ,j ⩽xk,m,n

t,pi ,j ,∀m⩽M , ∀n⩽N , ∀t⩽T , ∀pi⩽pI , ∀j⩽J, ∀k⩽K ,

Yt =
{

y1,1,1
t,0,1 , y

1,1,2
t,0,1 , y

1,2,1
t,0,1 ,⋯, yk,m,n

t,pi ,j ,⋯, yK ,M ,N
t,pI ,J

}
,

Since VR video browsing requires timely viewport data update, the 
whole frame data needs to be fetched to the user end. Even though only 
the viewport data are used for playback, the other data outside the 
viewport region are utilized as the standby data that can be used to 
timely update viewport when HMD moves rapidly. Hence, this approach 
requires a reasonable bitrate allocation over the whole frame under total 
bitrate constraint to ensure relatively higher viewport bitrate. Besides 
that, different cache nodes can provide different bitrates of the tile. 
Based on a prior information above, the request routing optimization 
problem can be solved by a heuristic searching algorithm. In this paper, 
we propose a heuristic α-search algorithm to maintain the smooth video 
quality across the tiles in the range of viewport. Two definitions are first 
given to help understand the proposed algorithm. 

Definition 1. The sum of bitrates of all tiles within the viewport region 
for the kth VR video should be no more than α(0 < α⩽1) times Wt. The 
sum of the kth VR video tiles’ bitrates outside the viewport region should 
be less than the result of (1 − α)times Wt for time slot t. In addition, the 
bitrate difference among the different tiles should be as small as 
possible. Let us denote as R1 and R2 the sum of bitrates for tiles within 
viewport region and outside viewport region for the kth VR video, 
respectively. Assume rk,m,n

t denotes the corresponding bitrate of vk,m,n
t , 

then 

R1 =
∑M

m=1

∑N

n=1

∑

vk,m,n
t ∈Vk,VP

t

rk,m,n
t

⩽α⋅Wt

(8)  

R2 =
∑M

m=1

∑N

n=1

∑

vk,m,n
t ∕∈Vk,VP

t

rk,m,n
t

< (1 − α)⋅Wt

(9)  
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Definition 2. The sum of R1 and R2 should be no more than the 
available bandwidth Wt from NG-RAN to UE at time slot t. That is 

R1 +R2⩽Wt (10)  

Based on a smaller step size Δα, we can carefully search over the 
appropriate bitrates of the viewport region and non-viewport region for 
the requested VR video chunk at time slot t. Initially, Δαis set to 0.1. The 
solution set Ris set to null. Then, we set R2 = nnv⋅rmin, where nnv is the 
number of tiles in the non-viewport region and rmin is the lowest bitrate 
of the tile that the VR video delivery system can provide. To capture the 

dynamics of the caching system payloads, the information of bandwidth 
Wt ,wi and wmin are probed in real-time based on the packet transmission 
rate (PTR) [32]. The detailed α-searching algorithm is shown in Algo
rithm 1. In terms of Definition 2, R1 +R2⩽α⋅Wt +(1 − α)⋅Wt = Wt ,R1 
and α can be calculated after determining R2. Next, in the sub-loop 1 in 
Algorithm 1, the bitrate of the viewport region is updated. Specifically, 
the average bitrate r1 of the VR video tiles within the viewport region 
can be first calculated based on Definition 1. After that, the transmission 
latency lat1 = r1⋅tc

wmin 
is estimated, where wmin is the minimal bandwidth 

over all delivery paths for the VR video tiles within the viewport region. 
In the last step in sub-loop 1, lat1 is compared to the maximum latency 
Td. If lat1 is no more than Td, α will be refreshed to α − Δαand go to the 
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next step. Otherwise, the sub-loop 1 is terminated with the result R1. 

According to the cache placement result, the sub-loop 2 comes to 
select a set of bitrates Zv = {R1,R2,⋯,Rnv} for tiles within viewport 
region satisfying 

∑nv
i=1Ri⩽R1 and Ri ∈ xk,m,n

t,pi ,j ⋅rj, ∀pi, ∀j, vk,m,n
t ∈ Vk,VP

t , 
where nv is the number of tiles in viewport region. During the bit-rate 
selection for each tile, Ri is determined by the routing decision vari
able yk,m,n

t,pi ,j and it is equal to yk,m,n
t,pi ,j ⋅rj. Hence, while we find the appropriate 

bit-rate of Ri the corresponding request routing result yk,m,n
t,pi ,j is also ob

tained. The selection of Zv is based on a hierarchical searching rule that 
the tile request is progressively forwarded to the upper-layer parent 
node when the appropriate tile whose bitrate satisfies the requirement is 
not locally available. Then the transmission latency is calculated as 

lat2 = max1⩽i⩽nv

{
Ri⋅tc
wi

}

and whether lat2 is no more than Td is judged 

next. If lat2 > Td,Zv will be set to null. If lat2⩽Td and Zv is null, α will be 
refreshed to α − Δα and go to the sub-loop 1 for next search round. 
Otherwise, Zv will be added to the result set R. In the following, a set of 
bitrates Znv = {R1, R2, ⋯, Rnnv}for tiles outside the viewport region 
satisfying 

∑nnv
i=1Ri⩽R2 will be selected in terms of the hierarchical 

searching rule, and Znv is added to the result set R that will be finally 
produced. 

Algorithm 1. The proposed α-searching algorithm  

3. Experimental results 

To evaluate the performance of the proposed scheme, we developed 
a custom software in Java to run the caching optimization algorithm for 
quality-scalable VR video delivery over 5G networks. The test video 
data-set includes five video clips in JVET [33] and one hundred video 
clips that were downloaded from Youtube [34]. They are re-sampled 
with spatial resolution of 3840× 1920. Besides, scalable video coding 
model SHM 12.0 [35] was used to encode the 360-degree VR videos for 
multi-bitrate tile caching. The test videos were encoded into three-layers 
with SNR (signal-to-noise ratio) scalability for different quantization 
parameter (QP) values of 25, 32 and 40. 

We assume that the popularity of full frame VR video is in line with 
Zipf law and the Zipf parameter αz is set to 0.75. The kth VR video is 

requested with the probability πk = β/kαz , where β = (
∑K

k=1k− αz )
− 1

. 
The capacity ratio for each cache node is set to 60%. 

In the caching system, the bandwidth information was dynamically 
configured in the simulation by a trace-driven methodology. The 5G 
channel model of 802.11ad [36] [37] was used to simulate the new 
radio features in the mobile caching system. The dynamic 5G network 
bandwidth trace data were collected from the 5G 802.11ad (WiGig) 
which provides multi-gigabit throughput. The details of the trace data 
collection methodology can be found in [37]. In this work, we collected 
two types of bandwidth trace data for one user in a multi-user channel 
setting. One is the stable bandwidth with average value about 700Mbps 
and another is the fluctuating bandwidth that ranges from 80Mbps to 
700Mbps with different average values including 400Mbps, 500Mbps, 
and 600Mbps. 

During VR video viewing, the user’s viewport switches frequently. In 
the simulation, we assume 100 potential mobile users and their viewport 
requests obeyed a Poisson arrival and departure model with a mean 
inter-arrival time of 3 ms. The number of concurrent active requests was 
estimated by an M/M/∞queuing model [38] that follows Little’s theo
rem [12] [39] with Nr = λr⋅Ta, where Ta is the request active time and 
1/λr is the mean request inter-arrival time. 50000 requests for viewports 
were simulated based on the popularity ranking of VR video tiles. The 
key experimental parameters in the simulation are shown in Table 1. 

To verify the benefits of proposed joint scalable VR video tile caching 
(JTSVC) and quality-adaptive request routing scheme against the state- 
of-the-art solutions, we examined the following caching schemes.  

• JTSVC-α scheme: It is the proposed scheme that adopts cooperative 
5GC and NG-RAN scalable VR video tile placement and the 
α-searching algorithm of viewport request routing.  

• JTSVC-D scheme: For this scheme, the proposed joint 5GC and NG- 
RAN cache placement is used for scalable VR video tile caching. In 
the viewport request routing stage, the dynamic request routing al
gorithm [11] is used, where requests are first forwarded to the 
interconnected cache node and then the upper layer parent server 
when the content is not locally available. In dynamic request for
warding, once either of the multi-bitrate versions is found, the 
request will be regarded as being hit.  

• LRU-α scheme: This scheme caches multi-bitrate VR video tiles with 
Least Recently Used (LRU) strategy and routes requests with 
α-searching algorithm.  

• LRU-D scheme: This scheme caches multi-bitrate VR video tiles based 
on LRU strategy and routes requests with dynamic request for
warding algorithm.  

• TL-α scheme: This scheme caches the layered VR video tiles based on 
minimizing the resolution error metric [20] and routes requests with 
our proposed α-searching algorithm. 

Cache Hit Ratio. Cache Hit Ratio is the primary measurement 
metric of cache performance. It directly reflects the probability that the 
requested data resides in cache. Conventionally, cache hit ratio is 
computed in terms of full-frame video chunks. For VR video, the tile is 
taken as the basic unit in the cache system. Thus, request hit ratio is 

Table 1 
Experimental parameters.  

Parameters Values 

Viewport size 1080× 1200  
Chunk length 1s 

RAN cache number 40 
Cache size per base station 10G 
UE number per base station 100 

Td  12 ms 
cp0  100 
cpi  5 

cpi ,pj  [2,10] 
Wt  80Mbps-700Mbps 
wi  80Mbps-700Mbps 

wmin  80Mbps-700Mbps 
Request arrivals Poisson, mean inter-arrival time per request  = 3 ms,  

request active time  = 200 ms  

Fig. 3. The effect of tile size on cache hit ratio.  
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counted on the tile. It is defined as the number of cache hits divided by 
the total number of requests for the tile. 

3.1. VR Video Caching Performance 

For tiled VR video encoding, the motion prediction range of the 
encoding tile is constrained in the reference image to support the 
random access capability of the full frame data stream. Specifically, the 
encoding block near the boundary of the tile will be not allowed to refer 
to the blocks outside the co-located tile in reference image [23]. This 
results in a minor loss in compression efficiency. The smaller tile size is, 
the lower the compression efficiency is. Different compression efficiency 
results in different data volume of each tile. On the other hand, tile size 
dictates viewport access flexibility in the whole frame. Thus, tile size 
affects not only the caching hit ratio but also the data volume that needs 
to be cached. 

To test the effects of tile size on caching performance, VR videos were 
encoded in six different forms of tile partitions in the JTSVC-α scheme. 
With the full frame size of 3840× 1920, the VR video was segmented 
into 1× 1 (full frame), 6× 4 (that means the full frame will be 
segmented into 6 tiles horizontally and 4 tiles vertically), 8× 6, 10× 8, 
12× 10 and 16× 12. For different total cache capacities, the effects of 
the tile size on caching performance are different. The cache hit ratios 

were collected under a capacity ratio of 0.2, 0.4, 0.6 and 0.8 for different 
tile sizes. Fig. 3 shows the cache hit ratio results for different tile size 
caching experiments. It can be seen from Fig. 3 that the cache hit ratio 
gradually rises with the decreasing tile size (increasing tile numbers). 
The tile partition of 12× 10 achieves the highest cache hit ratio. When 
the tile number rises to 16× 12, the cache hit ratio decreases since the 
corresponding data size increases and results in a significantly negative 
effect on the cache hit ratio. As a result, the tile partition of 12× 10 was 
adopted as ideal in our experiments. In Fig. 3, the 1× 1 tile partition 
denotes the full-frame caching approach. The full-frame caching obtains 
the worst cache hit ratio among all partitions. It illustrates that the tile 
should be the basic cache data unit that exactly caters to the interactive 
partial data request feature of VR video, and thus the cache hit ratio of 
tile-based caching is significantly improved over full-frame caching. 

To evaluate the effect of cache capacity on caching performance, 
several tests on different cache capacities were performed. The saved 
bandwidth cost and the cache hit ratio were measured with a set of 
capacity ratios varying from 20% to 80%. Fig. 4(a) shows the saved 
bandwidth cost for different schemes. In Fig. 4(a), larger cache capacity 
achieves more gains in bandwidth costs, and the proposed JTSVC-α 
scheme results in the most significant bandwidth cost savings among all 
five schemes, regardless of the cache capacity. Fig. 4 (b) plots the cache 
hit ratio for increasing capacity ratio under the five schemes. It can be 

Fig. 4. Effect of cache capacity on caching performance.  

Fig. 5. Effect of direct connectivity between gNBs in 5G on caching performance.  
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seen that from Fig. 4 (b) all the five schemes achieve higher cache hit 
ratio with increasing capacity ratio. With more cache space, more VR 
video tiles can be cached in the mobile network. It is natural that the 
cache hit ratio increases as a result. The TL-α scheme obtains lower 
cache hit ratio than the JTSVC-α scheme and JTSVC-D scheme, since it 
cached tiles in EPC and RANs independently. What is more important is 
that the gap in cache hit ratio among the proposed JTSVC-α scheme and 
the other schemes achieves the highest value for capacity ratio of 80%. 
This observation indicates that the proposed JTSVC-α scheme can obtain 
better performance for cache deployments with large capacity. 

In the 5G SA architecture, an obvious innovation is the direct con
nectivity among gNBs. In the proposed multi-bitrate VR video tile 
caching scheme, the cache cooperation among the connected gNBs is 
supported with the Xn interface communication. We define a direct link 
ratio indicator η to denote the ratio between the number of direct links 
and that of all possible direct links in the system. Fig. 5 shows the saved 
bandwidth cost and the cache hit ratio under different direct link ratio η 
and a cache capacity ratio of 0.4. It can be seen from Fig. 5 that the saved 
bandwidth cost and the cache hit ratio are gradually increasing when the 
direct link ratio increases. It illustrates that the proposed JTSVC-α 
scheme can benefit more from more direct connection links among 
gNBs. Moreover, the JTSVC-α scheme achieved slightly higher saving 
bandwidth cost than the JTSVC-D scheme for any η value. This is 
because the JTSVC-α scheme usually selects the suitable bitrate for the 
tile being requested and this saves more bandwidth compared to a non- 
adaptive tile selection in JTSVC-D. Contrary to JTSVC-α scheme, the TL- 
α scheme is almost not affected by the direct link ratio, since it does not 
collaboratively cache the tiles in 5G networks. 

3.2. VR Video Streaming Performance 

The viewport request arrival rate has a significant impact on the 
processing load and delay (the delay for buffering and scheduling re
quests) in the cache system. When the load increases, the bandwidth for 
each user will be reduced. Hence, the bandwidth implicitly shows the 
state of processing load. In our simulation we assume that the cache 
nodes have enough computational capability and neglect the impact of 
the processing delay on performance. We simulate wi with time-varying 
bandwidth in different average values of 400Mbps, 500Mbps, and 
600Mbps with the actual trace data. Thus, the simulation of dynamic 
bandwidth implicitly captures the effect of the request arrival rate on the 
streaming performance. Fig. 6 shows the average bitrate of viewport that 
received by users under different dynamic bandwidths in the cache 

system. It can be seen from Fig. 6 that the performance gap between the 
proposed scheme and other schemes are gradually reduced with 
increasing link bandwidth. It indicates that the proposed scheme has 
much more improvement room for lower link bandwidth conditions. In 
Fig. 6, the TL-α scheme received more bit-rates of viewport than the 
JTSVC-D scheme at the low available bandwidth (400Mbps). It is 
because TL-α scheme considered the perception-based bitrate allocation 
during caching optimization. At the low bandwidth regime, TL-α 
requested as much high-quality tiles of viewport as possible. Compa
rably, at the high bandwidth regime, the collaborative caching played a 
major role in viewport quality improvement, and hence the JTSVC-D 
scheme received more bit-rate of viewport than the TL-α scheme. 

To evaluate the effectiveness of the quality-adaptive routing scheme 
against the constant-quality tiled video caching (TVC) scheme, two 
groups of TVC schemes were tested with constant QPs (QP = 28 and QP 
= 34) under a fluctuating bandwidth ranging from 80Mbps to 700Mbps 
with an average value of 400Mbps. In our simulation, all the schemes 
used the same cache space. The Cumulative Distribution Function (CDF) 
of the viewport bitrate and viewport delivery latency are shown in 
Figs. 7 and 8, respectively. 

It can be seen from Fig. 7 that the viewport bitrates reached a 
maximum value of 4200kbps and 8100kbps respectively for the two 
fixed-bitrate TVC schemes with dynamic request routing (TVCD). The 
bitrates for a minority of viewports were lower than 4200kbps and 
8200kbps for the two fixed-bitrate schemes, respectively. Specifically, 
about 50% of viewport bitrates are lower than 4200kbps for the TVCD +
QP34 scheme and about 40% of viewport bitrates are lower than 
8100kbps for the TVCD + QP28 scheme. In comparison, the bitrates of 
requested viewports of the JTSVC-α scheme are mostly in the range of 
6000kbps and 10000kbps. This is because the JTSVC-α scheme caches 
the multi-bitrate versions and provides the adaptive bitrates of the 
requested tiles to the dynamic wireless channel. Consequently, the 
JTSVC-α scheme can achieve higher viewport qualities than the other 
constant bitrate caching schemes. 

Fig. 8 shows the CDF of the viewport latencies. It can be seen that the 
latencies of the requested viewports for the TVCD + QP28 scheme are at 
most up to 14 ms. This is because a few high bitrate tiles cannot be 
delivered to UEs under the MTP latency constraint of 20 ms (including 6 
ms reserved for rendering) over the time-varying channel. In these cases, 
the delays that exceed 14 ms are all considered to be equal to 14 ms. For 
the TVCD + QP34 scheme, the delivery delays for the requested tiles are 
almost all lower than 14 ms, albeit with lower viewport quality. Simi
larly, even though some of tile latencies of the JTSVC-α scheme are 
greater than those of the TVCD + QP34 scheme, they are still lower than 

Fig. 6. Average bitrate of viewport that users received under different level of 
dynamic bandwidth. 

Fig. 7. CDF of bitrates of the requested viewports.  
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14 ms. This indicates that the JTSVC-α scheme provides UEs appropriate 
qualities of the viewports to satisfy the strict latency requirement. 

4. Conclusion 

In this paper, a scalable VR video tile caching scheme for 5G mobile 
networks is proposed. By considering the particular characteristics of VR 
video, different quality layers of VR video are first segmented spatially 
into tiles with different bitrate versions. Then, the multi-bitrate tiles are 
cooperatively cached into 5GC and NG-RANs to reduce the VR video 
streaming latency. On top of our multi-bitrate VR video tile caching 
scheme, we propose a quality-adaptive request routing scheme that is 
used to ensure the requested VR video bitrate can accommodate mobile 
network fluctuations. In request routing, unequal bitrate allocation 
among tiles in the whole frame is performed to optimize the homoge
neous viewport quality under a channel bandwidth constraint. Experi
mental results show that the proposed scheme can increase the cache hit 
ratio and save more bandwidth for VR video streaming than other 
constant bitrate caching schemes over 5G networks. 
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