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Abstract
Dynamic Adaptive Streaming over Http (DASH) -based video streaming applications are
becoming increasingly prevalent over the mobile Internet. Many efforts have been made to
optimize their performances. Multipath video streaming that simultaneously utilizes mul-
tiple wireless networks for video content delivery is a common method. Another effective
approach is the cross-layer video streaming optimization that jointly takes the parameters at
different protocol layers into account. However, multipath streaming schemes mainly focus
on how to efficiently utilize multiple wireless networks and the collaboration of parameters
at different layers in each network is neglected. Likewise, the cross-layer schemes normally
optimize the parameters at different layers in purely one network without fully utilizing the
aggregated bandwidths of multiple available wireless networks. Therefore, both of them
are sub-optimal and might suffer from degrading performance. In this paper, we propose
a joint Cross-layer DASH-based multipath video streaming scheme that takes advantage
of bandwidth aggregation of multiple wireless networks and further improves the perfor-
mance by optimizing the different layers’ parameters in each network with a cross-layer
manner. In the proposed scheme, the LTE and 802.11ac networks are adopted. The bitrate of
DASH-based video chunk at application layer, the rate allocation among networks and the
Modulation and Coding Scheme (MCS) at physical layers in LTE and 802.11ac downlink
are jointly optimized. We also compare our proposed scheme to state-of-the-art schemes
using trace-driven experiments. Experimental results show that our proposed scheme out-
performs state-of-the-art schemes in terms of PSNR, normalized QoE, and balance between
video bitrate and rebuffering penalty.
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1 Introduction

Nowadays, video applications like Zoom, Youtube and Netflix are increasingly prevalent
over the mobile Internet. Meanwhile, it is predicted by Cisco Visual Networking Index that
mobile video traffic will upscale 9-fold from 2017 to 2022, and accounting for nearly four-
fifths of total mobile data traffic by the end of the forecast period [8]. The major motivations
behind this phenomenon are the proliferation of powerful mobile devices such as iPhoneTM-
based and AndroidTM-based smartphones, and the explosive demands for high quality video
streaming from them. By and large, these mobile video streaming services are with high
throughput and low latency requirements. Therefore, efforts should be made to optimize the
delivery of mobile video streaming applications.

Among different video streaming standards and technologies, DASH is one of the
dominant video streaming technologies over the mobile Internet [29]. Various propri-
etary proposals of DASH are developed, such as Apple HTTP Live Streaming, Microsoft
Smooth Streaming and Adobe HTTP Dynamic Streaming [24]. The basic idea of DASH
is that a video sequence is partitioned into multiple segments/chunks with constant
playback length and replicas of each segment are stored in different sites in a Con-
tent Delivery Network (CDN) with different resolutions and qualities. DASH aims to
adapt and optimize video streaming over time to offer the best possible video qual-
ity to the end user, by considering device capabilities, network conditions and content
characteristics.

However, it is still challenging for video streaming over wireless cellular networks with
guaranteed Quality of Experience (QoE) due to the limited capacity of the cellular network
and the massive growth in mobile video traffic. A straightforward way to sustain the explo-
sive growth of video traffic in the mobile network is to upgrade current cellular network
to next generation advanced networks such as LTE-Advanced and 5G networks. Neverthe-
less, by simply increasing the capacity of cellular network might not always be economical
[1]. Therefore, this approach requires continuous exploration of novel solutions for video
streaming optimization in order to deliver an enhanced QoE for a wide range of mobile
video applications.

With the development of techniques for simultaneous utilization of multiple network
interfaces at the mobile devices, higher quality videos can be supported by using multi-
ple wireless access networks simultaneously [29]. For example, in a place overlapped with
both 802.11ac and LTE networks, a possible way to further enhance the video streaming
performance is to download video chunks via LTE and 802.11ac interfaces simultaneously.
Therefore, we propose to combine the DASH technique with multipath video streaming
by delivering a video as a sequence of small, independent segments encoded in different
bitrates and allowing a single video segment to be transported over various wireless links for
bandwidth aggregation. To achieve this, the HTTP’s range retrieval requests technique is
adopted to enable a video segment to be logically partitioned and to be downloaded through
various wireless network interfaces separately [3, 12, 29].

In addition to the adaptive bitrate at the application layer, the parameters at the phys-
ical layer such as MCS in both LTE and 802.11ac networks can be utilized to further
optimize the DASH-based video streaming. Thus, a DASH-based cross-layer video opti-
mization scheme is proposed in this paper to improve the perceptual video quality for
end-to-end video streaming over multiple wireless access networks. In fact, the tuning of
MCS at the physical layer in both 802.11ac and LTE networks, the video bitrate switching
at the application layer are jointly performed by the cross-layer optimization controller (see
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Fig. 1 The proposed DASH-based cross-layer optimization framework over multiple wireless networks

Fig. 1) according to the feedback information such as the Signal-to-Interference plus Noise
Ratio (SINR) and the buffer occupancy rate. The major contributions of this paper can be
summarized as follows:

– A DASH-based cross-layer optimization scheme is proposed for multipath video
streaming over LTE and 802.11ac wireless networks. The MCS mode at the downlink
physical layer and the video segment bitrate at the application layer are jointly adapted
to enhance the video streaming performance.

– The playback buffer occupancy rate is also considered for bitrate selection and rate
allocation between the LTE and 802.11ac networks. A logarithmic quality func-
tion is proposed to model the perceived QoE of each requested segment. Then we
formulate this DASH-based cross-layer multipath video streaming problem as a non-
linear optimization problem with mixed discrete-continuous constraints and try to find
the optimal bitrate, MCS and rate allocation values to maximize the nonlinear and
non-differentiable objective function for each segment.

– To reduce the complexity, we propose an efficient online heuristic algorithm to find the
sub-optimal solution to maximize the expected quality of the requested video segment
and further evaluate its performance through a trace-driven simulation.

The rest of this paper is organized as follows. In Section 2, we discuss the related
works concerning DASH-based video streaming in 802.11ac and LTE downlink net-
works. Section 3 describes the proposed DASH-based cross-layer multipath video
streaming optimization framework, the tuning of parameters at the physical layer of
LTE and 802.11ac networks, followed by the formulation of the optimization prob-
lem and the corresponding solution. In Section 4, we evaluate the performance of the
proposed algorithm by trace-driven simulations, followed by the concluding remarks
in Section 5.
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2 Related work

To improve the quality of wireless video streaming from a cross-layer perspective, a vari-
ety of optimization schemes have been proposed. Zhao et al. [33] proposed a Structural
SIMilarity index (SSIM)-based cross-layer optimized video streaming over LTE downlink
wireless network. The MCS mode at the physical layer is selected to improve the per-
ceptual video quality by jointly taking the characteristics of the video slice into account.
In [2], Argyriou et al. investigated the performance of video streaming in heterogeneous
cellular networks when the time-domain resource partitioning mechanism is employed.
The perceived video quality for the subscribers is maximized by jointly optimizing the
selected video quality transmitted to a user, the rate allocated to each specific user at the
application layer, and the time-domain resource partitioning at the physical layer. In IEEE
802.11ac wireless local area networks, Chang et al. [6] proposed a cross-layer designed
quality adaptive strategy to maximize the perceived H.264/AVC video streaming quality.
A multi-polling controlled access (MPCA) scheme at the MAC layer and the video frame
types at the application layer are jointly considered to guarantee the latency for the critical
video frames and reduce transmission overhead. However, the above literatures [2, 6, 33]
attempt to improve the video streaming performance by cross-layer method in one wire-
less network without taking the advantage of aggregated bandwidth from multipath video
streaming.

At the application layer, HTTP-based adaptive video streaming (standardized as DASH
[24]) is being widely adopted as a form of Internet video delivery. In [24], the standards
and design principles of DASH specifications are presented and the implementation exam-
ples are also provided. In DASH, the adaptive bitrate (ABR) algorithm in the client is
critical to ensure a desirable QoE and various ABR algorithms have been proposed. Previ-
ous ABR algorithms can be typically grouped into three classes: rate-based, buffer-based
and reinforcement learning based methods. Rate-based algorithms [18, 25] usually request
video segments at the highest bitrate that networks are predicted to support. However, these
sort of methods first estimate the available bitrate by observing the past segment down-
loads which are often hindered by the biased throughput prediction on top of HTTP. In
contrast, buffer-based methods merely keep track of the client’s playback buffer occu-
pancy while selecting the bitrates for later video segments. These methods strive to keep
the buffer occupancy above a pre-configured threshold which balances video quality and
rebuffering events. The most advanced buffer-based methods, both Buffer-Based Approach
(BBA) [15] and Bitrate Adaptation for Online Video (BOLA) [23], are optimizing for a
specified video quality metric only based on the observed buffer occupancy. Yin et al.
[31] proposed a Model Predictive Control (MPC) algorithm which combines the rate-
based and buffer-based techniques to select proper bitrates that expected to maximize the
QoE over several future video segments. Nevertheless, MPC still suffers from inaccurate
throughput estimation which is critical for its performance. The most recent reinforcement
learning based approach, Pensieve [20], trained a neural network model to learn a precise
ABR algorithm, and select bitrates automatically for a horizon of serval future segments.
The Pensieve in the client learns the control policy for video bitrate adaptation purely
through experience, without utilizing any specific assumptions or pre-configured models
about the environment. To summarize, the above papers utilize adaptive bitrate algorithms
to make video quality decision based on the predicted bandwidth or the buffer state of
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one wireless link, which also can further be optimized by jointly considering different
parameters at different protocol layers or using multipath video streaming for bandwidth
aggregation.

Leveraging both LTE and Wi-Fi links simultaneously can enhance the performance of
video streaming services and therefore numerous DASH-based multipath video streaming
schemes have been studied. In [19], the authors proposed a video segment request policy
called REQUEST for DASH-based video streaming in a smartphone utilizing both Wi-Fi
and LTE interfaces. REQUEST enables better video quality, fewer rebuffering events than
other existing schemes under given budgets of LTE data usage and battery energy. In a multi-
user scenario, Ho et al. [14] presented a game-theoretic scalable offloading framework that
enabled seamless video streaming over LTE andWi-Fi networks concurrently. In this frame-
work, fountain encoding together with the progressive second price auction mechanism are
employed to improve the video streaming performance among multiple smartphones. At
the transport layer, the Multipath TCP (MPTCP) and the Multipath QUIC protocol [28] are
designed to offer significant benefits to DASH-based multihomed video streaming. How-
ever, the congestion control algorithms in the above original multipath transport protocol
are not suitable for multipath video streaming. James et al. [16] discussed that whether
MPTCP is always beneficial for video streaming over DASH. They found that without suf-
ficient bandwidth on the secondary path, the video streaming over MPTCP would suffer
from degraded performance. Further, Han et al. [13] proposed a multipath framework called
MP-DASH for video streaming over multiple network interfaces. MP-DASH strategically
schedules video segments to satisfy user preferences. In order to provide a general frame-
work, Chen et al. [7] proposed a DASH-based video streaming solution in the client-side,
called MSPlayer, that exploiting multiple CDN nodes and network interfaces. MSPlayer
provided the aggregating bandwidth for high-definition video streaming and reduced start-
up latency. However, MSPlayer does not assume multipath video streaming over MPTCP
in which multiple transport links considered as one logical link to the application layer.
In addition, MSPlayer doesn’t provide strategy to select the wireless link. To address this,
Elgabli et al. [11] proposed a preference-aware mulipath video streaming algorithm over
HTTP using MPTCP. Howover, these MPTCP-based mulitpath video streaming strategies
cannot be deployed without modifying the original congestion control algorithms. There-
fore, MPQUIC protocol that using the UDP protocol in the transport layer is more suitable
multipath video streaming. As a baseline of our scheme, Viernickel et al. [28] proposed
Multipath-enabled QUIC (MPQUIC) solution to leverage multiple network interfaces to
provide bandwidth aggregation. In this paper, We further improve the performance of mul-
tipath video streaming by adjust the MCS mode at the physical layer in a cross-layer
method.

In summary, most existing video streaming solutions either purely rely on one network
interface, or leverage multiple network interfaces without cross-layer optimization. More-
over, some researchers mainly make effort to find an optimal ABR algorithm by tuning the
policy agent in the client to cater to the new environment. Motivated by the above analyses,
we attempt to take advantage of the aggregated bandwidth from LTE and 802.11ac net-
work interfaces, and exploit the cross-layer scheme to further improve the performance of
DASH-based multipath video streaming. In the next section, we will describe the proposed
DASH-based cross-layer optimization framework and the formulation of the optimizing
problem over LTE and 802.11ac networks.
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3 DASH-basedmultipath cross-layer optimization

3.1 DASH-based cross-layer optimization framework

Figure 1 shows the proposed DASH-based cross-layer multipath video streaming opti-
mization framework. In this framework, the multi-interfaced (LTE and 802.11ac) client
sequentially requests video segments stored in different CDN nodes via DASH technique
over LTE and 802.11ac wireless network interfaces simultaneously. In the CDN side, the
video sequence is partitioned into multiple independent segments, and each segment is with
multiple replicas encoded with various bitrate values [7]. To fully take advantage of the
aggregating bandwidth, each segment is logically divided into multiple subsegments, which
can be requested through multiple wireless interfaces via HTTP’s range retrieval requests
[12, 29]. In such a scenario, two crucial issues should be considered in the client to ensure
a good video streaming performance: how to select the bitrate for the new requested seg-
ment and how to slice each segment into two subsegments that delivered through LTE and
802.llac networks respectively.

To achieve this, the segment bitrate and the rate allocation at the application layer, the
MCS mode at the downlink physical are jointly adjusted by the cross-layer optimization
controller embedded in the client-side. When requesting a new segment, the link adaptation
including the adjustment of MCS mode should be performed to adapt to the time-varying
wireless channel states. Accordingly, the segment bitrate adjustments comprised of bitrate
selection and rate allocation among separate links are dynamically tuned to match the inte-
grated channel goodput that the selectedMCS can support. In addition, the buffer occupancy
in the client is also considered by the controller to avoid the rebuffering events.

The wireless channel is usually accompanied by time-varying characteristics and
frequency-selective fading. To accommodate this, the Adaptive Modulation and Coding
(AMC) is utilized to select the most suitable MCS mode based on the estimated channel
state and Bit Error Rate (BER) /Block Error Rate (BLER). In practice, the MCS mode for
a specific User Equipment (UE) is determined by the eNodeB/AP with the help of periodi-
cal feedback of Channel Quality Indicator (CQI) from the UE, which is represented by the
Signal-to-Interference-plus-Noise-Ratio (SINR). For example, the MCS is selected to main-
tain the BLER of each resource block smaller than 10 percent for the LTE downlink channel
adaptation [2, 33]. However, in our paper, the MCS mode is selected by considering both
the SINR and the effect of its achieving goodput on the perceived video quality. In other
words, the new segment bitrate value at the application layer should be selected up to the
integrated bandwidth that LTE and 802.11ac downlink networks can support. Further, the
rate allocation that determines the subsegment size transferred by the corresponding access
networks is tuned to the selected MCS mode.

3.2 Video quality model for DASH

Two overarching goals have to be balanced in DASH-based video streaming applicatons.
On one hand, they attempt to maximize the video quality of each video segment by selecting
the highest video rate that networks can support, and maintaining a smooth video playback.
On the other hand, they try to avoid rebuffering events that result in halt of video playback
when the client’s received buffer goes empty [6, 15, 20, 23, 31]. In this paper, the video is
modelled as a sequence of consecutive video segments, V = {1, 2, · · · , K}, each of which
contains T seconds of video and encoded with different bitrates. The player can choose to
request a new segment with bitrate ri ∈ R, i ∈ V , whereR is the set of all available bitrate
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values. These information characterizing various representations of the media components
(bitrates, resolutions, codecs, etc.) is contained in the media presentation description (MPD)
file, which will be requested by the client during the initialization phase [24].

By neglecting the impact of rebuffering events and the quality variations between two
consecutive segments, we denote q(·) : R → R+ by the function which maps the selected
video rate ri of segment i to the perceptual video quality. According to [28], the percep-
tual video quality is increased with video bitrates. The slope is quite steep in the low bitrate
region, but it gradually slows down at high bitrate values. The logarithmic function matches
this characteristic well and is utilized to represent the video quality q(·) in this paper.
Therefore, the perceptual video quality is expressed as

q(ri) = log (1 + α · ri), ri ∈ R, i ∈ V (1)

where α is a fitting parameter for a specific video codec and video sequence. It can be
estimated from three or more trial encodings using nonlinear regression techniques.

To avoid the rebuffering events that strongly impair the user’s experience, the current
requesting segment has to arrive at the client before the playback buffer goes empty. Let
tb be the buffer occupancy at time t that starts to request segment i, i.e., the play time of
the downloaded yet unviewed segment remained in buffer. The value of tb can be obtained
via periodical feedback by the client to the optimization controller. We also denote by Cs

the average total goodput provided by all the access networks from moment ti to ti + T .
Note that if T · ri/Cs ≥ tb, the buffer goes empty while the client is still downloading
segment i, resulting in rebuffering events [15, 20, 29]. We define a tradeoff function to
balance the impairment of rebuffering and the video playback quality. A tradeoff coefficient
λ is introduced to weight the impairment of the rebuffering events. This modified perceived
video quality function can be represented as

Q(ri) = q(ri) − λ · I (T · ri/Cs − tb) (2)

where I (·) is the step function that I (·) = 1, if T · ri/Cs ≥ tb, otherwise, I (·) = 0.
Since each segment is logically divided into two subsegments, each of which will be

requested over the LTE and 802.11ac downlink simultaneously via the HTTP’s range
retrieval requests technique [12, 29]. The rebuffering event occurs if one of the subseg-
ments cannot arrive at the client before the playback buffer runs out. Let ri,1 and ri,2 be the
bitrates allocated to LTE and 802.11ac wireless networks respectively. Their sum equals to
the selected bitrate ri of segment i. That is ri = ri,1 + ri,2. The average downlink goodput
provided by the LTE and 802.11ac wireless networks while downloading the subsegments
are denoted by Ci,1 and Ci,2 respectively. In this case, the rebuffering event emerges if
max(T · ri,1/Ci,1, T · ri,2/Ci,2) ≥ tb. Thus, the ultimate quality function for segment i can
be defined as

Q(ri, ri,1, ri,2) = q(ri) − λ · I (max(
T · ri,1

Ci,1
,
T · ri,2

Ci,2
) − tb) (3)

3.3 The goodput estimation of LTE downlink

In the LTE downlink, the achieved goodput depends on the wireless channel condition, the
selected MCS mode and the resource allocation algorithm. To estimate the effective average
goodput Ci,1 while downloading the corresponding subsegment through LTE downlink,
the mutual information effective SNR mapping (MIESM) is utilized to measure the LTE
downlink channel quality in this paper. For the selected MCS mode m1 ∈ M1, where M1
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is the candidate MCS mode set in the first column of Table 1, the effective SNR mapping
γmieff (m1) based on the mutual information can be calculated as [17]

γmieff (m1) = τ(m1)

[
J−1

(
1

Sn

Sn∑
k=1

J

(√
γk

τ(m1)

))]2

(4)

where Sn is the number of allocated subcarriers for subsegment i, τ(m1) is the calibration
factor for MCS mode m1 listed in Table 1, and γk is the SINR at the kth subcarrier. The
definition of functions J (·) and J−1(·) are defined as (5) and (6). For more details, please
refer to the references [10, 17, 33].

J (x) ≈
{ −0.04210610x3 + 0.209252x2 − 0.00640081x, 0 ¡ x ¡ 1.6363
1 − exp(0.00181491x3 − 0.142675x2 − 0.08220540x + 0.0548608), x ≥ 1.6363

(5)

J−1(y) ≈
{
1.09542y2 + 0.214217y + 2.33727

√
y, 0 ¡ y ¡ 0.3646

- 0.706692log( - 0.386013(y - 1)) + 1.75017y, 0.3646 ≤ y ≤ 1
(6)

Based on the MIESM γmieff (m1) defined in (4), the Block Error Rate (BLER)
BLER(γmieff (m1)) for the RB with MCS mode m1 can be precisely predicted as

BLER(γmieff (m1)) = 1

2
erf c(

γmieff (m1) − b(m1)√
2c(m1)

) (7)

where erf c(·) is the complementary error function, b(m1) and c(m1) listed in Table I are
the “transition center” and “transition width” respectively, each of which can be obtained
by fitting J−1(·) to the exact BLER in a specific communication system. In this paper, a
MIMO 2X1 AWGN LTE downlink channel is simulated using a generic LTE system-level
simulator in [26].

Table 1 The candidate LTE downlink MCS modes

MCS index(m1) Modulation order Rate(bits /symbol r(m1)) τ(m1) b(m1) c(m1)

1 QPSK 0.1523 3.07 -7.758 0.6003

2 QPSK 0.2344 4.41 -5.724 0.5182

3 QPSK 0.3770 0.60 -3.652 0.4032

4 QPSK 0.6010 1.16 -1.593 0.3588

5 QPSK 0.8770 1.06 0.3501 0.2910

6 QPSK 1.1758 1.06 2.348 0.2563

7 16QAM 1.4766 0.87 4.297 0.2563

8 16QAM 1.9141 1.01 6.214 0.2293

9 16QAM 2.4063 1.04 8.242 0.2253

10 64QAM 2.7305 1.03 10.13 0.2248

11 64QAM 3.3223 1.11 12.06 0.2028

12 64QAM 3.9023 1.01 13.89 0.1962

13 64QAM 4.5234 1.07 15.72 0.1958

14 64QAM 5.1152 1.00 17.50 0.2134

15 64QAM 5.5547 1.05 19.59 0.2592
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Due to the truncated ARQ mechanism implemented in the data link layer, resource
blocks that are received in error during the original transmission might be retransmit-

ted, up to a maximum of Nr times. For notational simplicity, let us define ε(m1)
def=

BLER(γmieff (m1)) , and the average number of transmissions per resource block can be
derived as

N(ε(m1), Nr) =
Nr∑
i=1

i · (1 − ε(m1)) · ε(m1)
i−1

= 1 + ε(m1) + ε(m1)
2 + · · · + ε(m1)

Nr

= 1 − ε(m1)
Nr

1 − ε(m1)
(8)

To evaluate the achieved channel goodput, the number of information bits carried by each
transmitted symbol is calculated as r(m1) = Rc · log2(Mm1) and listed in Table 1, where Rc

is the FEC code rate and Mm1 refers to a Mm1 -QAM constellation for MCS mode m1.
It has been known that the available spectrum resource is divided into some individ-

ual resource blocks based on the frequency and time domains in LTE downlink physical
layer. Each RB occupies the duration of one slot (0.5ms) and contains 7 OFDM symbols
with normal cyclic prefix in the time domain and 12 subcarriers (180KHz) in the frequency
domain. However, three downlink control channels are defined in the LTE downlink in
order to support the data transmission, which are Physical Control Format Indicator Channel
(PCFICH), Physical HARQ Indicator Channel (PHICH), Physical Downlink Control Chan-
nel (PDCCH). In the normal configuration, these channels occupy the the first three OFDM
symbols in each sub-frames (1ms) in the time domain and the whole bandwidth in the fre-
quency domain, described by the grey square blocks in Fig. 2. We can see in Fig. 2 that
there are eight resource elements reserved for reference signals in each resource block [22].
Therefore, the available data bits carried by two adjacent RBs in one sub-frame, as a func-
tion of MCS mode m1, can be expressed as ξ(m1, Nr) = Nrb · r(m1), where Nrb = 120
denotes the number of resource element allocated for the data transmission in two adjacent
RBs.

Fig. 2 The frequency and time domains in the LTE downlink
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In each Transmission Time Interval (TTI), the Proportional Fair Scheduling (PFS) algo-
rithm [4] is used for resource block scheduling among multiple users in one single cell.
Suppose the total RB numbers allocated for the delivery of subsegment in LTE downlink
equals to Bn and all the RBs adopt the same MCS mode. When the truncated ARQ is
adopted, each resource block is averagely transmitted N(ε(m1), Nr) times. Therefore, the
achieved goodput can be computed as

Ci,1(m1) = ξ(m1, Nr) · Bn

N(ε(m1), Nr)
(9)

3.4 The goodput estimation of 802.11ac network

In the 802.11ac downlink physical layer, OFDM is selected as the modulation scheme
and ten MCS modes with different modulation schemes and coding rates are provided
for link adaptation. Specifically, BPSK, QPSK, 16-QAM, 64-QAM and 256-QAM are the
supported modulation schemes listed in Table 2. In the MAC layer, to share the wireless
channel between multiple compatible stations, the contention-based Distributed Coordina-
tion Function (DCF) that uses the algorithm of Carrier-SenseMultiple Access with Collision
Avoidance (CSMA/CA) is implemented as a mandatory medium access control (MAC)
mechanism. In CSMA/CA, each successful frame transmission duration of DCF consists
of a backoff delay T̄b, the data transmission time Tdata(l, m2), a Short InterFrame Space
(SIFS) time TSIFS = 16μs, the ACK transmission time Tack(m2) and a Distributed Inter-
Frame Space (DIFS) time TDIFS = 34μs [9]. Suppose that a frame with l bits data payload
is to be transmitted using MCS mode m2 ∈ M2, where M2 is the candidate MCS mode
set in the first column of Table 2. According to [30], the data transmission duration can be
calculated as

Tdata(l, m2) = 20μs + �30.75 + l

r(m2)
	 · 4μs (10)

where r(m2) can be computed by the code rate given in Table 2 and is the bits-per-symbol
information for MCS mode m2. For simplicity, the same MCS mode is supposed to used for
the ACK frame transmission. The duration for an ACK frame can be expressed as follows
[30],

Tack(m2) = 20μs + � 16.75
r(m2)

	 · 4μs (11)

Table 2 Data rates (Mbps)-ten MCS modes, 1 spatial stream, normal guard interval

MCS Index(m2) Modulation Code Rate 20Mhz 40Mhz 80Mhz

0 BPSK 1/2 6.5 13.5 29.3

1 QPSK 1/2 13 27 58.5

2 QPSK 3/4 19.5 40.5 87.8

3 16-QAM 1/2 26 54 117

4 16-QAM 3/4 39 81 175.5

5 64-QAM 2/3 52 108 234

6 64-QAM 3/4 58.5 121.5 263.3

7 64-QAM 5/6 65 135 292.5

8 256-QAM 3/4 78 162 351

9 256-QAM 5/6 - 180 390

16016 Multimedia Tools and Applications (2021) 80: –1602616007



In the backoff period, a random integer is assigned to the station according to a uniform
distribution over the interval [0, CW], where CW is the content window size and its initial
value is CWmin. Based on the formulation in [21], the average backoff time is given by

T̄b = CWmin · Tslot

2
(12)

where Tslot is the slot time in 802.11ac and is equal to 9μs.
A frame transmission is considered successful only upon receiving the corresponding

ACK frame correctly. Therefore, the probability of a successful frame transmission with
wireless channel state γ2 and MCS mode m2 can be calculated by

Ps(l, γ2,m2) = [1 − Pdata(l, γ2, m2)][1 − Pack(γ2,m2)] (13)

where Pdata(l, γ2,m2) and Pack(γ2, m2) are the data error probability and the ack error
probability, respectively, and their values are varied under different wireless channel model
and estimated over the AWGN channel in this paper. Since the data frame is normally much
longer than the ACK frame, the probability for the ACK frame to be lost is much smaller
than the data frame. Thus, we have the following approximation

Ps(l, γ2,m2) ≈ 1 − Pdata(l, γ2, m2) (14)

An upper bound is given on the packet error probability, under the assumption that hard-
decision Viterbi decoding with independent errors and binary convolutional coding are used
at the channel input. The data packet error probability with l octets using MCS mode m2 is
bounded by

Pdata(l, γ2,m2) ≤ 1 − (1 − Pu(γ2,m2))
8l (15)

where the union bound Pu(m2) is the first-event error probability given by

Pu(γ2,m2) =
∞∑

d=df ree(m2)

ad · Pd(γ2) (16)

where df ree(m2) is the free distance for the convolutional code in MCS mode m2, ad is total
number of error of weight d , and Pd(γ2) is the probability of an incorrect path at distance d

from the correct path being chosen by the Viterbi decoder and is given as follows,

Pd(γ2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

d∑
i=(d+1)/2

(
d

i

)
·ρi · (1 − ρ)d−i , if d is odd,

1
2 ·

(
d

d/2

)
· ρd/2 · (1 − ρ)d/2+

d∑
i=d/2+1

(
d

i

)
·ρi · (1 − ρ)d−i , if d is even

(17)

Note that ρ is the bit-error-rate as a function of the symbol SNR γ2 for the MCS mode m2
and can be approximated by (18) [32].

ρ =
√

m2 − 1√
m2log2

√
m2

erf c

(√
3log2 (m2 · γ2)

2(m2 − 1)

)
(18)

Based on the above analysis, the effective goodput Ci,2(m2) of IEEE 802.11ac network
can be calculated by

Ci,2(m2) = Ps(l, γ2, m2) · l

T̄b + Tdata(l, m2) + Tack(m2) + TSIFS + TDIFS
(19)
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3.5 Optimization formulation and solution

With the feedback of the effective goodput estimation and the buffer occupancy, the con-
troller attempts to maximize the perceptual video quality for each segment without causing
the rebuffering events. The decision variables include the requested segment bitrate ri , the
rate allocation ri,1 and ri,2 from the application layer and the MCS mode m1 and m2 at the
physical layer of different networks. In addition, to offer a smooth playback, the quality
variation between two consecutive segments should be smaller than a threshold μ preferred
by the user. Therefore, the cross-layer optimization problem can be formulated as

max{ri ,ri,1,ri,2,m1,m2}

{
q(ri) − λ · I

(
max

(
ri,1

Ci,1(m1)
,

ri,2

Ci,2(m2)

)
− tb

)}
s.t .ri = ri,1 + ri,2

|q(ri) − q(ri−1)| ≤ μ

ri ∈ R
m1 ∈ M1

m2 ∈ M2 (20)

where the effective goodput Ci,1(m1) and Ci,2(m2), as a function of MCS mode and SNR,
can be calculated by (9) and (19), respectively. For more information about the parameters
in this paper, please refer to Table 3.

It can be seen that (20) contains both discrete and continuous variables. For instance,
m1 and m2 are discrete while ri,1, ri,2 are continuous. Furthermore, the objective function
in (20) is nonlinear and non-differentiable. Therefore, the cross-layer optimizing problem
of (20) is a typical nonlinear optimization problem with mixed constraints. These kinds of
problems are NP-hard without polynomial time solution. To solve the cross-layer optimizing
problem formulated in (20), we construct a heuristic algorithm to find the near-optimal deci-
sion variables (r∗

i , r∗
i,1, r

∗
i,2,m

∗
1,m

∗
2) to maximize the perceived video quality of segment

i. That is Q(r∗
i , r∗

i,1, r
∗
i,2,m

∗
1,m

∗
2) ≥ Q(ri, ri,1, ri,2, m1,m2),∀ ri , ri,1, ri,2,m1,m2 subject

to the constraints defined in (20). In the algorithm, we first pick up a candidate bitrate set
Rcandidate that satisfies |q(ri)−q(ri−1)| ≤ μ and then sort the elements in the candidate set
by descent order. In other words, the quality variation caused by two consecutive segments
are tolerable if the bitrate of segment i is one of the elements inRcandidate.

Table 3 Summary of terminology

Term Brief Description

ri ,R bitrate of segment i, video bitrate set

mi ,Mi selected MCS mode for segment i, MCS mode set

q(·), Q(·), I (·) video quality function, indicator function

Ci,1, Ci,2 average downlink goodput of given network for segment i

T , tb the time duration of each segment, the buffer occupancy

γ the SINR

α,μ, λ fitting parameters, all set to 1 in the experiment
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Since the video quality function q(·) is increasing with the bitrate r , we aggressively
request segment i with the highest bitrate values in the candidate set. That is r∗

i =
argmax

ri
ri , ri ∈ Rcandidate. After selecting the optimal bitrate r∗

i at the application layer,

we will determine the MCS mode at the physical layer for the corresponding network. The
MCS mode with small constellation and powerful channel code can maintain reliability at
poor channel condition. Therefore, we select the MCS mode with smallest constellation,
and channel code and estimate the achievable goodput Ci,1(m

∗
1) and Ci,2(m

∗
2) based on the

selected MCS mode and symbol SNR.
The rate allocation that determines the size of the subsegment is based on the good-

put of each network. That is r∗
i,1 = Ci,1(m

∗
1)

Ci,1(m
∗
1)+Ci,2(m

∗
2)

· r∗
i , r∗

i,2 = Ci,2(m
∗
2)

Ci,1(m
∗
1)+Ci,2(m

∗
2)

· r∗
i .

Then the optimal decision variables (r∗
i , r∗

i,1, r
∗
i,2, m

∗
1, m

∗
2) are obtained so far. However,

such a decision variable set might lead to rebuffering event. We assume a relatively large
λ indicates that the user is more concerned about rebuffering is used in this algorithm. So
every subsegment has to arrive at the client before the received buffer run out. Note that if
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max (
r∗
i,1

Ci,1(m
∗
1)

,
r∗
i,2

Ci,2(m
∗
2)

) ≤ tb, the rebuffering event will not occur and the decision variables

are verified. Otherwise, the effective goodput given the selected MCS mode cannot satisfy
the quality level of video segment i with bitrate of r∗

i and the MCS mode with larger con-
stellation size and more powerful channel code is selected as the optimal MCS mode. If
there is no MCS mode can satisfy such a bitrate level of segment i, the algorithm will select
segment i with a smaller bitrate level. The details of the proposed heuristic algorithm for
cross-layer multi-path streaming is shown in Algorithm 1. To evaluate our proposed heuris-
tic algorithm, we construct a off-line mapping table between the goodput C of network and
the candidate MCS mode m. Based on this, our heuristic algorithm is with polynomial time
complexity. Specifically, in the first phase of the algorithm, we attempt to determine the
candidate bitrate set Rcandidate within the available video bitrate. The time complexity is
O(R) and linear. In the second phase of the algorithm, we try to find the appropriate video
bitrate allocated to different network and the MCS mode. By using the off-line mapping
table aforementioned, we can obtain the goodput C in constant time. Therefore, the total
complexity of our heuristic algorithm is O(R · M1 · M2) within polynomial time.

4 Evaluation

4.1 Experimental setup

At the application layer, the video sequences are encoded via the H.264/AVC reference
software JM18.6 [27] by setting different quantization parameters (QP). In our setup, each
video segment is encoded at bitrate values in {350, 700, 1200, 1800, 2800, 4500} kbps,
corresponding to various resolutions in { 240p, 360p, 480p, 720p, 1080p, 1440p}. We can
also see from (2) that the video quality is related to two factors: the video segment bitrates
and the rebuffering events. Hence, besides the QP at the application layer that determines
the video bitrates, we also slice each whole video sequence into 50 segments and had a
total duration of 200 seconds, which each segment stands for approximately 4 seconds of
playback. In the simulation, we assume that the video player at the client was configured to
hold a buffer capacity with enough playback duration.

Additionally, the LTE and 802.11ac downlink wireless channel are simulated through
MATLAB Software based on [26] and [9], respectively. Then we exploit these generated
traces to evaluate the performance of the proposed algorithm. The main experimental param-
eters for both video coding and the wireless network environment are shown in Table 4.
To evaluate the proposed scheme, we compared it with state-of-the-art schemes includ-
ing the Multipath QUIC procotol (MPQUIC) scheme [28] and the SSIM-based Cross-layer
optimization with Error-resilient RDO (SSIM-CL-w-ERDO) scheme [33]. In the SSIM-CL-
w-ERDO scheme, we split each segment into two subsegments with equal size and each
of them is optimized by the SSIM-CL-w-ERDO scheme in LTE and 802.11ac downlink,
respectively. These three schemes are evaluated under different wireless channel conditions
(Rayleigh distribution with average SINR γ at 4dB, 9dB, 14dB) [5].

4.2 Experimental results

In the proposed DASH-based cross-layer multi-path video streaming scheme, the video
quality experienced by the end user is optimized by adaptively selecting the video bitrates,
the MCS mode for each segment according to the wireless channel state of both LTE and
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Table 4 Experimental
parameters Video coding profile baseline

Video coding structure IPPP

Video frame rate 30fps

Error concealment Temporal replacement

video bitrates {350, 700, 1200, 1800, 2800, 4500} kbps
video resolution {240p, 360p, 480p, 720p, 1080p, 1440p}
Video sequence { Shield, Parkrun, ElephantsDream}
Segment lengths 4 seconds

Candidate MCS modes Tables 1 and 2

Average SINR γ (4, 9 ,14)dB

SINR distribution Rayleigh

802.11ac downlink. Firstly, we investigated whether our proposed scheme can obtain the
anticipated results. The adaptive selection of the MCS modes and the bitrates for total 50
segments of the video sequence ElephantsDream at different channel conditions (average
SINR γ̄ = 4dB, γ̄ = 9dB, γ̄ = 14dB for both LTE and 802.11ac downlink channel) are
shown in Fig. 3.

MCS mode Adaptation We can see from Fig. 3 that, at a good channel condition of γ̄ =
14dB, the MCS modes with large size constellations (large MCS mode indexes) in both
LTE and 802.11ac downlink and large video segment bitrates are selected to improve the
video perceptual quality. In the other hand, at a poor channel condition of γ̄ = 4dB, the
MCS modes with small size constellations (small MCS mode indexes) in both two networks
and small bitrate are selected to avoid the rebuffering events and guarantee the smoothness
of video playback. Therefore, it illustrates that our proposed scheme can effectively adjust
the MCS mode at the physical layer in both LTE and 802.11ac and bitrates of the video
segment to improve the video streaming performance in a cross-layer manner.

Segment-level analysis To evaluate the streaming performance of the proposed scheme,
the segment-level average PSNR values for 50 segments of the three video sequences
Parkrun, Shield and ElephantsDream transmitted at the channel condition of γ̄ = 9dB are
shown in Fig. 4. From Fig. 4, it can be observed that our proposed scheme can achieve higher
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Fig. 3 The selected MCS modes and bitrates for total 50 segments of the video sequence ElephantsDream at
different channel conditions of LTE and 802.11ac
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Fig. 4 Average PSNR curves with increasing segment numbers for the sequence a Shield, b Parkrun and c
ElephantsDream at the condition of γ̄ = 9dB.

average PSNR values than other two baseline schemes (MPQUIC and SSIM-CL-w-ERDO)
for most of the video segments. However, Fig. 4 additionally illustrates that our scheme does
not overwhelm the other two baseline schemes on every segment level. This is because the
balance between the bitrate utility and rebuffering penalty in our scheme. On the whole, the
average PSNR of the total 50 segments of the Shield video sequences obtained by our pro-
posed scheme is 1.16dB and 2.52dB higher than the two baseline schemes, respectively. For
the video sequence of Parkrun, our proposed scheme outperformed the baseline schemes by
0.80dB and 1.91dB, respectively. For the video sequence of ElephantsDream, the average
PSNR improvement is 1.28dB and 2.80dB, respectively.

Video sequence level analysis Figure 5 shows the average PSNR curves of the video
sequences Shield, Parkrun and ElephantsDream at the wireless channel conditions of
γ̄ = 2dB, γ̄ = 4dB, γ̄ = 9dB, γ̄ = 14dB, γ̄ = 20dB, respectively. It can be seen
that our proposed scheme can achieve higher average PSNR values than other two base-
line schemes in all wireless channel conditions. On average, for the video sequence of
Shield, the average PSNR value achieved by our proposed scheme is approximately 1.55dB
and 2.94dB than other baseline schemes. For the video sequence of Parkrun, the improve-
ment is about 1.03dB and 2.78dB, respectively. For the video sequence of ElephantsDream,
our scheme can overwhelm the two baseline schemes by 1.10dB and 2.31dB, respectively.
Additionally, the performances of the average PSNR curves versus SINR show some dif-
ferences under different channel conditions. It can also be observed from Fig. 5 that when
SINR is with small value, in other words, when the channel condition is poor, our proposed
scheme achieves a higher improvement of PSNR than that of average SINR with high value
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Fig. 5 Average PSNR curves of our scheme and two baseline schemes for the sequence a Shield, b Parkrun
and c ElephantsDream at different channel conditions.
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Fig. 6 Download time of each segment at different channel condition

(the wireless channel quality is good). For instance, while streaming the sequence of Ele-
phantsDream at the condition of γ̄ = 4dB, the average PSNR achieved by our scheme
is approximately 1.32dB and 3.21dB higher than the MPQUIC and SSIM-CL-w-ERDO,
respectively. However, when the wireless channel quality is good, for example, at the con-
dition of γ̄ = 14dB, the improvement is just 0.80dB and 1.30dB corresponding to the
two baseline schemes, respectively. These could be due to the adaptive selected MCS mode
at the physical layers in both LTE and 802.11ac that meeting the bitrate and rebuffering
requirements for the streaming of each video segment.

Delay performance To evaluate the delay performance of the proposed scheme, the com-
parison of download time for each video segment at different channel condition between our
scheme and two baseline scheme (MPQUIC and SSIM-CL-w-REDO) is showed in Fig. 6.
We notice from Fig. 6 that when the channel condition become better, the video segment
can be downloaded in less time for all the three schemes. Furthermore, though our scheme
can achieve shorter download time performance than the SSIM-CL-w-REDO approach in
different channel condition, we note that our scheme suffer from a little higher download
time than the MPQUIC approach. MPQUIC can achieve better delay performance because
it utilizes UDP protocol at the transport layer. Instead of UDP protocol used by MPQUIC,
the TCP protocol used by our scheme or other MPTCP-based approach will introduce more
delay by the acknowledgement mechanism.

QoE To better comprehend the QoE gains obtained by our scheme, we evaluate the perfor-
mance on the individual terms in the QoE model that defined in (3). Explicitly, Fig. 7 shows
the comparison between our scheme and two baseline schemes (MPQUIC and SSIM-CL-w-
ERDO) in different channel conditions in terms of the playback bitrate utility from the first
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Fig. 7 Comparing our scheme with the baseline algorithms on the QoE metrics in terms of bitrate utility and
rebuffering penalty
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Fig. 8 The Cumulative Distribution Function (CDF) of the normalized QoE value across three different
channel conditions

term in (3), and the penalty of rebuffering from the second term in (3). More precisely, the
given QoE value can be calculated by subtracting the rebuffering penalty from the bitrate
utility.

The performance gains of our scheme contribute to the aggregated bandwidth and adap-
tive selection of MCS mode to support higher video bitrate, and the ability to try to avoid
rebuffering event from network’s bandwidth fluctuations. As shown from Fig. 7, all the
schemes obtain better bitrate utility values in the first term of (3) as the improvement of net-
work channel condition. But we also see that the achieved bitrate utility’s gap among these
three schemes will decrease as the network channel state goes better. These also can be vali-
dated by Fig. 5. With respect to rebuffering penalty, as the network state goes better, the QoE
gap among these three scheme is increasing. This indicates that the two baseline schemes
aggressively request video segment with high bitrates exceeding the network bandwidth.
These might lead to more rebuffering events. In other words, our scheme achieve a better
balance between bitrate utility and rebuffering penalty than other two baseline schemes.

Finally, we evaluate the performance of the general QoE metric defined as (3). A nor-
malized QoE metric is defined using the min-max normalization method that mapping
the original QoE value to the new data between 0 and 1. Figure 8 shows the Cumulative
Distribution Function (CDF) of the normalized QoE value across three different channel
conditions. There are two key points from these results. First, it can be seen that the percent-
age of higher normalized QoE values achieved by our scheme is higher than the baseline
schemes in all three channel conditions. Second, our scheme outperforms two baseline
schemes (MPQUIC and SSIM-CL-w-ERDO) with an improvement in average normalized
QoE of 6.5%, 8.3%, 10.2% in the channel condition of average SINR γ̄ = 4dB, γ̄ = 9dB,
and γ̄ = 14dB, respectively.

5 Conclusion and limitation

In this paper, a cross-layer DASH-based multipath video streaming scheme is proposed
to improve the performance of video streaming. Two wireless access networks, LTE and
802.11ac downlink, are utilized to achieve the bandwidth aggregation. Meanwhile, the
cross-layer method is combined with the multipath video streaming by optimizing the MCS
modes at the physical layer in each network, the video bitrate, the playback buffering and
the bitrate allocation for each segment at the application layer. Experimental results show
that our proposed scheme outperformed other state-of-the-art schemes in term of PSNR,
playback smoothness and normalized QoE.
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In contrast to MPQUIC that runs on top of UDP, the video segment download time of
our scheme is a little longer. This mainly is attributed to the TCP protocol used by our
scheme or other MPTCP-based approach which will introduce more delay by the acknowl-
edgement mechanism. In the further work, we will focus on the scheduling algorithm for
multipath video streaming over MPQUIC in order to further improve the video streaming
performance.
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