
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XX 1

Rendering-Aware VR Video Caching over
Multi-cell MEC Networks

Yanwei Liu, Member, IEEE, Jinxia Liu, Antonios Argyriou, Liming Wang and Zhen Xu

Abstract—Delivering high fidelity virtual reality (VR) video
over mobile networks is very challenging since VR applications
usually require very high bandwidth and ultra low latency.
With the evolution of 5G mobile networks, multi-cell multi-
access edge computing (MEC) networks enable low latency data
communication. However, even in this setting, the requirements of
VR applications are tough to meet. To optimize the end-to-end
latency for VR video delivery over multi-cell MEC networks,
we propose a rendering-aware tile caching scheme. As a first
step we propose collaborative tile caching in 5G MEC networks
by enabling multiple cell sites to share caches so that the
network caching performance is improved. Hence, the amount
of redundant data delivered and eventually the latency are
both significantly reduced. Second, our scheme offloads viewport
rendering of VR video to the MEC server and closely couples
this with cache placement, allowing thus the rendering-induced
latency to be reduced. Finally, a low-delay request routing algo-
rithm is integrated with the proposed cache placement scheme
to further optimize the end-to-end latency of VR video delivery.
Extensive simulation results show that the proposed rendering-
aware caching scheme can achieve better latency performance
than the state-of-the-art decoupled caching/rendering schemes.

Index Terms—VR video, Multi-cell MEC networks, Rendering-
aware tile caching.

I. INTRODUCTION

In recent years, virtual reality (VR) video has gained popu-
larity due to the exciting immersive experience that it offers.
As a result of that, VR video has been widely used to events
like exhibitions, sports, concerts and films [1]. Currently,
most VR video applications are deployed locally off-line
and very few applications obtain data remotely via network
communication. However, the increasingly powerful mobile
platforms are now already able to support VR applications. In
this context, the need for efficient wireless networking of VR
video is very urgent.

VR videos are typically characterized by larger file sizes
when compared to traditional planar video since they provide

This work was supported in part by National Natural Science Foundation of
China under Grant 61771469 and Ningbo Natural Science Foundation under
Grant 2019A610109.

Y. Liu is with Institute of Information Engineering, Chinese Academy of
Sciences, Beijing, China, 100049, China (e-mail: liuyanwei@iie.ac.cn).

J. Liu is with the Zhejiang Wanli University, Ningbo 315100, China (e-mail:
liujinxia@zwu.edu.cn).

A. Argyriou is with the Department of Electrical and Computer Engineer-
ing, University of Thessaly, Greece (e-mail: anargyr@uth.gr).

Liming Wang and Zhen Xu are with Institute of Information Engineer-
ing, Chinese Academy of Sciences, Beijing, China, 100049, China (e-mail:
wangliming@iie.ac.cn, xuzhen@iie.ac.cn)

a super high-definition (HD) 360-degree viewing experience.
The high-resolution of VR video brings a major challenge
for delivering it over the current bandwidth-limited wireless
networks. Though high efficiency video coding (HEVC) can
be used to encode VR video, compressed VR video still
has 5∼10× the data size of HD video. One of the key
differences from the traditional planar video is that VR video
is interactively viewed on a user’s head-mounted display
(HMD) by freely selecting the field of view (FoV), namely the
viewport, from a 360-degree space. During VR video viewing,
the user moves the HMD to capture the interesting objects
in any viewing direction, and thus the frequent viewport
requests require more bandwidth to deliver these time-varying
viewports.

Besides the huge amount of data, the end-to-end latency is
another practical challenge for achieving high-fidelity wireless
VR video streaming. It is well known that the Motion-To-
Photon (MTP) latency required by VR video viewing is less
than 20ms [2]. Under such a strict constraint, every element
in the end-to-end VR video processing chain that starts from
the source server and ends with the video playback should
be optimized to reduce latency. Among these elements, data
transmission and VR video processing (decoding and render-
ing at the receiver) are the two major latency sources.

To reduce the network-induced latency, content caching
must be used to push data near the end user during off-peak
hours. According to the multi-access edge computing (MEC)
paradigm [3], the content cache can be placed at the base
station. In 5G mobile networks, the MEC servers accompany
the deployment of base stations (gNBs in 5G) in multiple radio
cells. Due to the powerful computational capabilities of MEC
servers, computations related to viewport rendering can be
offloaded [4] from the user equipment (UE) to the MEC server.
Consequently the rendering operation will be accelerated and
the overall latency for viewport requests will be reduced.

Even though video caching and offloading of viewport
rendering are two ideal solutions for improving VR video
delivery performance, they are typically viewed as two in-
dependent operations. However, when rendering is enabled at
the MEC server, the rendering operation depends heavily on
the cached data. To ensure high rendering speed, the data
for the rendering operation needs to be provided quickly.
Consequently, rendering needs to be accompanied with the
cached data. Thus, cache optimization and the edge rendering
computation allocation should be closely coupled in order to
optimize the VR video delivery performance.

To facilitate fast access of viewport data in one entire frame,
VR video is usually encoded with tile partitions [5]. The tiles

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XX 2

have of course different popularity that depends on the way the
HMD moves. As for the mobile networks, multiple gNBs in
5G networks are deployed very close and form a hierarchical
multi-cell MEC network. Due to the high volume of mobile
data, the overall cache space is a limited and hence precious
resource. At the same time, the computational capabilities of
the MEC servers are also not infinite. On top of all these, the
latency requirement for viewport request is very stringent and
is quite more critical than traditional video.

Given the above issues, the key challenges for VR video
caching over multi-cell MEC networks are:

• How to predict efficiently tile popularity in VR video
caching?

• How to jointly optimize tile caching and the associated
rendering computation to enable low-latency tiled VR
video delivery over multi-cell MEC networks?

• How to route the viewport request to satisfy the low-
latency requirement as much as possible?

Motivated by the above open questions, in this paper we
propose a rendering-aware caching scheme with a low-delay
request scheduling algorithm for tiled VR video delivery over
multi-cell MEC networks. Specifically, we consider the joint
optimization of tile cache placement and viewport request rout-
ing to minimize the delivery latency of all possible requests
in the system. Although the proposed scheme has similarities
to coded caching [6], in our case we consider cooperative
cache placement among the different cache nodes that is
significant difference from coded caching. More importantly,
coded caching is not concerned with the issue of rendering
computation provisioning for reducing the VR video delivery
latency, which is the main goal of this paper. The contributions
of the paper are listed next.

First, we propose a tiled VR video cache placement scheme
in multi-cell 5G MEC networks. On one hand, we define
the tile as the basic data unit in the caching system so as
to enable rapid spatial data access capability in the whole
frame. Consequently, tile caching can quickly respond to the
interactive viewport rendering and further reduce the viewport
request latency. On the other hand, we propose a tile popularity
prediction approach based on the estimation of the tile saliency
using the Choquet integral. Next, the tiles are collaboratively
cached in the multi-cell 5G MEC network to enable the
cache node to share content and thus the network caching
performance is improved.

Second, we propose to couple tile caching with rendering.
With mobile edge computing, the rendering operation is of-
floaded to the cache server (MEC server). Then, rendering
and caching are jointly coupled to optimize the complete
multi-cell mobile edge caching system. Besides the rendering-
related cost saving, the rendering computation constraint for
each cache node is also considered in the cache placement
optimization.

Third, based on the tile-based cache placement, a low-delay
viewport request routing scheme is proposed to further reduce
the viewport delivery latency. The requests are scheduled
in a time granularity of a single request. Under the strict
constraints of latency and backhaul uplink bandwidth, the

proposed routing scheme can find the optimal cache node to
provide the viewport rendering service rapidly.

The rest of the paper is organized as follows. Section II
introduces the related work and Section III describes the
background of the asynchronous MEC-UE rendering. The
system model is given in Section IV. The proposed rendering-
aware tile caching problem over multi-cell MEC networks is
formulated and solved in Section V. Experimental results are
provided in Section VI. Finally, Section VII concludes the
paper.

II. RELATED WORK

A. VR Video Streaming

To improve VR video delivery efficiency over networks,
researchers over the last few years have proposed several VR
video streaming schemes. Existing VR streaming approaches
are typically classified into two categories. One is full-frame
VR video streaming where the complete frame data includ-
ing the standby data outside the viewport is fetched to the
user. This approach can ensure smooth viewport switching
during viewing. But this approach requires more bandwidth
for transmitting the huge data volume of the complete frame.
Another one is FoV-dependent streaming [7] [8] where only
the necessary viewport data are delivered to the user. This
approach divides the whole frame into tiles that can be chosen
flexibly and thus reduces the transmitted volume of data by
discarding the redundant tiles outside the viewport.

With network services gradually transitioning to the cloud,
the above two types of approaches have been extended to
cloud-based systems [4] for primarily exploiting the computa-
tional capabilities of the cloud. In cloud-based VR streaming,
VR video rendering is offloaded to the cloud to reduce the
rendering latency.

In recent years, 5G mobile networks embrace the paradigm
shift from centralized cloud computing towards MEC. As the
extension of cloud computing to the edge networks, MEC
technologies have achieved significant progresses [9]. MEC
has been investigated thoroughly in the context of Internet of
Things [10]. Several novel approaches were proposed to op-
timize edge applications, such as dynamic resource allocation
that considers end-user mobility [11], an approach that could
potentially give VR applications a way to adapt to the dynamic
context. To exploit the benefit of MEC, edge-assisted rendering
[12][13][14][15] was used for VR video streaming. With the
assistance of cloud or edge computing, the above-mentioned
approaches can efficiently deliver VR videos when bandwidth
is not an issue. However, when we want to deliver high fidelity
VR videos over networks that have limited bandwidth (e.g. due
to competition by multiple users), the low latency requirement
is still an unaddressed issue.

B. VR Video Caching

To reduce both the transmission latency and duplicate traffic,
in-network caching is used to copy content in servers close to
the users. As the last mile in the video transmission chain,
the mobile network is the closest link to the user end. As a
result, video caching was further extended to mobile networks.

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XX 3

Especially with the development of 5G networks, mobile
network caching has been used to reduce content delivery
latency [16][17]. Since the storage space of mobile networks
is usually limited and precious, several cache optimization
approaches in mobile networks have been proposed. In [18],
Ahlehagh et al. proposed a video-aware caching scheme in
radio access network (RAN). In [19], the caching framework
in both the evolved packet core (EPC) and the RAN of LTE
networks was designed to achieve better performance than
single-tier only caching.

In 5G systems, the heterogeneous cellular network (Het-
Net) paradigm has been identified as a promising network
architecture. In multi-tier HetNets, traffic offloading [20] via
Device-to-device (D2D) communication has been used so as
to optimize cache placement [21], while the joint design of
the transmission and caching policies was also studied in
[22]. Furthermore, as a supplement to network caching, device
caching [23][24][25] was also investigated for offloading the
base stations by reducing cellular transmissions. All the above
approaches enhance the content delivery performance through
cache optimization in wireless networks and provide us a hint
why mobile caching can be used also for VR video to reduce
the delivery latency.

Caching has been considered for VR video delivery. Follow-
ing the pioneering idea that integrated networking, caching,
and computing in wireless systems [26], edge caching and
computing for 5G VR applications were studied in [27] and
[28]. To exploit the benefits of edge computing in VR caching,
the fundamental trade-offs between caching, edge computing,
and computation-offloading-related communication cost for
VR/AR applications were discussed in [29], [30], [31] and
[32]. Given the relatively lax latency constraint, this class
of techniques optimized the viewport fidelity efficiently for
mobile VR video delivery. However, the considered scenar-
ios cannot meet the rigid MTP requirement yet in practical
applications due to the complex global system optimization
process.

Considering the particular features of VR video, several VR
video caching optimization approaches have been proposed.
In [33], an optimization scheme for tiled VR video delivery
in content delivery networks (CDN) was proposed. In this
work, network stack optimization in the CDN was proposed
as a method to reduce VR video transmission latency. In
our previous work [34], we proposed a joint EPC and RAN
caching scheme for tiled VR video. In [35], a FoV-aware
caching policy was proposed to improve caching performance.
In [36] and [37], the tile-based panoramic video caching
optimization was studied. Even though the above studies can
optimize VR video caching efficiency, they lack a cooperative
optimization that is necessary for offloading the rendering
computation in a multi-cell edge computing environment.

In content caching systems, request routing is the process of
directing client requests to the best cache servers. Obviously,
it is also a crucial procedure that affects end-to-end VR video
delivery latency. Typically, routing decisions are updated every
few minutes in the CDN [38]. To make traditional routing
algorithms suitable for VR video caching, Poirion et al. [39]
proposed a scalable request routing approach to optimize VR

video delivery. So far, this paper was the one and only study
aiming for VR video request routing. However, this approach
made routing decisions for the whole-frame VR video request
(not tile-based viewport request) in a fine-granular way and
was not concerned with viewport requests on top of tile-based
caching.

III. BACKGROUND OF ASYNCHRONOUS MEC-UE
RENDERING

Rendering offloading can reduce rendering latency by mak-
ing use of the computational resources of the MEC server.
Unlike conventional remote rendering applications that render
the displayed frame in a fixed viewpoint, VR video rendering
requires a continuously time-varying viewport rendering. Since
the viewport changes very rapidly, viewport rendering needs
to be performed frame by frame at the MEC server so as to
keep pace with the viewport changing speed.

Generally, besides the rendering operation, the necessary
processing at the MEC server related to a VR video service
includes decoding VR video and further encoding the rendered
viewport. These processing operations can be performed se-
quentially. This sequential processing sometimes cannot meet
the requirement of the MTP latency and results in missing
delivery deadlines to the HMD. To further reduce rendering
latency, parallel processing can be designed by asynchronous-
ly performing several procedures [4][40] between the MEC
server and the UE, namely asynchronous MEC-UE rendering.
This asynchronous rendering is based on the asynchronous
timewarp (ATW) and asynchronous spacewarp (ASW) [41]
techniques. Timewarp [42] works in tandem with spacewarp
to modify a rendered VR image in terms of the very latest
head tracking data. The basic principles of them are shown in
Fig. 1. Generally, timewarp generates a VR viewport frame via
a homogeneous transform based on the latest head orientation,
and spacewarp uses motion estimation and camera translation
of previous frames to predict the next viewport frame based on
the very latest head position. To increase the perceived frame
rate, the asynchronous operation is often used for timewarp
and spacewarp to make them occur on another thread in
parallel (asynchronously) with viewport rendering.

Latest

viewport

Warped image

by timewarp

Generated

viewport image

(a) Timewarp

Warped image

by spacewarp
Latest

viewport
Generated

viewport image

(b) Spacewarp

Fig. 1. Basic concept of timewarp and spacewarp

Fig. 2 illustrates the parallel processing pipeline of asyn-
chronous MEC-UE rendering. The MEC server renders the
(n+1)th frame of the viewport according to the latest viewport
position and posture information (The orientation angles along
the x, y and z axes that are called yaw, pitch and roll)
before displaying the current nth frame at UE. When the UE
receives the previously rendered viewport frame, it will be re-
projected in terms of the latest viewport posture and position.

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XX 4

MEC server

Latest viewport posture (yawn, pitchn and

rolln) and position (xn,yn, zn
)

At the nth frame

The nth frame tile

decoding

The nth frame

viewport rendering

The nth frame

viewport encoding
The nth frame viewport

The nth frame

viewport decoding

UE

If the viewport changes, send the latest

viewport posture (yawn+1, pitchn+1 and

rolln+1) and position (xn+1,yn+1, zn+1)
The nth frame viewport

re-projection

The (n+1)th frame

tile decoding

The (n+1)th frame

viewport rendering

The (n+1)th frame

viewport encoding

The nth frame viewport

displaying
The (n+1)th frame viewport

Timeline

Fig. 2. The parallel processing pipeline of asynchronous MEC-UE rendering

Cloud/Backend

server

MEC Server
BS

MEC Server
BS

MEC Server
BS

Tiled chunks

MEC Server

5GC Cache & Rendering

Cache & Rendering Cache & Rendering

Cache & Rendering

Fig. 3. VR video caching architecture over multi-cell 5G MEC networks

The re-projection is based on the combined ATW and ASW.
Specifically, the received frame is first re-projected to the latest
viewport posture with ATW and is then re-projected to the
latest viewport position with ASW.

Another aspect is that tile decoding, viewport rendering at
the cache node, and also decoding of the rendered viewport
at the UE, can all be performed in parallel [41]. Moreover,
the rendered frame will be encoded with temporal prediction
from the previously rendered frames. Temporal prediction
in the tile encoding will significantly reduce the volume of
transmitted data and consequently shorten the transmission
time of rendered data.

In one MEC server, the computational capability is also
limited. When multiple users compete for one MEC server for
viewport rendering, the rendering speed may be deteriorated
due to the computation overload. To avoid this situation, we
consider rendering-awareness in advance, that is during the
stage of cache placement so as to reserve the appropriate
computational resource for each cache node.

IV. SYSTEM MODEL

A. Network model

In 5G mobile networks, gNBs are densely deployed. This
creates a complex multi-cell environment [13] where users
are concurrently in range of multiple gNBs with overlapping
coverage. Usually, multiple MEC servers are associated with

o
S

0

1

2

i

1

2

Fig. 4. Logical topology of cache system

multi-cell gNBs and the 5G Core (5GC) network to enhance
their computational capabilities, and they thus naturally form
a two-tier serving topology in terms of their proximities to
the users. In the stand-alone (SA) 5G architecture, direct
communication between gNBs is already supported through
the Xn interface. Thus, the operator can use multiple link
paths (forwarding the content via direct communication among
gNBs) to route content to the end user. Fig. 3 shows the
system architecture of multi-cell 5G MEC networks for VR
video streaming. The multiple MEC servers in 5G networks
can cache VR video from the backend server/cloud and also
perform real-time viewport rendering tasks for the end user.

In such multi-cell environment, caches are deployed in
different RAN cells. The logical caching topology is abstracted
in Fig. 4. MEC servers that are usually deployed in two
tiers in mobile networks are used as a set of cache nodes
Γ = {0, 1, ..., i, ..., |Γ| − 1}, where |Γ| denotes the number
of total cache nodes. One tier is the User Plane Function
(UPF)/Access and Mobility management Function (AMF)
position in 5GC network and it is numbered as 0. Another tier
is located at gNBs in the multiple RAN cells and it is denoted
as i(i = 1, ..., |Γ|−1). Together with the backend source server
So, three tiers are created in the proposed caching system. For
ease of reference, the key notations introduced in the paper
are listed in Table I.

B. VR Content Model

We assume that the VR content uses a separate cache space
from the other types of content in the system. Though the
available cache space for VR video content is affected by
the volume of other types of cache data, the cache placement
performance is independent of the cache refresh ratio for all
other types of content. Given the overall cache space S for
the VR videos in the system, the set of VR videos to be
cached is denoted as K, and the number of VR videos in K is
computed as |K| = S

SV R
, where SV R is the average data size

of VR video streams. Thus, in terms of the content popularity
ranking in a descending order, the top |K| VR videos in the
rank list will be placed in the multi-cell 5G MEC network.

For VR video streaming, video frames are generally divided
into several tiles that can be decoded independently when
delivered. Tile partitioning for VR video is illustrated in Fig.
5. In the proposed caching system, the tiled streams are used

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XX 5

TABLE I
KEY NOTATIONS

Notation Definition/explanation
Π The set of chunks in one VR video
Γ The set of cache nodes in the system

li
The unit latency for transferring VR video tiles from
UPF/AMF to gNB in the ith cache node

l0
The unit latency when transferring VR video tiles from
the backend server to UPF/AMF

li,j
The unit latency when transferring VR video tiles be-
tween cells i and j

vk,m,n
τ,i

The tile at the nth row and the mth column in the τ th
chunk of the kth VR video at the ith cache node

sk,m,n
τ,i

The data size of the tile vk,m,n
τ,i before rendering at the

caching node i

R(sk,m,n
τ,i)

The data size of the tile vk,m,n
τ,i after rendering at the

cache node i

pk,m,n
τ,i The tile popularity of vk,m,n

τ,i

C(sk,m,n
τ,i)

The rendering computation costs for the tile vk,m,n
τ,i at

the caching node i
Bi The maximal storage space for the ith cache node

Ci
The computational constraint for rendering task at the ith
cache node

reqk,m,n
τ,i The request for vk,m,n

τ,i

Viewport

Tile

Fig. 5. Illustration of the tile partition

as the cache data. For the kth VR video in the caching system,
|M| × |N | tiles are obtained after the tiling process, where
M = {1, 2, ...,m, ... |M|} and N = {1, 2, ..., n, ... |N |}, and
|M| and |N | are the total tile columns in vertical dimension
and tile rows in horizontal dimension in one frame, respective-
ly. Similarly, in the temporal dimension, the tiled VR videos
were also segmented into many chunks with equal playback
length. Assume each tiled VR video is segmented into |Π|
chunks, where Π = {1, 2, ..., τ, ... |Π|} and τ is the chunk
index.

C. System Flow

Due to the limitation of the FoV of human eye, only a
small part in the whole frame is watched in one moment.
This means that only the VR video tiles covered by the
viewport are displayed on the user’s HMD in one moment.
Thus, the UE needs to interactively send the viewport request
to the server for watching the 360-degree content. In the
5GC, there is a centrally-deployed content controller, which is
connected to UPF/AMF. The content controller is responsible
for recognizing the viewport requests from UEs in each MEC
cell and then performs the routing algorithm for the user
requests. On the UE side, the UE tracks the HMD position
and posture in real-time and determines the necessary tiles for
rendering the viewport. Once the requested viewport moves
out the region of current tiles, the UE will send the new HMD
position and posture data to the content controller for next
viewport request.

When the viewport request is launched, the request will be
served by the cache node within its local cell. Once the local
cell cache node cannot satisfy the request, the request will be
forwarded to the content controller. When the request arrives
to the content controller, the controller will decide whether
the requested viewport tiles can be found in the cache system
by looking up its global view of cache content. Once the
cache nodes for serving the viewport request are determined,
the asynchronous MEC-UE rendering service will be initiated
to serve the current request. The viewport generally covers
several tiles that are possibly distributed at different cache
nodes. Thus, the UE requests simultaneously multiple tiles for
viewing a viewport. Usually, how the contents are placed at
different caching nodes is based on their request probability.
Applying this idea to tiled VR video caching, the prediction
of the popularity of each tile at different cache nodes needs
to be done first.

D. Tile Popularity Model
Given the dynamic nature of user viewport request, accurate

tile popularity prediction is of paramount importance for
caching performance. Tile popularity is closely related to the
VR video content saliency. In this subsection, we introduce the
tile popularity prediction methodology that is based on fusing
the tile saliency and the VR video popularity.

The interactive viewing nature of VR video makes its
saliency detection different from that of traditional video.
Considering both the features of the human visual system
and the viewport viewing feature in saliency estimation, in
the previous work [43] we proposed a VR saliency estimation
approach by fusing the visual frequency feature and the
viewing behavior feature. In that work, we used a normalized
and maximum fusion approach. Though the used fusion ap-
proach showed that it can achieve good performance, it cannot
fully exploit the inter-dependency among the two features
towards building the final saliency map. By taking into account
the advantage of the Choquet integral [44] in non-additive
measurements, in this work we propose to use this Choquet
integral to fuse the visual frequency feature and the viewing
behavior feature when performing saliency estimation, and
then predict the popularity of each tile. The pipeline of tile
popularity prediction is illustrated in Fig. 6.

1) Choquet Integral: The Choquet integral [44] has been
shown to be an effective nonlinear aggregation tool for
information fusion. Its non-additivity of the signed fuzzy
measure is able to effectively capture the interaction among
the contributions of feature attributes to the objective attribute.
Let Z = {z1, z2, · · ·, zh} be a set of feature attributes (i.e.
the factors contributing on saliency), where h is the number
of feature attributes. Assume the attribute data consists of ℓ
observations f1, f2, · · ·, fℓ of feature attributes z1, z2, · · ·, zh
and the objective attribute yo (such as the final saliency). Each
observation of z1, z2, · · ·, zh can be regarded as a transform
function f : Z → (−∞,+∞). Correspondingly, the jth
observation of z1, z2, · · ·, zh is denoted by fj , and we write
fji = fj(zi) where 1 ≤ i ≤ h and 1 ≤ j ≤ ℓ.

In the Choquet integral model, the inter-dependency among
the feature attributes Z contributing to objective attribute yo

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XX 6

VR video

Visual frequency feature map Viewing behavior feature map

Tile saliency map VR video popularity

Tile popularity in VR video

Choquet integral

Fig. 6. Tile popularity prediction pipeline

is characterized by a set of functions µ : P (Z) → ℜ with
µ(∅) = 0, where P (Z) is the power set of Z, and ℜ is the
real number. Furthermore, the interaction among Z towards
yo can be expressed as a multi-regression form [45],

yo = e+

∫
(c)

fdµ+ ε (1)

where e is a constant and ε is a normally distributed ran-
dom perturbation following N(0, δ2) with expectation 0 and
variance δ2. For the given set function µ and function f , the
integral in (1) is calculated as∫

(c)

fdµ =

2h−1∑
j=1

(ωj · µj) (2)

where µj denotes the fuzzy measurement and ωj denotes the
corresponding contribution coefficient of µj in the whole in-
tegral. Let Hj= min

i:frc(j

2i
)∈[12 ,1)

(f (zi))− max
i:frc(j

2i
)∈[0, 12)

(f (zi)),

where frc(j
2i) is the fractional part of j

2i and the maximum
operation on the empty set is zero, and then

ωj =
{

Hj , if Hj > 0 or j = 2h − 1
0, otherwise

(3)

2) Tile Saliency Prediction: We differentiate from the tra-
ditional saliency detection approach, by extracting the spatial
frequency information in the viewport plane. Based on the
Difference-of-Gaussian (DoG) model [43] in the viewport
plane, the visual responses of the human eye on viewports are
captured and then the center-surround contrast of them over
the whole panoramic image is computed. Finally, the visual
frequency feature map for saliency detection is obtained with
high accuracy.

In the 360-degree space, the popularity of different FoVs
is affected by the human viewing habits [46]. The viewing
probability for each latitude over the 360-degree VR image
generally follows a Gaussian distribution [43]. Hence, the

viewing behavior feature map is attained by fitting a Gaussian
model using the users’ head motion data that are known in
advance.

Together with the visual frequency feature map, the two fea-
ture maps are considered as feature attributes zi (i = 1, ..., h)
towards the final saliency map. After that, the Choquet integral
transform in (1) is used to fuse the two feature maps to form
the saliency map of each VR image.

By having each pixel saliency in one saliency map, the
average saliency value υ̂k,u,m,n over all pixels in the tile
υk,u,m,n of the uth frame in one chunk is computed. Assume
that vk,m,n

τ denotes the tile at the nth row and the mth column
in the τ th chunk of the kth VR video and the chunk includes
L frames. The average saliency over the L frames in vk,m,n

τ

is ῡk,m,n
τ = 1

L

L∑
u=1

υ̂k,u,m,n, and it is used to compute the

saliency of the tile at the nth row and mth column in the τ th
chunk of the kth VR video as,

pk,m,n
τ =

ῡk,m,n
τ∑

m∈M

∑
n∈N

ῡk,m,n
τ

(4)

3) Tile Popularity Prediction: Same as the conventional
video, the VR video popularity also follows the Zipf law
[47]. The kth VR video’s popularity at the ith cache node
is described as

pki = β/γα
i,k (5)

β = (

|K|∑
k=1

γ−α
i,k)−1 (6)

where α ≥ 0 is the parameter of Zipf model and γi,k is the
rank of the kth VR video in K at the ith cache node. Let pk,m,n

τ,i

be the popularity requested from the ith cache node for the
tile at nth row and mth column in the τ th chunk of the kth
VR video and pki the popularity of kth VR video requested
from the ith cache node, then we have

pk,m,n
τ,i = pki × pk,m,n

τ (7)

Usually, the knowledge of video popularity is obtained from
the complete frame content. However, for VR video, tiles are
requested depending on how the viewport is viewed and so
the popularity difference among tiles in the spatial domain is
not captured by the traditional video popularity model. The
proposed tile popularity prediction model in (7) uses the tile
saliency distribution to predict the viewport content popularity
based on the complete frame video popularity.

By using practical viewport request data available in [48],
we measured the accuracy of the proposed tile popularity
model. Fig. 7 shows the average correlation between the
actual tile rank and the predicted one for each category of
VR videos. The three categories of VR videos including
(i) Computer-Generated, fast-paced (CG(Fast)), (ii) Natural
Image, fast-paced (NI(Fast)) and (iii) Natural Image, slow-
paced (NI(Slow)) are used. The rank correlation in Fig. 7
verifies that the proposed tile popularity prediction model can
obtain a accuracy larger than 0.75, and thus can be used to
guide the tile cache placement optimization.

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XX 7

CG(Fast) NI(Fast) NI(Slow)
Category

0.6

0.7

0.8

0.9

1

R
an

k
co

rr
el

at
io

n

Fig. 7. Tile popularity prediction accuracy

V. PROBLEM FORMULATION AND SOLUTION

For VR video streaming, caching at the edge of mobile
networks is a crucial procedure for reducing the end-to-end la-
tency. Hence, VR video caching should be carefully optimized
under the storage and computation constraints of multiple
MEC servers. Traditional VR video caching approaches deal
with data caching and viewport rendering as two independent
procedures. Namely, the tiles are cached at different MEC
servers during the cache placement stage and the rendering
operation is performed on the UE during the viewport request
stage. When the rendering computation is offloaded to the
MEC server, the viewport rendering and tile caching can be
also done separately at the MEC server, and the rendering
service placement can also be optimized by allocating compu-
tational resources among different MEC servers from a global
perspective. However, such global optimization will increase
the latency for transferring the rendering-dependent data a-
mong gNBs. To avoid this additional latency, we propose to
couple tile caching with rendering, and consider the rendering
optimization during the tile cache placement stage. To this
aim, we design a rendering-aware tile caching scheme. With
this idea, computational resources are optimized locally for
each MEC server. As rendering is coupled with caching at the
same MEC server, it does not introduce additional processing
latency.

In the proposed caching system, the cache nodes automati-
cally place or update the VR video tiles according to the cache
placement optimization algorithm. With our optimization, the
VR video tiles within each user viewport are more likely to
be cached near the UE. Once a viewer requests a VR video
viewport, the cell cache node will check whether the requested
viewport tiles already exist in the cell cache. If the requested
data is available, the cache node in the local cell will serve the
request by transmitting the rendered viewport data to the UE.
If the requested data is not available locally in this cell, the
request will be transferred to the UPF/AMF cache node and
other cell cache nodes for checking whether they have cached
the VR video tiles that are being requested. If they are cached,
the cache node with the minimal bandwidth cost will serve the
request. Specifically, the VR video tiles will be rendered into
the viewport data and then transmitted to the corresponding
cell, and finally transmitted to UE. If none of the cache nodes
had already cached the requested tiles, the request can only
be served by the source server on the Internet.

Note that the proposed rendering-aware caching systems
are essentially networks of interconnected caches. Caching

optimization needs to decide which cache node to cache what
VR video tiles and how to route the user’s viewport request
to the cache node where the requested item is available.
Therefore, two sets of optimization variables need to be
decided. One is a 0-1 cache placement decision variable xk,m,n

τ,i

that indicates whether the VR video tile vk,m,n
τ,i in the kth VR

video is cached in the cache node i. If node i had already
cached the tile vk,m,n

τ,i , xk,m,n
τ,i = 1; otherwise xk,m,n

τ,i = 0.
Another is the 0-1 variable yk,m,n

τ,i,j , (i ̸= j), and it indicates
whether the request reqk,m,n

τ,i at the ith node is routed to the
jth node. If the reqk,m,n

τ,i is satisfied by the local cache node
i, yk,m,n

τ,i,i =1. Otherwise yk,m,n
τ,i,i =0. For all the video tiles in

the system, the cache placement and request routing decision
vectors are given as

x = (xk,m,n
τ,i ∈ {0, 1} : τ ∈ Π, i ∈ Γ, k ∈ K,m ∈ M, n ∈ N)

(8)
y =(yk,m,n

τ,i,j ∈ {0, 1} : τ ∈ Π, i ∈ Γ, j ∈ Γ\{0, i},
k ∈ K,m ∈ M, n ∈ N)

∪ (yk,m,n
τ,i,i ∈ {0, 1} : τ ∈ Π, i ∈ Γ\{0}, k ∈ K,

m ∈ M, n ∈ N)

∪ (yk,m,n
τ,i,0 ∈ {0, 1} : τ ∈ Π, i ∈ Γ, k ∈ K,

m ∈ M, n ∈ N)

(9)

where yk,m,n
τ,i,0 indicates whether the request reqk,m,n

τ,i at the ith
node is routed to the UPF/AMF cache node.

The rendering-aware cache placement and request routing
optimization need to satisfy several constraints. First, the user’s
viewport request needs to be routed to one of the cache nodes
or the backend server, and thus

{
∑

j∈Γ\{0,i}

yk,m,n
τ,i,j }+ yk,m,n

τ,i,i + yk,m,n
τ,i,0 ≤ 1, ∀i ∈ Γ,

∀τ ∈ Π, ∀k ∈ K,∀m ∈ M,∀n ∈ N
(10)

Second, the request can only be routed to the cache node
where the requested item is available,

yk,m,n
τ,i,j ≤ xk,m,n

τ,j , ∀i ∈ Γ\{0}, ∀j ∈ Γ\{0, i}, ∀τ ∈ Π,

∀k ∈ K, ∀m ∈ M, ∀n ∈ N
yk,m,n
τ,i,i ≤ xk,m,n

τ,i , ∀i ∈ Γ\{0}, ∀τ ∈ Π, ∀k ∈ K,

∀m ∈ M, ∀n ∈ N
yk,m,n
τ,i,0 ≤ xk,m,n

τ,0 , ∀i ∈ Γ, ∀τ ∈ Π, ∀k ∈ K,

∀m ∈ M, ∀n ∈ N

(11)

Third, the total amount of VR videos that are placed in each
MEC server should be no more than its storage limitation,∑

τ∈Π

∑
k∈K

∑
m∈M

∑
n∈N

sk,m,n
τ,i · xk,m,n

τ,i ≤ Bi, ∀i ∈ Γ (12)

where Bi is the maximal storage space for the ith cache node.
Fourth, the total rendering computations that users concur-

rently request can not exceed the computational capability of
each cache node and this constraint explicitly embodies the ad-
ditional rendering-aware function compared to the traditional

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XX 8

cache placement approach,∑
τ∈Π

∑
k∈K

∑
m∈M

∑
n∈N

ηi · C(sk,m,n
τ,i) · xk,m,n

τ,i ≤ Ci, ∀i ∈ Γ

(13)
where ηi denotes the ratio of concurrent rendering requests
for all cached tiles in the ith cache node, Ci denotes the
computational constraint for rendering task at the ith cache
node, and C(sk,m,n

τ,i) denotes the rendering computation costs
for the tile vk,m,n

τ,i at the ith cache node.
To formally capture this proposed VR video caching prob-

lem, let us denote as li the unit latency for transferring VR
video tiles from UPF/AMF to gNB in the ith cache node, l0 as
the unit latency when transferring tiles from the backend server
to UPF/AMF and li,j as the unit latency when transferring tiles
between cells i and j. According to the content placement
strategy, there are four ways to fetch a viewport for viewers:
i) If the cache node i can satisfy the request from UE locally
for the tile vk,m,n

τ,i , the unit latency saving is l0+li, and l0 ̸= 0,
li ̸= 0; ii) If the request cannot be satisfied by cell node i but
can be satisfied by the other cache nodes in adjacent cells, for
instance node j ∈ Γ\{i, 0}, the unit latency savings can be
written as l0 + li − li,j and li,j ̸= 0; iii) If the request can
be satisfied by the UPF/AMF cache node in 5GC, the unit
latency saving is l0; iv) If the request can only be satisfied by
the backend server on the Internet, the unit latency saving is
0.

More specifically, when the request reqk,m,n
τ,i at the ith node

is satisfied by the UPF/AMF cache node in the 5GC, the
unit latency saving is l0 · yk,m,n

τ,0 . Similarly, when the request
reqk,m,n

τ,i is satisfied by another cell gNB j, the maximal unit
saving latency is max

j∈Γ\{i, 0}
{(l0 + li − li,j) · yk,m,n

τ,i,j }.

For all the requests in the system, the objective of the
rendering-aware VR video caching problem is to find the joint
tile cache placement and routing policy by maximizing the
overall latency savings when compared to obtaining VR video
from the source server:

P1 : max
x,y

∑
τ∈Π

∑
k∈K

∑
i∈Γ

∑
m∈M

∑
n∈N

Θk,m,n
τ,i (14)

s.t. constraints (8)− (13)

where
Θk,m,n

τ,i =R(sk,m,n
τ,i) · [yk,m,n

τ,i,i (l0 + li) + (1− yk,m,n
τ,i,i)

·max{ max
j∈Γ/{i, 0}

{(l0 + li − li,j)y
k,m,n
τ,i,j }, l0 · yk,m,n

τ,i,0 }]

(15)

where R(sk,m,n
τ,i) denotes the data size of tile vk,m,n

τ,i after
rendering.

Eq.(14) formulates the joint rendering-aware tile cache
placement and viewport request routing problem. It is an
integer problem that is typically hard to solve. Moreover, the
above formulation assumes the updating of viewport request
routing and the tile cache placement are with the same
timescale. This assumption is not consistent with the practical
case and it also can not satisfy the extremely stringent latency
requirement of VR applications. Usually, tile cache placement
and viewport request routing occur at different stages and
also with different time granularity. The tile cache placement

is updated in longer timescales, while the viewport request
routing is updated in a very short time span. Hence, we
propose a two-stage optimization so as to first optimize the
rendering-aware tile cache placement sub-problem, and then
optimize the request routing sub-problem given the tile cache
placement solution that is previously obtained.

A. Rendering-aware Cache Placement

The tile cache placement policy directly affects the tile
delivery latency. Following the formulation of P1, the objective
of tile cache placement is still to maximize the latency
savings for all the tile requests. However, during the tile cache
placement stage both the requests and their routing policies
are not known. Consequently, in the formulation of tile cache
placement, we have to assume that the tiles are probably
requested based on their popularity. Moreover, the request is
assumed to be routed to the cache node where the hit tile can
be delivered with maximal saving latency (when compared to
obtaining VR video from the source server).

Assume that the latency saving Lk,m,n
τ,i when the request for

the tile vk,m,n
τ,i at node i is satisfied by the UPF/AMF cache

node is given by

Lk,m,n
τ,i = l0 · xk,m,n

τ,0 (16)

Also, the maximal saving latency Dk,m,n
τ,i,j when the request

for the tile vk,m,n
τ,i at node i is hit in another cell gNB j is

defined as

Dk,m,n
τ,i,j = max

j∈Γ\{i, 0}
{(l0 + li − li,j)x

k,m,n
τ,j } (17)

and it indicates the request for the tile vk,m,n
τ,i from UE

connecting to cache node i is transferred to cache node j.
Differently from P1, we consider the overall latency savings

for all the possible requests (when compared to obtaining VR
video from the source server) as the objective function for the
tile cache placement problem. It is calculated as

Ψ =
∑
τ∈Π

∑
k∈K

∑
i∈Γ

∑
m∈M

∑
n∈N

ϕk,m,n
τ,i (18)

with

ϕk,m,n
τ,i =pk,m,n

τ,i ·R(sk,m,n
τ,i)[xk,m,n

τ,i · (l0 + li)

+ (1− xk,m,n
τ,i) ·max{Lk,m,n

τ,i , Dk,m,n
τ,i,j }]

where pk,m,n
τ,i denotes the popularity (also indicates the re-

quest probability) of the tile vk,m,n
τ,i at the ith cache node.

Thus, when considering rendering-aware caching, the render-
ing computational resource is considered to be a constraint for
cache placement. By maximizing the latency saving under the
storage and computational constraints for each cache node, the
tile cache placement problem can be formulated as

P2 : max
x

Ψ (18)

s.t. constraints (8), (12) and (13)

where x is a vector indicating the tile cache placement solution
for P2.

Problem P2 is a typical Multi-Knapsack Problem (MKP)
that is NP-hard and remarkably complex. To solve it we have

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XX 9

to apply relaxation and decompose the complex P2 into a
series of standard single knapsack problems. The upper bound
of P2 can be attained by solving the subproblems in a parallel
fashion.

The Lagrangian relaxation of P2, relative to a nonnegative
vector (λi ≥ 0), is defined as

P3 : max
x

Φ(x,λ) (19)

s.t. constraints (8) and (12)

where

Φ(x,λ) (20)

=
∑
τ∈Π

∑
k∈K

∑
i∈Γ

∑
m∈M

∑
n∈N

ϕk,m,n
τ,i

−
∑
i∈Γ

λi · [
∑
τ∈Π

∑
k∈K

∑
m∈M

∑
n∈N

(ηi · C(sk,m,n
τ,i) · xk,m,n

τ,i)− Ci]

=
∑
i∈Γ

{
∑
τ∈Π

∑
k∈K

∑
m∈M

∑
n∈N

[ϕk,m,n
τ,i − λi · (ηi · C(sk,m,n

τ,i) · xk,m,n
τ,i)]}

+
∑
i∈Γ

λiCi

and λ = (λ0, ...λi, ..., λ|Γ|−1) with λi indicating the ith dual
variable. The optimal value of P3 gives an upper bound of the
optimum value of P2 for arbitrary nonnegative λi. To solve P3,
the approximately optimum value of λi needs to be obtained
first. Then, the Lagrangian dual problem is given by

P4 : min
λ

Φ(x,λ) (21)

and the approximately optimal λi can be achieved by a sub-
gradient method [49]. Assume that hk,m,n

τ,i = ϕk,m,n
τ,i −λi ·(ηi ·

C(sk,m,n
τ,i) ·xk,m,n

τ,i), the ith sub-problem (the decomposed ith
standard single knapsack problem) is given as

max
x

∑
τ∈Π

∑
k∈K

∑
m∈M

∑
n∈N

hk,m,n
τ,i (22)

s.t. constraints (8) and (12)

Let us denote the maximal value of∑
τ∈Π

∑
k∈K

∑
m∈M

∑
n∈N

hk,m,n
τ,i for the ith single knapsack problem

as πi, the upper bound of the original multiple knapsack
problem P2 can be attained as

∑
i∈Γ

(πi + λi · Ci). Next, the

branch and bound [50] algorithm that includes branching,
fathoming, and bounding is used to seek the optimal solution
for P2. During the bounding stage, Lagrangian relaxation is
used at each node of the search tree to provide an upper bound
so as to discard the subset of solutions that cannot possibly
contain an optimal one. Moreover, a heuristic procedure for
determining the lower bound is also used to evaluate and
prune the solution branches [51]. The details of the algorithm
follow the one described in chapter of 6.4.3 in [51] and are
thus omitted.

For the proposed solution, its computational complexity
comes largely from the branch and bound algorithm. The
branch and bound algorithm uses an enumeration of the search
space and so it has an exponential time complexity in the
worst case. However, it is efficient in the average case because
many branches can be terminated very early with the upper
and lower bounds. It is difficult to formulate the average-case

complexity due to its dynamic termination of the search. Thus,
we evaluate the average-case complexity of the proposed tile
cache placement schemes in terms of the actual running time
in the following Section VI.

Algorithm 1: Low-delay request routing

Input: Request
∑

m∈Mv

∑
n∈Nv

reqk,m,n
τ,i

Output: Request routing decision
1 for m ∈ Mv do
2 for n ∈ Nv do
3 if The request reqk,m,n

τ,i is found locally in the ith
caching node then

4 The ith caching node renders the viewport
data rk,m,n

τ,i

5 yk,m,n
τ,i,i =1;

6 else
7 while The cache controller discovers the

request reqk,m,n
τ,i from the ith cache node do

8 if Request reqk,m,n
τ,i is found in the

caching system by looking up the global
cache view then

9 Select the best proximal cache node
pb (pb ̸= i) in terms of Eq. (24) to
render viewport data rk,m,n

τ,i

10 Bu
i = Bu

i − R̂(sk,m,n
τ,i)

11 yk,m,n
τ,i,pb

=1, (pb ̸= i);

12 else
13 Select the backend server to render

the request for viewport data rk,m,n
τ,i

14 Update the available bandwidth for all cache
nodes

B. Low-delay Viewport Request Routing
In the formulation of P1, the objective is to maximize

the overall latency savings for delivering all the cached tiles.
For the viewport request routing problem, this objective with
such global optimization is not suitable for the practical
VR delivery applications. VR video requests are significantly
different from those of traditional video. Usually, the user
interactively requests the viewport and the request changes
frequently. The high dynamic requests demand a rapid re-
sponse at the cache server, that is a very tight latency bound on
the viewport request routing. However, the viewport request
routing optimization in P1 is a global optimization for a
relatively long time-span. More specifically, video request
routing periodically performs a globally optimized scheduling
of the aggregated requests by considering the cache node
workload and the network conditions. This type of request
routing requires more time to aggregate requests, which means
significant waiting latency. Thus, globally optimized routing
cannot meet the VR latency requirement.

To satisfy the viewport request latency, a straightforward
way is to make routing decisions on the time granularity of

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XX 10

each request. This is a locally optimized approach and request
routing decisions are sequentially made for each request. After
the request reqk,m,n

τ,i is launched, the request will be served
locally by the ith cache node. Once the ith cache node cannot
satisfy the request, it will be forwarded to content controller
and the the content controller will discover the best proximal
cache node to serve the request from its global view of the
content placement.

Let P k,m,n
τ,i,j = max

j∈Γ/{i, 0}
{(l0 + li − li,j)y

k,m,n
τ,i,j ·R(sk,m,n

τ,i)}

and Qk,m,n
τ,i,0 = l0 ·yk,m,n

τ,i,0 ·R(sk,m,n
τ,i). By maximizing the saved

latency cost relative to obtaining VR video from the backend
server, the problem of seeking the best proximal cache node
for each request is formulated as

max{P k,m,n
τ,i,j , Qk,m,n

τ,i,0 } (23)

s.t. yk,m,n
τ,i,j ≤ xk,m,n

τ,j , ∀i ∈ Γ\{0}, ∀j ∈ Γ\{i}, ∀τ ∈ Π,

∀k ∈ K, ∀m ∈ M, ∀n ∈ N∑
j∈Γ\{i}

yk,m,n
τ,i,j ≤ 1, ∀i ∈ Γ\{0}, ∀j ∈ Γ\{i}, ∀τ ∈ Π,

∀k ∈ K, ∀m ∈ M, ∀n ∈ N

where the first constraint indicates that a tile request can
be routed to the jth cache node only when it has already
cached the requested tile and the second constraint imposes
the condition that one request must be directed to at most one
cache node.

Eq. (24) is easily solved by an exhaustive search algorithm.
Considering the request load changes, the uplink bandwidth of
the cache node is updated on-time after initiating the viewport
request. The specific low-delay per request routing algorithm
is shown in Algorithm 1. In Algorithm 1, Bu

i denotes the
available uplink bandwidth of the cache node i and R̂(sk,m,n

τ,i)

denotes the bit-rate of the rendered viewport data rk,m,n
τ,i that

corresponds to the tile vk,m,n
τ,i . For each request, the exhaustive

search algorithm has to check every single tile in the requested
viewport. Thus Algorithm 1 requires a time complexity of
O(|Mv| · |Nv|), where Mv and Nv are the sets of tile column
indexes in vertical dimension and tile row indexes in horizontal
dimension respectively in one viewport request.

For mobile applications, the UE may possibly move. When
the UE moves out the coverage of its local gNB, the proposed
routing algorithm can easily adapt to the UE handover process
among gNBs. Once the UE switches between the gNBs during
the serving period of one request, the request routing will be
activated by default to re-select the suitable cache node to
continue to serve the current request.

VI. EXPERIMENTAL RESULTS

To evaluate the performance of the proposed rendering-
aware caching scheme, a detailed custom MATLAB simu-
lation tool was developed. The VR video clips in Youtube
[52] [53] and SJTU Media Lab [54] were downloaded for
simulating tile caching. The videos with 4K (3840×1920)
or 8K (7680×3840) spatial resolution were encoded with
tiles in HEVC [55]. The VR video popularity follows a Zipf
model. The tile popularity for each VR video was estimated

by the saliency-assisted approach. To make the tile popularity
estimation more accurate, the chunk playback length was set
to 1 second in the experiment.

During the simulation, besides the 5GC cache node, we
considered a multi-cell MEC network with 36 gNBs that are
regularly deployed on a grid network inside a 1000m×1000m
area, where each gNB covers a circular region of 150m radius.
One gNB is accompanied with one MEC server. In this setting,
one MEC server has at least three adjacent MEC servers for
transferring the tile request. For each gNB, 802.11ad link
model [56] was used to simulate the new radio features in
5G system. Based on practical measurements, the uplink and
downlink bandwidths were set to 500Mbps and 1500Mbps,
respectively.

The VR video tiles are usually concurrently requested,
while both the amount and the accumulation speed of requests
directly reflect the payload of the cache node. To accurately
characterize the payload on each cache node, we modeled the
request queuing process. We also assumed 50000 potential
requests of viewports (One VR video clip may incur a lot of
viewport requests) that follow Poisson arrival and departure
model with mean inter-arrival time of 3ms. The number of
concurrent active requests was estimated by an M/M/∞
queuing model [57] that follows Little’s theory [58] with
Nv = λv ·Ta, where Ta is the request active time (denotes the
duration time that the request keeps unchanged) and 1/λv is
the mean request inter-arrival time.

Viewport requests for each video were simulated from
traces. The traces were recorded from the 32 viewers for
watching the VR test video [53]. For each request in the trace,
the rendering time, rendering-related encoding and decoding
time were also recorded. We assume that the computed da-
ta volume for rendering (given in bits) in one CPU cycle
on the MEC server is Zb and the computational capability
(cycles/second) of MEC server CPU is Zc. Accordingly, the
rendering computational capability of MEC server is Zb · Zc

(bits/second), and thus it can be indirectly characterized by
the rendering time (given in seconds). The actual trace data of
the rendering time were scaled to those of the MEC server to
accurately simulate the impact of MEC on rendering speed.
The detailed parameters in the simulations are shown in Table
II. Since the network was assumed to not be congested during
the stage of cache placement, the fixed delay parameters
l0, li and li,j in Table II were used. However, during the
request routing stage, these delay parameters were dynamically
estimated in terms of the available bandwidth.

In the proposed Rendering-Aware Caching with Offload-
ed Rendering plus Low-delay request routing (RAC-OR-L)
scheme, the caching result is obtained by solving (19) and
then the low-delay routing algorithm is used for each viewport
request. We also considered a decoupled rendering and caching
scheme as a reference since it is usually adopted by state-
of-the-art VR video caching systems. In addition, the widely
adopted Most Popular Content (MPC) [59] caching policy
was also used for comparison. Regarding routing, the scalable
request routing algorithm [39] with batch processing was used
for comparison. In this way, a batch of viewport requests are
directed towards the best proximal group of servers based on

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XX 11

TABLE II
SIMULATION PARAMETERS

Parameters Values
Viewport size 1200×1080

Tile size 384×240
Chunk length 1s

RAN cache number 36
Cache size per base station Bi 10G

UE number per base station varying from 10 to 100
Zipf model parameter α 0.8

l0 100ms
li 10ms
li,j varying from 2 to 8 ms
Ci 1440s
ηi varying from 0.2 to 0.4
Zc 50GHz
Zb 1Mb

Downlink bandwidth for each node 1500Mbps
Uplink bandwidth for each node 500Mbps

Request arrivals Poisson, mean inter-arrival time per request = 3ms
Request active time 200ms

a coarse granularity of time slot. In this paper, we assume that
the routing time slot length in scalable routing algorithm is 10
ms for aggregating each batch of viewport requests.

Thus, except the proposed scheme, a total of four baseline
schemes were simulated:

• Decoupled Rendering and Caching with Offloaded Ren-
dering plus Low-delay request routing (DRC-OR-L): In
this scheme, the caching result is obtained by solving
an optimization problem similar to (19) without the
constraint (13), and in the optimization objective, the
data size sk,m,n

τ,i of the tile before rendering (not the size
of rendered data) is used. During the delivery stage, the
delivered data are the already rendered viewport data.

• Independent Caching for each node with Local Rendering
plus Low-delay request routing (IC-LR-L): Contrary to
the DRC-OR-L scheme, the IC-LR-L scheme caches the
tiles without cooperation among multiple MEC servers.
Rendering is performed on the UE and the delivered
viewport data are the tiled chunk data.

• MPC caching with Local Rendering plus Low-delay re-
quest routing (MPC-LR-L): This scheme caches VR video
tiles by applying the MPC strategy for each MEC server
and rendering is performed on the UE.

• Rendering-Aware Caching with Offloaded Rendering plus
Scalable request routing (RAC-OR-S): Contrary to the
proposed RAC-OR-L scheme, scalable request routing is
used in this scheme.

To evaluate the proposed caching scheme in more detail, we
first focus on the evaluation of cache placement by comparing
our proposed scheme with the first three baseline schemes
using the same request routing approach. Afterwards, we com-
pare our proposed low-delay viewport request routing scheme
with the fourth baseline scheme to assess the performance of
viewport request routing.

A. Caching Performance

Impact of tile size. Usually, the tile size affects not only
the amount of data, but also the random access flexibility of

the viewport data in the whole frame. To capture the variation
of tile sizes we define a parameter ϑ = ST /SV , where ST

denotes the tile size and SV denotes the viewport size. In
our simulation, 4K VR video was segmented into 1×1 (full
frame), 6×4 (that means the full frame will be segmented
into 6 tiles horizontally and 4 tiles vertically), 8×6, 10×8 and
12×10 tiles. We measured the changes of the cache hit rate and
viewport request latency under different cache capacity ratios
that indicate different cache spaces. Fig. 8 shows the obtained
results with the cache capacity ratio of 0.6. In Fig. 8, the value
of 5.68 for a tile size ratio means the tile is the whole frame.
Fig. 8(a) shows the cache hit rate changes for different tile
size ratios. It can be seen from Fig. 8(a) that the best tile size
ratio is approximately 0.07 (corresponding to the 10×8 tile
partition for 4K VR video) because it reached an approximate
trade-off between the tile’s data size and the viewport access
flexibility in the entire frame and consequently achieved the
highest cache hit rate and the smallest MTP among all the
candidate tile size ratios. When the tile size ratio is up to 0.05,
the cache hit rate decreases since the corresponding number of
tiles covering viewport increases and it results in a significantly
negative effect on the cache hit rate. For the four scenarios,
the cache hit rate varies slightly when the same tile size is
used. The proposed scheme responds successfully to a higher
number of requests at the higher system load so that it achieves
a slightly higher cache hit rate than the other three schemes.

In Fig. 8(b), latency varies significantly for different tile
sizes. Large cache hit rate reduces the requests to the backend
server and accordingly leads to the short latency value. At
this point, the results in Fig. 8(b) are in line with those of Fig.
8(a). The latency performance at the tile size ratio of 0.07
is the best among all the candidate tile sizes. Moreover, in
these simulations, only the proposed rendering-aware caching
scheme for several tile sizes can satisfy the requirement that
MTP is less than 20ms. It indicates that coupling rendering and
caching at the MEC server can significantly reduce latency.

Impact of cache capacity and rendering computational
capacity. Fig. 9(a) shows the latency performance for different
cache capacity ratio. It can be seen from Fig. 9(a) that, the

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XX 12

5.68 0.95 0.24 0.07 0.05
0

0.2

0.4

0.6

0.8

C
ac

he
 H

it
 R

at
e

MPC-LR-L
IC-LR-L
DRC-OR-L
Proposed

(a)

5.68 0.95 0.24 0.07 0.05
0

20

40

60

80

100

A
ve

ra
ge

 M
T

P
 (

m
s)

MPC-LR-L
IC-LR-L
DRC-OR-L
Proposed

(b)

Fig. 8. Caching performance for different tile sizes

average MTP for viewport requests is gradually decreasing
with a higher cache capacity for all four schemes. IC-LR-
L achieves similar poor latency performance with the MPC-
LR-L scheme. Besides the fact that MPC-LR-L and IC-LR-
L achieve slightly lower cache hit rate than the other two
schemes, there are two additional reasons for the poor MTP.
On one hand, the local rendering on the UE for either MPC-
LR-L or IC-LR-L takes more time than rendering on the MEC
server. On the other hand, both the MPC-LR-L and IC-LR-L
approaches deliver the entire chunk that is used for rendering,
while the other two schemes deliver only the already rendered
and requested viewport data. Since viewport switching usually
occurs at a frame in the chunk, the remaining frames from the
switching point that has been already fetched will be no longer
useful for the current viewport. Consequently, with frequent
viewport switching, the delivery time for either MPC-LR-L or
IC-LR-L is typically longer than that of the other two schemes.

In Fig. 9(a), we notice that the proposed RAC-OR-L scheme
reduces the latency approximately 6ms on average over the
DRC-OR-L scheme for several cache capacity ratios. In fact,
caching and rendering are only two elements among many
latency sources in the entire VR delivery chain. Since the MTP
usually requires the delivery latency to be less than 20ms, even
one millisecond latency reduction is very helpful. In such case,
the reduction of 6ms latency indicates that the benefit of the
proposed scheme is significant.

Fig. 9(b) shows the latency performance for different ren-
dering computational capacity ratio. The cache capacity ratio
is set to 0.6. The average MTPs of viewport requests for the
proposed RAC-OR-L and DRC-OR-L schemes in Fig. 9(b)
are slowly decreasing with a higher rendering computational

capacity. Moreover, no matter how much the rendering compu-
tational capacity is, the proposed RAC-OR-L scheme obtains
better latency performance than the other two schemes. At
the low rendering capacity regime (around 0.2 of rendering
capacity ratio), the benefit from rendering-awareness when
compared to DRC-OR-L is significant (at least reducing 10ms
latency). Since the MPC-LR-L and IC-LR-L schemes render
the video frame on the UE, they are not affected by the
rendering computational capacity of MEC server and maintain
a constant MTP over the different rendering capacity ratios.

0.2 0.4 0.6 0.8
Capacity Ratio

0

20

40

60

80

100

120

A
ve

ra
ge

 M
T

P
(m

s) Proposed
DRC-OR-L
IC-LR-L
MPC-LR-L

(a)

0.2 0.4 0.6 0.8
Rendering Capacity Ratio

0

20

40

60

A
ve

ra
ge

 M
T

P
(m

s)

Proposed
DRC-OR-L
IC-LR-L
MPC-LR-L

(b)

Fig. 9. Caching performance for different cache and rendering capacities

Impact of Zipf parameter. The Zipf parameter directly
affects the popularity of VR videos and as a result the
popularity of tiles for each VR video. Fig. 10 shows the
impact of the Zipf parameter on caching performance. It
can be seen from Fig. 10 that both the latency cost savings
and the cache hit rates for the three schemes achieve higher
values for a larger Zipf parameter. It illustrates that the Zipf
parameter changes the distribution of popularity of each tile
and further results in the changes of cache hit rate. Among
the four schemes, the proposed scheme achieves the best
performance.Since the major difference between the proposed
RAC-OR-L and DRC-OR-L is the rendering computational
resource constraint that allows the proposed RAC-OR-L to
serve more requests successfully within the MTP constraint,
the proposed RAC-OR-L achieves a modest improvement over
DRC-OR-L. Similarly, both IC-LR-L and MPC-LR-L do not
cache content cooperatively among multiple MEC servers and
thus they achieve lower cache hit rate than the other two
schemes.

0.5 0.6 0.7 0.8 0.9 1
1

2

3

4

5

6

7

8

Sa
ve

d
L

at
en

cy
 C

os
t

(
 1

05)

Proposed
DRC-OR-L
IC-LR-L
MPC-LR-L

(a)

0.5 0.6 0.7 0.8 0.9 1
0.4

0.5

0.6

0.7

0.8

0.9

1

C
ac

he
 H

it
 R

at
e

Proposed
DRC-OR-L
IC-LR-L
MPC-LR-L

(b)

Fig. 10. Caching performance for different values of the Zipf parameter

Impact of request load. System performance for different
request loads was also investigated. Specifically, the ratio of
supported requests and the saved latency cost were used as

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XX 13

3 5 7 9 11 13 15 17
Mean arrival time (ms)

0

1

2

3

4

5

6
Sa

ve
d

L
at

en
cy

 C
os

t
(

 1
05)

Proposed
DRC-OR-L
IC-LR-L
MPC-LR-L

(a)

3 5 7 9 11 13 15 17
Mean arrival time (ms)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
at

io
 o

f
Su

pp
or

te
d

R
eq

ue
st

s

Proposed
DRC-OR-L
IC-LR-L
MPC-LR-L

(b)

Fig. 11. Caching performance for different values of the request load

the evaluation metrics. The ratio of the supported requests
is defined by the ratio of the number of supported viewport
requests to the total number of viewport requests. Fig. 11
presents the latency cost savings and the ratio of supported
requests for different mean arrival time between requests. The
mean arrival time implicitly controls the load situation in the
caching system. The smaller the mean arrival time is, the
heavier the load in the system is. It can be seen from Fig. 11(a)
that the saved latency cost rises with an increased mean arrival
time of requests, and the proposed scheme always results in
the highest latency cost savings among all the four schemes.
When the mean arrival time of requests is less than 13ms,
the performance of the proposed scheme is far superior than
the other three schemes. It indicates that the proposed scheme
has a significant advantage in saving rendering computational
time at heavier system loads. Specifically, when the heavier
request load is initiated, the computations for rendering at the
cache node will take more time for DRC-OR-L. Similarly, the
proposed RAC-OR-L scheme always maintains a higher ren-
dering computation efficiency since it considers in advance the
effects of rendering computational load on cache placement.

In Fig. 11(b), it can be seen that the ratios of supported
requests for all schemes are increasing while reducing the
arrival request rate (increasing the mean arrival time). This
is because for lower values of the mean arrival time, the
heavier request load results in lower utilization of the uplink
bandwidth of gNB which results in lower ratio of supported
requests. When the mean arrival time between requests takes
values below 11 ms, the proposed scheme achieves a higher
ratio of supported requests than the DRC-OR-L scheme. This
indicates that the previous rendering awareness for cache
placement plays a key role in improving the ratio of supported
requests when the mean arrival time of the requests is less than
11ms.

Impact of multi-cell MEC network density. In another
set of simulations 25, 36, 49 and 64 gNBs were deployed
in a grid network inside a 1000m×1000m area to investigate
different multi-cell MEC network densities. Fig. 12 shows the
caching performances for different MEC network densities. It
can be seen from Fig. 12(a) that the curve of latency cost
savings has an increasing trend with an increasing number
of gNBs in a 1000m×1000m area for all four schemes. This
is also in line with the results in Fig. 12(b). The proposed
scheme and the DRC-OR-L scheme both achieve significantly
higher latency cost saving and lower MTP latency than the

other two local rendering schemes. It illustrates that direct
communications among the gNBs contributes to higher coop-
erative caching efficiency that eventually leads to low latency.
In the meantime, the increased number of gNBs provides more
cache space and stronger rendering computational capabilities.
These aspects make VR video delivery achieve low latency.
And also in Fig. 12(b), the schemes with rendering offloading
obviously reduce latency more than the case of local rendering.
This indicates that rendering offloading is another contributing
factor towards reducing the end-to-end latency.

25 36 49 64

Cell Network Density (1/(1000m2))

1

2

3

4

5

6

Sa
ve

d
L

at
en

cy
 C

os
t

(
 1

05)

Proposed
DRC-OR-L
IC-LR-L
MPC-LR-L

(a)

25 36 49 64

Cell Network Density (1/(1000m2))

0

20

40

60

80

100

120

A
ve

ra
ge

 M
T

P
(m

s) Proposed
DRC-OR-L
IC-LR-L
MPC-LR-L

(b)

Fig. 12. Caching performance for different MEC network densities

Cache placement complexity. We measured the complexity
for the proposed caching scheme in terms of the running time.
The simulations were performed in MATLAB on a computer
with an Intel Core i9-10900 2.8-GHz CPU and 32 GB of mem-
ory. The number of cached tiles is 48000. Fig. 13 shows the
running time averaged over 20 instances for different schemes
with varying number of cache nodes. It can be seen from Fig.
13 that the running time of the proposed scheme increases by
more than 10 times compared with the independent caching
scheme IC-LR-L. Since cache placement is usually updated in
longer time scales, the current computational time complexity
is acceptable for practical applications.

16 25 36 49
Number of cache nodes

50
100
500

2000

5000

R
un

ni
ng

 t
im

e(
s)

Proposed
DRC-OR-L
IC-LR-L
MPC-LR-L

Fig. 13. Comparison of running time over varying numbers of cache nodes.

B. Request Routing Performance

In this subsection, we evaluate the performance of the
proposed request routing scheme. The viewport switching
frequency changes the viewport request speed. To obtain
more realistic results, the viewport browsing trajectory for
request routing was simulated with actual VR video browsing
trace data. The average simulation result over the ten traces
was computed. In the system the content controller manages
the cache placement information with a global view and it
increases a small delay for forwarding the request to the
suitable cache node. The time for viewport request forwarding

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XX 14

from the controller to the cache node that has been hit was
computed based on the bandwidth values in Table II with
considering the time-varying networking loads. Currently, the
request forwarding latency increases about 2ms on average in
our experiments. Fig. 14(a) shows the average MTP for the
tile-based caching scheme with different request routing algo-
rithm. It can be seen from Fig. 14(a) that the proposed low-
delay request routing approach can satisfy the MTP constraint
of 20ms when the viewport switching frequency is less than 7,
while the scalable routing approach incurs a waiting time for
aggregating similar requests leading to an overall MTP more
than 30ms. With frequent viewport switching, both routing
approaches will suffer from higher latency. This is because
frequent viewport switching increases viewport requests and
so it requires more time for their routing decisions.

Fig. 14(b) shows the latency performance of the routing
algorithm for different total request arrival rates. The total
request arrival rates reflect the situation of the system load.
Generally, faster total request arrival rates indicate heavier
request load. It can be seen from Fig. 14(b) that though the
MTP rises with the increasing total request arrival rate, the pro-
posed routing algorithm can achieve satisfactory MTP when
the total request arrival rate is below 100 requests/second. As
for the scalable routing scheme, it obtains a MTP more than
28ms even at the lightest load which is unacceptable for VR
applications.

1 4 7 10 13 16
Viewport Switching Frequency

(switchs/second)

0

20

40

60

80

100

A
V

er
ag

e
M

T
P

(m
s) Proposed

RAC-OR-S

(a)

10 30 50 70 100
Total Arrival Rate
(requests/second)

0

20

40

60

80

100

A
V

er
ag

e
M

T
P

(m
s) Proposed

RAC-OR-S

(b)

Fig. 14. Request routing performance

For VR video delivery, the viewport quality received by a
user is the objective metric for evaluating the proposed routing
and caching approach. In the simulation, we reconstructed
the requested viewport video in terms of the user’s viewport
requesting traces for different request arrival rates in a cell
RAN and then computed the Peak Signal to Noise Ratio
(PSNR) values for these reconstructed viewport videos. Since
for VR video clips in Youtube we cannot find the raw video,
we computed the PSNR values only for those VR video
clips from SJTU media lab. During viewport reconstruction,
the delayed tile data in the viewport are repeated from the
previously requested data. The average PSNR value over users
for different request arrival rates is shown in Fig. 15(a). In
the figure, because the RAC-OR-S scheme incurs a longer
latency for aggregating requests than the proposed RAC-OR-L
scheme, it achieves a higher number of tile duplication artifacts
that lead to a lower PSNR value than the proposed RAC-OR-L
scheme.

Considering that the viewport quality variation in the tempo-

ral dimension also affects the user quality of experience (QoE),
we measure the standard deviation (STD) of PSNR values over
frames for the two schemes, as shown in Fig. 15(b). It can be
seen in Fig. 15(b) that the proposed routing scheme achieved
lower STD values than the scalable routing scheme when the
request arrival rate is below 100 requests/second. It illustrates
that the proposed routing scheme can obtain smoother QoE in
the temporal dimension than the scalable routing scheme. This
is because it delivered the necessary tiles timely to avoid the
serious tile repeating distortion that the scalable routing often
incurred.

10 30 50 70 100
Total Arrival Rate
(requests/second)

20

30

40

50

P
SN

R
(d

B
)

Proposed
RAC-OR-S

(a)

10 30 50 70 100
Total Arrival Rate
(requests/second)

0

2

4

6

ST
D

 o
f

P
SN

R

Proposed
RAC-OR-S

(b)

Fig. 15. The viewport quality received by the users at different request arrival
rates

VII. CONCLUSION

Aiming for end-to-end latency optimization for VR video
delivery, we proposed a rendering-aware tile caching scheme
suitable for multi-cell MEC networks. By coupling rendering
and caching, the computational benefits for rendering in multi-
cell MEC networks are exploited. With cooperative hierarchi-
cal caching and rendering service placement of tiles in multi-
cell MEC networks, the rendering latency and viewport data
delivery latency are both reduced significantly. Moreover, a
low-delay request routing scheme that makes routing decisions
on a time granularity of each request is integrated with
the cache placement scheme to further optimize VR video
caching efficiency. Extensive simulations were carried out and
the results show that the proposed scheme achieves superior
latency performance over the decoupled tile caching/rendering
systems.

REFERENCES

[1] MPEG Experts, “Summary of survey on virtual reality”, ISO/IEC
JTC 1/SC 29/WG 11, m16542, Oct. 2016, Chengdu, China.

[2] S. Ohl, M. Willert, and O. Staadt, “Latency in distributed
acquisition and rendering for telepresence systems”, IEEE Trans.
Visual. Comput. Graphics, vol. 21, no. 12, pp. 1442-1448, Dec.
2015.

[3] ETSI, “Mobile Edge Computing - Introductory Technical White
Paper”, Sep. 2014.

[4] Huawei-ilab, “Whitepaper on Cloud VR solution”, 2018,
http://www.huawei.com/.

[5] V. R. Gaddam, M. Riegler, R. Eg, P. Halvorsen, “Tiling in
interactive panoramic video: Approaches and evaluation”, IEEE
Trans. Multimedia, vol. 18, no. 9, pp. 1819-1831, Sep. 2016.

[6] M. A. Maddah-Ali and U. Niesen, ”Fundamental limits of
caching”, IEEE Trans. Inf. Theory, vol. 60, no. 5, pp. 2856-2867,
May 2014.

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XX 15

[7] X. Corbillon, G. Simon, A. Devlic, J. Chakareski, “Viewport-
adaptive navigable 360-degree video delivery”, in Proc. IEEE Int.
Conf. Commun. (ICC), pp. 1-7, May 2017.

[8] J. Le Feuvre and C. Concolato, “Tiled-based adaptive streaming
using MPEG-DASH”, in Proc. 7th Int. Conf. Multimedia Syst.,
Wörthersee, Austria, May 2016.

[9] A. V. Dastjerdi, H. Gupta, R. N. Calheiros, S. K. Ghosh, and R.
Buyya, “Fog Computing: Principles, Architectures, and Applica-
tions”, Internet of Things: Principles and Paradigms, 2016, ch.
4.

[10] M. D. Donno, K. Tange and N. Dragoni, “Foundations and
Evolution of Modern Computing Paradigms: Cloud, IoT, Edge,
and Fog”, IEEE Access, vol. 7, pp. 150936-150948, Oct. 2019.

[11] A. Mseddi, W. Jaafar, H. Elbiaze, and W. Ajib, “Joint container
placement and task provisioning in dynamic fog computing”,
IEEE Internet Things J., vol.6, no.6, pp. 10028-10040, Aug. 2019.

[12] Y. Liu, J. Liu, A. Argyriou, S. Ci, “MEC-assisted Panoramic VR
Video Streaming over Millimeter Wave Mobile Networks”, IEEE
Trans. Multimedia, vol.21, no. 5, pp. 1302-1316, May 2019.

[13] R. Schmoll, S. Pandi, P. J. Braun, F. H.P. Fitzek, “Demonstration
of VR/AR offloading to Mobile Edge Cloud for low latency
5G gaming application”, in Proc. 15th IEEE Annu. Consum.
Commun. & Netw. Conf. (CCNC), 2018.

[14] W. Lo, C. Huang, C. Hsu, “Edge-Assisted Rendering of 360
Videos Streamed to Head-Mounted Virtual Reality”, in Proc.
IEEE Int. Symp. Multimedia (ISM), 2018.

[15] S. Shi, V. Gupta, R. Jana, “Freedom: Fast Recovery Enhanced
VR Delivery Over Mobile Networks”, in Proc. 17th ACM Int.
Conf. Mobile Sys., Appl., and Services (MobiSys 2019), June
17-21, 2019, Seoul, Korea.

[16] J. Qiao, Y. He, and X. Shen, “Proactive caching for mobile
video streaming in millimeter wave 5G networks”, IEEE Trans.
Wireless Commun., vol. 15, no .10, pp. 7187-7198, August 2016.

[17] X. Wang, M. Chen, T. Taleb, A. Ksentini, V. C. M. Leung,
“Cache in the air: Exploiting content caching and delivery tech-
niques for 5G systems”, IEEE Commun. Mag., vol. 52, no. 2,
pp. 131-139, Feb. 2014.

[18] H. Ahlehagh, S. Dey, “Video-aware Scheduling and Caching in
the Radio Access Network”, IEEE Trans. Netw., vol. 22, no. 5,
pp.1444-1462, Oct. 2014.

[19] N. Golrezaei, K. Shanmugam, A. G. Dimakis, A. F. Molisch,
and G. Caire, “Femtocaching: Wireless video content delivery
through distributed caching helpers”, in Proc. of IEEE INFO-
COM, pp.1107-1115, 2012.

[20] W. Cao, G. Feng, S. Qin, and M. Yan, “Cellular offloading
in heterogeneous mobile networks with D2D communication
assistance”, IEEE Trans. Veh. Technol., vol. 66, no. 5, pp. 4245-
4255, May 2017.

[21] W. Jaafar, W. Ajib and H. Elbiaze, “Caching Optimization for
D2D-Assisted Heterogeneous Wireless Networks”, in Proc. IEEE
30th Annu. Int. Symp. Pers., Indoor and Mobile Radio Commun.
(PIMRC), 2019.

[22] M. Gregori, J. Gmez-Vilardeb, J. Matamoros, and D. Gndz,
“Wireless content caching for small cell and D2D networks”,
IEEE J. Select. Areas Commun., vol. 34, no. 5, pp. 1222-1234,
May 2016.

[23] N. Giatsoglou, K. Ntontin, E. Kartsakli, A. Antonopoulos and
C. Verikoukis, “D2D-Aware Device Caching in mmWave-Cellular
Networks”, IEEE J. Select. Areas Commun., vol. 35, no. 9, pp.
2025-2037, Sept. 2017.

[24] M. Rim and C. G. Kang, “Content Prefetching of Mobile
Caching Devices in Cooperative D2D Communication Systems”,
IEEE Access, vol. 8, pp. 141331-141341, 2020.

[25] G. Kollias and A. Antonopoulos, “Joint Consideration of Con-
tent Popularity and Size in Device-to-Device Caching Scenarios”,
in Proc. IEEE Int. Conf. Commun. (ICC), 2020.

[26] C.Wang, Y. He, F. R. Yu, Q. Chen, and L. Tang, “Integration
of networking, caching and computing in wireless systems: A

survey, some research issues and challenges”, IEEE Commun.
Surveys Tuts., vol. 20, no. 1, pp. 7-38, First Quarter 2018.

[27] H. Pang, J. Liu, X. Fan and L. Sun, “Toward Smart and
Cooperative Edge Caching for 5G Networks: A Deep Learning
Based Approach”, in Proc. IEEE/ACM Int. Symp. Qual. of
Service, 4-6 June 2018.

[28] S. Sukhmani, M. Sadeghi, M. Erol-Kantarci, A. El Saddik,
“Edge Caching and Computing in 5G for Mobile AR/VR and
Tactile Internet”, IEEE Multimedia, vol.26, no.1, pp.21-30, 2019.

[29] Y. Sun, Z. Chen, M. Tao, H. Liu, “Communication, computing
and caching for mobile VR delivery: Modeling and trade-off”, in
Proc. IEEE Int. Conf. Commun. (ICC), 2018.

[30] J. Chakareski, “VR/AR immersive communication: Caching,
edge computing, and transmission trade-offs”, in Proc. ACM
SIGCOMM Workshop Virtual Reality and Augmented Reality
Netw., Aug. 2017.

[31] Y. Sun, Z. Chen, M. Tao and H. Liu, “Communications,
Caching, and Computing for Mobile Virtual Reality: Modeling
and Tradeoff”, IEEE Trans. Commun., Vol. 67, No. 11, pp.7573-
7586, November 2019.

[32] J. Chakareski, “Viewport-Adaptive Scalable Multi-User Virtual
Reality Mobile-Edge Streaming”, IEEE Trans. Image Processing,
vol. 29, pp. 6330-6342, May 2020.

[33] V. Changrani, E. Zhang, “CDN optimization for VR streaming”,
Akamai White Paper.

[34] K. Liu, Y. Liu, J. Liu, A. Argyriou, and Y. Ding, “Joint EPC and
RAN caching of tiled VR videos for mobile networks”, in Proc.
Int. Conf. Multimedia Model., Springer, January 2019, pp.92-105.

[35] A. Mahzari, A. Nasrabadi, A. Samiei and R. Prakash, “FoV-
Aware Edge Caching for Adaptive 360◦Video Streaming”, in
Proc. 26th ACM int. conf. Multimedia, 2018.

[36] G. Papaioannou and I. Koutsopoulos, “Tile-based caching opti-
mization for 360◦videos”, in Proc. 20th ACM Int. Symp. Mobile
Ad Hoc Netw. and Comput., July 2019, pp. 171-180.

[37] P. Maniotis, E. Bourtsoulatze, and N. Thomos, “Tile-based joint
caching and delivery of 360 videos in heterogeneous networks”,
IEEE Trans. Multimedia, vol. 22, no. 9, pp. 2382 - 2395, Sept.
2020.

[38] B. M. Maggs and R. K. Sitaraman, “Algorithmic nuggets in
content delivery”, in Proc. ACM SIGCOMM CCR.,vol. 45, no.
3, pp. 52-66, 2015.

[39] P. Poirion, L. Jérémie, R. Liu, “Scalable Request Routing for
VR-ready CDNs”, In Proc. 21st Int. Conf. Innov. in Clouds,
Internet and Netw. (ICIN 2018), February 2018.

[40] L. Liu, R. Zhong, W. Zhang, Y. Liu, et al., “Cutting the
Cord: Designing a High-quality Untethered VR System with Low
Latency Remote Rendering”, in Proc. 16th Int. Conf. Mobile
Syst., Appl., and Services, June 2018.

[41] J. M. P. Van Waveren, “The asynchronous time warp for virtual
reality on consumer hardware”, in Proc. 22nd ACM Conf. Virtual
Reality Softw. and Technol., 2016, pp.37-46.

[42] T. C. Nguyen, S. Kim, J. Son, and J.-H. Yun, “Selective
timewarp based on embedded motion vectors for interactive cloud
virtual reality”, IEEE Access, vol. 7, pp. 3031-3045, 2019.

[43] Y. Ding, Y. Liu, J. Liu, K. Liu, et al., “Panoramic Image Salien-
cy Detection by Fusing Visual Frequency Feature and Viewing
Behavior Pattern”, in Proc. Pacific-Rim Conf. Multimedia, Sept.
2018.

[44] G. Choquet, Theory of capacities. Ann. Inst. Fourier, vol. 5, pp.
131-295, 1954.

[45] Z. Wang, K.-S. Leung, and G. J. Klir, “Applying fuzzy measures
and nonlinear integrals in data mining”, Fuzzy Sets Syst., vol.
156, no. 3, pp. 371-380, 2005.

[46] V. Sitzmann, et al., “Saliency in VR: how do people explore
virtual environments?”, IEEE Trans. Visual. Comput. Graphics,
vol. 24, no.4, pp.1633-1642, 2018.

[47] M. E. J. Newman, “Power laws, Pareto distributions and Zipf”s
law”, Contemporary Physics, vol. 46, p. 323, 2005.

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XX 16

[48] W. Lo, C. Fan, J. Lee, C. Huang, K. Chen, and C. Hsu, “360
Video Viewing Dataset in Head-Mounted Virtual Reality”, in
Proc. ACM Multimedia Syst. Conf., Jun. 2017.

[49] S. Boyd and L. Vandenberghe, Convex Optimization. Cam-
bridge University Press, 2003.

[50] F. S. Hillier, Introduction to Operations Research. McGraw-Hill,
2004.

[51] S. Martello and P. Toth, Knapsack Problems: Algorithms and
Computer Implementations. Wiley, 1990.

[52] https://www.youtube.com/channel/UCzuqhhs6NWbgTzMuM
09WKDQ

[53] A. T. Nasrabadi, A. Samiei, A. Mahzari, R. P. McMahan, R.
Prakash, M. C. Farias, and M. M. Carvalho, “A Taxonomy and
Dataset for 360◦ Videos”, in Proc. 10th ACM Multimedia Syst.
Conf., pp. 273-278. ACM, 2019.

[54] X. Liu, Y. Huang, L. Song, R. Xie, X. Yang, “The SJTU UHD
360-Degree Immersive Video Sequence Dataset”, in Proc. Int.
Conf. on Virtual Reality and Visualization, 2017.

[55] HEVC Test Model, https://hevc.hhi.fraunhofer.de/svn/
svn HEVCSoftware/

[56] 3GPP, “Study on channel model for frequencies from 0.5 to 100
GHz”, 3GPP, Tech. Rep. 38.901 V14.3.0, Dec. 2017.

[57] D.P.Bertsekas, R.G.Gallager, Data Networks, Second Edition,
Prentice-Hall International New Jersey, 1992.

[58] J. D. C. Little, S. C. Graves, “Little’s law”, in Proc. Int. Series
in Operations Res. & Manage. Sci., vol. 115, pp. 81-100, 2008.

[59] D. Raychaudhuri, K. Nagaraja and A. Venkataramani, “MPC:
Popularity-based caching strategy for content centric networks”,
in Proc. IEEE Int. Conf. Commun. (ICC), 2012.

Yanwei Liu received the B.S. degree in applied geo-
physics from Jianghan Petroleum University, China,
in 1998, the M.S. degree in computer science from
China Petroleum University (Beijing) in 2004 and
the Ph.D. degree in computer science from Insti-
tute of Computing Technology, Chinese Academy
of Sciences in 2010. Currently, he is an Asso-
ciate Professor with the Institute of Information
Engineering, Chinese Academy of Sciences. His
research interests include digital image/video pro-
cessing, multiview/3D video/VR video processing,

wireless multimedia networking. He serves in the TPC of several international
conferences in the area of multimedia, communications, and networking.

Jinxia Liu received the B.S. degree and M.S. degree
in physics from Harbin Normal University, China, in
1994, and 2005, respectively. In 2005, she joined the
Zhejiang Wanli University. Currently, she is a Pro-
fessor with Zhejiang Wanli University. Her research
interests include laser imaging, digital image/video
processing, multiview and 3D video coding, and
wireless communication.

Antonios Argyriou received the Diploma in elec-
trical and computer engineering from Democri-tus
University of Thrace, Greece,and the M.S. and Ph.D.
degrees in electrical and computer engineering as
a Fulbright scholar from the Georgia Institute of
Technology, Atlanta, USA. Currently, he is an As-
sociate Professor at the department of electrical
and computer engineering, University of Thessaly,
Greece. From 2007 until 2010 he was a Senior
Research Scientist at Philips Research, Eindhoven,
The Netherlands. Dr. Argyriou serves in the TPC of

several international conferences and workshops. His research interests are in
the areas of communication systems, and statistical signal processing.

Liming Wang received his Ph.D. degree from the
Institute of Software, Chinese Academy of Sciences,
Beijing, China in 2007. He is now a professor and
working at the Institute of Information Engineering,
Chinese Academy of Sciences, Beijing, China. His
current research interests include network security
and cloud computing.

Zhen Xu received his Ph.D. degree from the In-
stitute of Software, Chinese Academy of Sciences,
Beijing, China in 2005. He is now a professor
and a director of research center in the Institute of
Information Engineering, Chinese Academy of Sci-
ences, Beijing, China. His research interests include
network and system security, and mobile computing.

