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Perspectively Equivariant Keypoint Learning for
Omnidirectional Images

Yunjian Zhang, Yanwei Liu, Jinxia Liu, Antonios Argyriou, Liming Wang, Zhen Xu and Xiangyang Ji

Abstract—Robust keypoint detection on omnidirectional im-
ages against large perspective variations, is a key problem
in many computer vision tasks. In this paper, we propose a
perspectively equivariant keypoint learning framework named
OmniKL for addressing this problem. Specifically, the framework
is composed of a perspective module and a spherical module, each
one including a keypoint detector specific to the type of the input
image and a shared descriptor providing uniform description
for omnidirectional and perspective images. In these detectors,
we propose a differentiable candidate position sorting operation
for localizing keypoints, which directly sorts the scores of the
candidate positions in a differentiable manner and returns the
globally top-K keypoints on the image. This approach does not
break the differentiability of the two modules, thus they are end-
to-end trainable. Moreover, we design a novel training strategy
combining the self-supervised and co-supervised methods to train
the framework without any labeled data. Extensive experiments
on synthetic and real-world 360◦ image datasets demonstrate the
effectiveness of OmniKL in detecting perspectively equivariant
keypoints on omnidirectional images. Our source code are avail-
able online at https://github.com/vandeppce/sphkpt.

Index Terms—Omnidirectional images, uniform descriptor,
self-supervised learning, perspectively equivariant keypoint

I. INTRODUCTION

W ITH the rapid development of 360◦ vision, the match-
ing between omnidirectional images (ODIs) and per-

spective images (PIs) has become a fundamental component in
many computer vision tasks, including camera calibration [1],
viewpoint estimation [2], and scene reconstruction [3]. At the
core of the matching problem, the approaches for detecting and
describing keypoints on planar PIs have been widely studied,
while those on ODIs have not. The main barrier is the complex
geometric structure of ODIs, leading to the inefficiency of
perspective approaches on ODIs.

In the past few years, several approaches have been pro-
posed to detect keypoints for ODIs. They either applied the
conventional keypoint detection approaches on the planar
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panoramas mapped from the raw ODIs [4], [5], or specially
designed algorithms on the spherical surface in allusion to the
geometric characteristics of the ODIs [6], [7]. However, the
former methods suffer from inaccuracy due to the deformation
of the panoramas, while the latter ones have poor robustness
to the perspective transformation. The seminal work in [8]
focuses on detecting perspectively equivariant keypoints on
ODIs, which means a keypoint can resist the perspective
projection from ODIs to PIs and also the homography trans-
formation among the PIs. A limitation of this approach is that
it generates inconsistent descriptions for keypoints on ODIs
and PIs, and thus it needs an additional projection to map the
descriptions of ODIs and PIs to the same feature space, which
increases the computational cost. In contrast, the studies in [9]
and [10] represent the ODIs with geodesic grids, and generate
the descriptions on the planar projected grids, which makes
it possible to match between the ODIs and PIs. However,
for matching PIs with ODIs in the spherical domain, these
methods assume that the PI has a fixed focal length and a
constant field of view (FoV) that do not conform to the actual
situations and it limits the matching performance.

Inspired by the success of deep neural networks (DNNs) in
keypoint learning on planar images [11]–[14], in this paper, we
propose OmniKL, a framework towards learning perspectively
equivariant keypoints for ODIs, addressing the aforementioned
limitations of existing approaches. OmniKL consists of a
spherical module and a perspective module, and each one
uses an individual keypoint detector and a shared descriptor
for processing a specific type of image. The perspective
module is used to augment the perspective equivariance of the
keypoints detected from the spherical module. To ensure the
differentiability for the modules so that they can be trained
by back-propagation, we propose a differentiable candidate
position sorting (DCPS) operation for localizing keypoints,
which also overcomes the dependence on the sliding window
which is present in previous studies. Since it is unclear which
locations in the input images should be labeled as keypoints,
we do not rely on any hand-labeled datasets with keypoint
annotations, and train OmniKL entirely in a self-supervised
scheme. To this end, we devise a self-annotating layer that
automatically creates ground truth data on-the-fly by taking
advantage of the initial PI annotations. Moreover, we design
a score loss that considers the score and number of keypoints,
and we combine it with contrastive loss to train OmniKL
to detect and describe keypoints accurately. In addition, we
propose a co-supervision strategy that enforces the spherical
and perspective modules to supervise each other allowing
them to be jointly trained. As the descriptions generated by
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the shared descriptor are uniform and consistent across PIs
and ODIs, the matching problems for ODIs vs. ODIs (ovo)
and ODIs vs. PIs (ovp) can be solved by directly correlating
descriptions from different images.

To summarize, the key contributions of this paper include
the following points:

• To the best of our knowledge, we are the first to pro-
pose a learnable framework for detecting and describing
perspectively equivariant keypoints on ODIs. Considering
the deformation of ODIs, we construct the detector for
omnidirectional keypoints based on a kernel-adaptive
convolution that dynamically adjusts the receptive fields
of the kernels according to the geometric and semantic
information from the input ODI. We also propose a novel
DCPS operation that localizes high-ranking and window-
irrelevant keypoints accurately. Furthermore, we devise
a spherical cropper that addresses the uneven sampling
issue of the ODIs, and construct a shared descriptor
across ODIs and PIs to encode the descriptions in the
same feature space, providing uniform descriptions for
ODIs and PIs.

• We propose a self-supervised strategy for training the
complete framework without using any labeled keypoints.
Specifically, we construct a novel self-annotating layer
that automatically labels the detected keypoints, and the
only prior is the camera pose corresponding to the input
image, greatly reducing the workload on preprocessing
training data. Moreover, in order to jointly train the
modules in OmniKL to localize the corresponding key-
points between ODIs and PIs, we devise a co-supervision
strategy achieving mutual supervision between them.

II. RELATED WORK

A. Keypoint Detection on PIs

SIFT [15] is a classic algorithm implementing the entire
pipeline for keypoints detection and description on PIs. In-
spired by SIFT, various subsequent algorithms based on the
hand-crafted features are proposed to optimize its efficiency,
including Speeded-Up Robust Features (SURF) [16], DAISY
[17], KAZE [18], FAST [19], and ORB [20]. These approaches
heavily depend on hand-crafted features and are not robust
to large angle shift. Due to the highly representative ability
of DNNs, researchers attempt to detect keypoints with DNN-
based approaches [13], [14], [21]–[23], which achieve better
performance compared to traditional methods, and they can
be easily extended to describe keypoints by combining with
existing descriptors [24]. There are also many end-to-end
learning networks implementing both the keypoint detection
and description. LIFT [11] used the spatial softmax function to
localize the positions of keypoints from the feature map calcu-
lated by the detector, and applied another network to generate
descriptions from the patches cropped around the keypoints.
LF-Net [25] proposed a novel training strategy to learn a non-
differentiable pipeline, optimizing the network in a two-branch
setup by confining it to one branch, while preserving differ-
entiability in the other. MagicPoint [23] and SuperPoint [26]
utilized salient detectors. RF-Net [27] optimized the receptive

field of the kernels, and ASLFeat [28] utilized the deformable
kernel [29] to extract features accurately. Different from PIs,
ODIs contain latitude-varying deformation that ASLFeat can
not capture well and thus ASLFeat has limited efficiency for
keypoint detection on ODIs.

B. Keypoint Detection on ODIs

The recent advancements in omnidirectional vision ap-
plications [30] have urged the need for keypoint detection
algorithms towards ODIs. The intuitive idea is to map the
raw ODIs to the plane and then apply the conventional planar
keypoint detection approaches on them [4], [5]. However,
due to the deformation of the projective planar images, these
approaches cannot obtain satisfactory performance. To solve
this problem, researchers have proposed to detect keypoints on
the non-deformed spherical domain. Specifically, Hanse et al.
[6] developed a SIFT-like algorithm on the sphere to match
points between wide-angle images. Arican et al. [7] built on
the Riemannian geometry to define differential operators on
non-Euclidian manifolds, addressing the inaccuracy induced
by the sampling operation in [6]. Cruz-Mota et al. [8] proposed
a framework that combines spherical SIFT and planar SIFT, in
which the descriptions for keypoints on ODIs can be matched
with those on PIs after a planar projection. Although the above
algorithms are effective for their target tasks, they cannot
detect the perspectively equivariant keypoints on ODIs with
uniform feature descriptions on both the spherical domain
and perspective domain. In [9] and [10], the authors proposed
SPHORB and BRISKS that generate binary descriptions based
on the geodesic subdivision of the ODIs. Although they can
project the PIs to the spherical domain for matching them with
the ODIs, they assume that the PIs have an unrealistic focal
length and FoV, which introduces a deviation to the matching
pipeline and limits the matching performance.

Since hand-crafted approaches depend on pre-defining pat-
terns, they cannot fit the ODI features sufficiently. Instead,
DNN-based approaches can mine more in-depth features from
the given data, thus we work towards designing a data-driven
DNN-based framework to capture the perspectively equivariant
features of keypoints and generate consistent descriptions for
them.

C. Deep Neural Networks on ODIs

Conventional DNNs targeting planar images are inefficient
for ODIs because the underlying projection models of PIs
and ODIs are different. Various studies have proposed to
optimize the planar convolutions to make them adjust to the
panoramas projected from the raw ODIs. For example, Su
et al. [31] proposed a kernel transformed network that can
directly map a pre-trained kernel-shared conventional CNN to
a kernel-scaled network. [32]–[36] share the similar idea of
rectifying the receptive field of the regular kernels to fit the
distortion of omnidirectional images. Eder et al. [37] extended
the icosahedron projection and rendered a spherical image to
a set of image grids tangent to the subdivided icosahedron
to mitigate the spherical distortion. Besides, a few of studies
focus on processing the ODIs in the spherical domain. Cohen
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Fig. 1. The architecture of the proposed perspectively equivariant keypoint learning framework OmniKL in the training and inference stage.

et al. [38] proposed a spherical convolution called S2CNN
that defines convolutional kernels on the spherical surface.
Esteves et al. [39] used the spherical harmonic basis to
transform the convolution operation to the frequency domain.
Although the spherical frequency-domain approaches are more
accurate than the schemes that operate in the spatial domain,
calculations based on the spherical harmonic functions are
very time-consuming, thus we follow the line of spatial domain
approaches and design a deformation-aware kernel-adaptive
convolution on ODIs.

III. PERSPECTIVELY EQUIVARIANT KEYPOINT LEARNING
FRAMEWORK

A. Overview of OmniKL

This paper proposes a two-module framework OmniKL
towards learning perspectively equivariant keypoints for ODIs.
As shown in Fig. 1, OmniKL consists of a perspective module
and a spherical module, detecting and describing the keypoints
on PIs and ODIs, respectively. Indeed, the concept “perspec-
tively equivariant” means that a keypoint can resist the per-
spective projection from ODIs to PIs and also the homography
transformation on the PIs, which can be formulated as

F(ϕ
(I)
ð I) = ϕ

(F)
ð F(I), (1)

where F(·) is the detecting process, ϕ
(I)
ð and ϕ

(F)
ð are two

geometric transformations from the same group (perspective
projection, homography transformation, and also viewpoint
changes) applied on the input image I . The equivariance
property requires the coherence between the two modules.
Thus, a co-supervision strategy is devised to train OmniKL.
Specifically, in the training stage, OmniKL takes an ODI
and two separate PIs rendered from the ODI as its input.
Given the corresponding type of image, the two modules are

independently trained and enforced to supervise each other
in turn until reaching a trade-off in training losses. Based
on that, the descriptions generated by the two modules are
restricted in the same feature space, providing consistent
descriptions for keypoints on ODIs and PIs. Furthermore, to
train OmniKL without any labeled data, we construct a self-
labeling layer, which maps the coordinates of the PI keypoints
to the spherical domain, and labels them automatically. This
aspect is described in detail in Section IV. During the inference
stage, the ODIs and PIs go through their corresponding module
in a single forward propagation, and finally the keypoints and
descriptions are obtained.

In Fig. 1, we observe that the architectures of the two
modules in OmniKL are similar and they both consist of three
key building blocks: a detector for localizing keypoints, a patch
cropper that crops a patch around each keypoint, and a feature
descriptor encoding every patch to a vector. Indeed, due to the
different geometric structure of ODIs and PIs, there exist a few
differences between the two modules in their implementations,
which will be discussed in the following subsections.

B. Keypoint Detector

The detector was designed to be robust to scale variations,
and it consists of a feature extractor for generating the feature
map of a given image and a DCPS component for localizing
keypoints.

1) Feature Extractor: The architecture of the feature extrac-
tor is illustrated in Fig. 2. It first resizes the input image to
three scales, and each one is fed into a six-layer neural network
that is shared across different scales. The kernel size of the
first five layers is 3×3, and that of the final layer is 1×1, while
each one is followed by an instance normalization and a relu
activation layer. Feature maps for all scales are upsampled and
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concatenated together. Finally, a 1×1 convolution is applied
to integrate different channels and obtain the feature map for
localizing keypoints.

The architecture of the detector was engineered in light
of the different properties of ODIs and PIs. The differences
between the spherical detector and perspective detector are
discussed next.

First, in the planar space, the input image is scaled directly
by an interpolation filter. While for the panorama, due to the
different sampling rates among different rows, this operation
will introduce deformation on the scaled images. Therefore,
we project the panorama to the spherical surface, then scale the
number of samples on the sphere, and finally take the resulting
image of equirectangular projection as the scaled ODI.

Second, the convolution in the perspective detector is the
conventional one, while that in the spherical detector is a
deformation-aware convolution that is adaptive to the spherical
geometry. This is a common way that existing approaches
follow so as to rectify the receptive field of the convolutional
kernels according to the distortion level of different positions
on the equirectangular projection ODI. However, they either
interpolate the spherical features in the 2D plane [33] [35] or
have to calculate the kernel shape for each central pixel on the
sphere [34]. Other studies like [32] calculate the deformable
kernels [29] [40] using the geometric knowledge of ODIs,
which reduces the number of parameters when compared with
other approaches. However, due to the intrinsic property of the
ODIs, the receptive fields of the deformable kernels on them
are non-convex. This reduces the overlaps of the receptive
fields of the neighboring kernels, limiting the capability of
the model to capture related information. Considering that the
receptive fields in human perceptual systems are convex [41],
[42], and current DNNs are often built to mimic the behavior
of the human brain, we propose to calculate the convex-hull of
the deformable kernel and then re-sample kernel to cover the
region surrounded by the convex-hull. In addition, considering
the varying contributions of different regions, we do not hard
encode the shape of the kernels. Instead, we train the model
so as to fine-tune the shape of the convex-hull, which leads to
dynamic receptive fields that are adaptive to the region to be
convolved.

Specifically, considering an ordinary planar kernel P of size
rw × rh, denoted as

P = {(px, py)k}k=1,...,kn , (2)

where kn is the number of the points in the kernel, given the
location (vθ, vϕ) on the ODI, the center of the kernel is aligned
to it and then the positions of the elements in the kernel are
projected to the sphere using the rectilinear projection [43].
Next, the spherical kernel is projected to the panorama with
the equirectangular projection

(px, py) = ((ϕ/2π + 0.5)Wp, (−θ/π + 0.5)Hp), (3)

where (px, py) is a position on the projected kernel, and Wp

and Hp are the width and height of the panorama, respectively.
Subsequently, we collect all the points on the projected kernel,
and calculate the convex-hull for them. To ensure the kernel
adjusts its receptive field adaptively, a scaling factor αk

c and a

biasing vector (βk
x,c, β

k
y,c) are defined to allow fine-tuning of

the position of each vertex of the convex-hull. We define

C = {αk
cx

k
x + βk

x,c, α
k
cx

k
y + βk

y,c}k=1,...,kc (4)

to be the adjusted convex-hull, with (xk
x, x

k
y) being the k-th

point on it, and kc is the number of vertexes of the convex-hull.
As the adjusting process does not break the differentiability
of the model, αk

c and (βk
x,c, β

k
y,c) can be optimized with

gradient descent. Note that the deformed kernel obtained by
projection is non-convex, thus only some of the points on it
are considered for calculating the convex-hull, and as a result
kn ̸= kc. Next we define a re-sampling operation Sc with
the bilinear sampling function, which is used to re-sample the
original kernel to the deformed region covered by the convex-
hull:

Sc : P → C. (5)

The deformed kernel Kc is denoted as

Kc = Sc(P) = {(x′(k)
x , x′(k)

y )}k=1,...,kn (6)

Finally, the convolution result on (vθ, vϕ) is

F (vθ, vϕ) =

∞∑
i=−∞

∞∑
j=−∞

fm(i+ ϕ, j + θ) ·Kc(i, j) · χ(i, j)

χ(i, j) =

{
1, 0 ≤ i ≤ rw, 0 ≤ j ≤ rh

0, otherwise

,

(7)
where fm is the input feature map and F is the resulting
feature map.

Fig. 2. The structure of feature extractor in the detector.

The convolution approach we propose above makes our
model adaptive to any ODI in the equirectangular format
regardless of the camera intrinsics or sensors. Even for cata-
dioptric or fisheye images, in general, our approach can still
process them if they are converted into equirectangular images.

2) Differentiable Candidate Position Sorting Operation:
Previous studies geared towards extracting keypoints mainly
relied on performing non-maximum suppression or spatial
softmax with sliding windows. However, these methods limit
the positions of the keypoints, thus it is tough for them to
balance the number of false keypoints and collective key-
points: Increasing the window size can reduce the number of
unnecessary keypoints, but it also reduces the total number of
keypoints; decreasing window size leads to more keypoints,
but it also results in more false predictions and introduces
heavy training burden. The main reason is that the points
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Fig. 3. The structure of the DCPS operation.

from all windows are treated equally during training, thus the
detector does not gain the ability to determine the globally
important keypoints.

To address the above problem, we propose a DCPS opera-
tion, which makes the network learn to rank the keypoints. As
shown in Fig. 3, we first apply a sliding window with a small
size on the feature map to calculate candidate positions for
keypoints. Given a window wi of size Nw×Nw, the candidate
keypoint position in it is calculated by

Θ(wi) = (xi, yi) =

Nw∑
u,v

(W ⊙mi,W
T ⊙mi) + cw, (8)

where W is a kernel of size Nw × Nw with index values
j = 1 : Nw along its columns, (u, v) denotes the coordinate of
the pixel, ⊙ is the point-wise product operation, cw is the top-
left corner coordinate of the window, and mi is the normalized
activation value in wi, defined by

mi(u, v) =
ewi(u,v)∑Nw

j,k ewi(j,k)
. (9)

The candidate keypoints are sorted in terms of their activa-
tion values (referred as scores) to reserve only the globally
meaningful points. Consequently, only those keypoints with
higher scores take part in optimizing the detector. The DCPS
operation (denoted as Φ(·)) is captured as:

Φ(F ) = TK(S([Θ(w1),Θ(w2), ...,Θ(wM )])), (10)

where F is the feature map, TK is a function only reserving
the top-K elements, S is the sorting operator, and M denotes
the number of the sliding window. In order to preserve the
differentiability of the operation, we use differentiable sorting
[44] to sort the candidates, and the sorting operator is projected
as a linear program over the permutahedron:

PQ(z, ξ) = argmax
µ∈ρ(ξ)

⟨z, µ⟩ −Q(µ) = argmin
µ∈ρ(ξ)

1

2
||µ− z||2,

(11)
where ξ = [Θ(w1),Θ(w2), ...,Θ(wM )], z is a permutation of
ξ, ρ(ξ) is the convex hull of permutations of ξ, and Q(µ) =
1
2 ||µ||

2 is a convex regularization. Furthermore, the projection
is reduced to the isotonic optimization for faster computation:

PQ(z, ξ) = z − vQ(zδ(z), ξ)δ−1(z), (12)

in the above vQ is the isotonic regression function, δ is the
argsort operation, and δ−1 is its inverse. Then the differential
of the sorting operator can be calculated by its Jacobian matrix.

We note the candidates whose scores are larger than the K-
th item of S(ξ) (denoted as SK(ξ)) in a vector κ ∈ {0, 1}M

κi =

{
1,Θ(wi) ≥ SK(ξ)

0, others

κ = {κ1, ..., κM}
(13)

Finally we retain the candidates with κi=1 as the keypoints

Φ(F ) = TK(S(ξ)) = κ⊙ ξ. (14)

C. Patch Cropper

To extract the feature representations for describing key-
points, DNN-based approaches usually consider the encoding
vector of the patch cropped around each keypoint as its
corresponding description. An important requirement for the
cropper in the DNN-based framework is its differentiability,
which ensures the end-to-end property of the learning pipeline.

The perspective cropper is implemented with the bilinear
sampling, which is a differentiable operation and applied
directly on the input image to generate fixed-size patches
around the keypoints. However, the sampling on the panorama
is uneven, and it will introduce deformation when the patches
are directly cropped from the panorama. Therefore, we design
a novel spherical cropper that crops the patch in the perspective
domain. As shown in Fig. 4, the panorama is first projected
to the spherical domain, and then a patch is obtained by
projecting a part of spherical surface around a keypoint into the
perspective plane with a differentiable rectilinear projection.
Due to the narrow view of the patches, they suffer from less
deformation than the panorama.

Fig. 4. The procedure to crop patches for the panoramic images.

D. Feature Descriptor

The descriptions of the keypoints are expected to be in-
variant to the image transformations, especially for those of
the ODIs, whose patches are rotated with the rotation of the
ODIs. This means that they remain unchanged during the
transformations, and they can be formulated as

D(θ
(I)
ð I) = D(I), (15)
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where D(·) is the function for generating descriptions from
the input images, and θ

(I)
ð is the geometric transform on them.

The architecture of the descriptor is presented in Fig. 5,
comprising three convolutional layers and a pooling layer, fol-
lowed by two fully connected layers. Considering the natural
advantage of group convolution [45] in rotation-equivariance,
we extend it to our descriptor to make the convolutions operate
on the SO3 space, ensuring the descriptions to be robust to
rotation. After the last convolutional layer, a MaxPolling3D
layer is inserted so as to integrate the group channels. Finally,
the 128-dimensional descriptions are obtained using the fully
connected layer with 128 units. As the pooling layer and the
fully connected layer are invariant to image transformations,
the equivariant features obtained by the convolutional layers
are encoded to invariant descriptions.

Since the patches for PIs and ODIs are all obtained in the
perspective domain, there is no need to devise a descriptor that
is specific for ODIs, instead, a shared descriptor is enough to
encode the patches to descriptions. Therefore, the descriptions
of the ODIs and PIs are in the same representation space,
and they can be directly matched without any projection,
something that simplifies significantly the matching process
when compared to [8].

Fig. 5. The structure of the descriptor.

IV. TRAINING STRATEGY

To capture the perspectively equivariant keypoint from
ODIs, OmniKL is expected to achieve two matching objec-
tives: ovo and ovp. Because both the perspective and spherical
modules in OmniKL are end-to-end trainable, we propose
to “preheat” OmniKL by pre-training them respectively. The
training procedure includes three stages. In the first stage
(Stage 1), we use PIs to pre-train the perspective module to
make it learn robust keypoints on PIs without any dependency
on the spherical module. Second (Stage 2), the pre-trained
perspective module is used to help train the spherical module,
in other words, the spherical detector is trained to select
keypoints as close as possible to the output of the perspective
detector. After pre-training the two modules we jointly opti-
mize them with a rotational co-training strategy in the third
stage (Stage 3), in which the two modules supervise each other
to learn perspectively equivariant keypoints on ODIs.

A. Pre-training the Perspective Module

1) Self-labeling: To warm up the perspective module, we
define a Siamese network that receives a pair of PIs {I0, I1}
and their corresponding camera pose information (named PI
annotations) {(v0, f0), (v1, f1)} as input, where vo(o = 0, 1)
and fo(o = 0, 1) are the PI center position and FoV for
rendering image Io. As shown in the left part in Fig. 1,

each branch in the network includes the complete processing
pipeline, and independently performs the forward propagation.
The two branches share the same weights and are related
with a self-labeling layer for automatically annotating the
keypoints. In the self-labeling layer, the coordinates of the
perspective keypoints are projected to the spherical space with
the PI annotations using the rectilinear projection [43]. Then
the keypoints from different PIs are matched in terms of the
distances between their spherical coordinates, that is,

Fn = {(x0
i , d

0
i ), (x

1
j , d

1
j )}

= {Xs0
n , Xs1

n , D0
n, D

1
n}, n ∈ {1, ..., N}

j = argmin
j∈{1,...,N}

[Dis(x0
i , x

1
1), ..., Dis(x0

i , x
1
j ), ..., Dis(x0

i , x
1
N )],

(16)
where xo

i (o = 0, 1) and doi are the coordinate and description
of the i-th keypoint from the image Io, Dis(·) is the distance
function, N is the number of keypoints per image, Fn is the n-
th pair of matching keypoints, and (Xs0

n , Xs1
n ), (D0

n, D
1
n) are

the coordinates of coupled keypoints mapped onto the sphere
and their descriptions. Considering the geometry of the sphere,
the distance function of Xs0

i = (θ0i , ϕ
0
i ) and Xs1

j = (θ1j , ϕ
1
j )

is defined as the haversine distance

Dis(Xs0
i , Xs1

j ) = 2 arcsin( sin2(
ϕ0
i − ϕ1

j

2
)+

cosϕ0
i cosϕ

1
j sin

2(
θ0i − θ1j

2
))

1
2 .

(17)
Finally, the pairs of keypoints and their corresponding patches
are labeled as positive or negative with a distance threshold.
If the distance is less than an empirical threshold, i.e. 1.0, it
is labeled as positive, that is ln = l0i = l1j = 1, otherwise it
is denoted as negative with ln = l0i = l1j = 0, where ln is
the label of the n-th pair, and loi (o = 0, 1) is the label for the
i-th keypoint from the image Io. Therefore, the self-labeling
layer creates ground truth data by considering only the initial
PI annotations of the input image pairs.

2) Pre-training Loss Functions: After labeling the de-
scription pairs, we calculate the loss function combining the
contrastive loss and score loss to optimize the perspective
module Specifically, we introduce a multi-task loss function
with weighting parameters λc and λs:

L(x0, x1) = λcLc(F, l) + λsLs(x0,p0, l0, x1,p1, l1), (18)

where xo(o = 1, 2) is the collection of the keypoints on Io,
po and lo are the corresponding collections of the scores and
labels for the keypoints in xo, F and l are the collections of the
matching keypoints and their labels, Lc is the contrastive loss
function operating on the pairs of the keypoints and optimized
over their descriptions, and Ls is the score loss function which
uses the activations of the keypoints from positive pairs on the
feature maps to optimize the detector.

The contrastive loss over the pairs of descriptions is:

Lc(F, l) =
∑N

n=1 ln||D0
n −D1

n||2

2Np
+∑N

n=1 ln · (max{0, t− ||D0
n −D1

n||})2

2Nn
,

(19)
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Fig. 6. Pre-training pipeline of the spherical module.

where t is the margin to control the distance between the
descriptions of keypoints in a negative pair, Np and Nn are
the numbers of positive and negative pairs respectively, and
Np + Nn = N . The two terms in Eq. (19) make the model
learn similar descriptions for positive pairs and discriminative
descriptions for negative pairs. Because the perspective module
is trained entirely with self-supervision, there is no available
knowledge regarding the positive or negative pairs. Thus, we
further design a score loss function to maximize the number
of correspondences between two PIs. It is defined according
to the scores of the keypoints from positive pairs as:

Ls(x0,p0, l0, x1,p1, l1) =
1

Np + 1
−

ϵ
∑N

n=1(l
0
np

0
n + l1np

1
n)

Np + 1
,

(20)
where po(o = (0, 1)) is the feature map of the image Io, and
ϵ is a weighting parameter.

B. Pre-training the Spherical Module

Since the descriptor is shared across the two modules, we
only train it with the perspective module, which improves the
training efficiency. Therefore, only the spherical detector is
pre-trained in the second stage. There are two available ways
to warm up the spherical detector. One is to train it with a
self-supervised strategy, and the other is to train it under the
supervision of the perspective detector pre-trained in Stage 1.
Considering the key challenge of our framework is to detect
perspectively equivariant keypoints, we decided to alow the
spherical detector to learn roughly the features of the two
types of images from random initialization. Thus, we use the
pre-trained perspective module to guide the training of the
spherical module, and the training pipeline is shown in Fig. 6.

First, we feed nc PIs {I1, I2, ...Inc} that cover the whole
spherical surface into the perspective detector, and obtain
multiple groups of keypoints {x1, x2, ...xnc}, each one cor-
responding to one PI. Next we collect them into the same
group, denoted by xP = {x1

1, ..., x
1
m, ..., xnc

1 , ..., xnc
m }, where

m is the number of keypoints in the image. To make the
spherical detector be robust to the rotational variations of the
ODIs, we randomly rotate the input panoramic image along
the roll, pitch, or yaw axis with an angle ranged from 0◦ to 35◦

before feeding it into the spherical detector. Then, we use the
spherical detector to localize its keypoints {xs

1, x
s
2, ..., x

s
ms

},
where ms is the number of spherical keypoints. For each

keypoint xs
i , we find its closest perspective keypoint from xP

on the sphere, and couple them to a pair xc
i = {xs

i , x̃
P
i }.

x̃P
i = argmin

xP
j

[Dis(xs
i , x

P
1 ), ..., Dis(xs

i , x
P
m·nc

)]

with j ∈ {1, ...,m · nc},
(21)

The training goal in this stage is to obtain the initial
keypoints from ODIs and PIs and improve the repeatability
of the spherical keypoints on planar space. Therefore, the loss
function is to minimize the distance between the spherical
coordinates of coupled pairs, which can be formulated as

L(xs, xP ) =
1

ms

ms∑
i=1

||xs
i − x̃P

i ||
2, (22)

where xs is the collection of the keypoints on the ODI.

C. Co-supervised Training of the Perspective and Spherical
Modules

1) Training strategy: After pre-training the two modules,
we jointly train them further with a co-supervision strategy in
which each module in OmniKL is trained alternatively with
the other fixed, as shown in Fig. 1. Note that the feature
descriptor is optimized with the perspective module, there are
two reasons for this: First, the descriptor is shared among
the two modules, thus it can be optimized only once in one
training epoch with a proper loss function, which reduces
the computational cost of training. Second, the pipeline of
the spherical module is more complicated than that of the
perspective module, thus if the descriptor is optimized with
the spherical module, it will increase the difficulty of training.

While training the perspective module, we use a triplet input
including a pair of PIs {I0, I1} and an ODI Is. We label three
groups of description pairs for training, and the loss function
jointly considers them. The first group comes from the two
PIs, and the annotation method is the same as that in Stage
1. The second group is the collection of the description pairs
consisting of a description from one PI and the other from
the ODI, formed as {I0, Is}. The keypoints x0 on the PI are
also projected onto the sphere, and then we find the closest
spherical keypoint for each. Then the pair of keypoints and
their corresponding descriptions F s,0

n = {(x0
i , d

0
i ), (x

s
j , d

s
j)} =

{Xs
n, X

0
n, D

s
n, D

0
n} are labeled as positive with ls,0n = l0i =

lsj = 1 or negative with ls,0n = l0i = lsj = 0 using the labeling
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method in Stage 1. In the above dsj is the description of the j-
th keypoint on the ODI, ls,0n is the label of the n-th pair, l0 and
ls are the collections of the labels for the keypoints from the
images, respectively. The generation of the third group and its
labels denoted as {l1, ls} are the same as those of the second
group, except using the other PI.

When the spherical detector is optimized, the perspective
detector and descriptor are all fixed, and we train the spherical
detector to localize perspectively equivariant keypoints by
training it to focus on the keypoints that are also detected
on the PIs. Different from the scheme in Fig. 6 using a set
of PIs covered the whole ODI, we only use the pair of PIs
{I0, I1}. After obtaining the keypoints on the pair of PIs, we
only consider the keypoints on the partial spherical surface
overlapped by the two PIs. In other words, we enforce the
locations of the keypoints on this partial sphere to approximate
those on the PIs, and ignore the keypoints on other remaining
areas. We randomly rotate the ODI before feeding it into the
spherical module, aiming to improve the robustness of the
model against the rotation of the ODIs.

2) Training Loss Functions:
a) Perspective loss function: The co-supervised training

mainly aims at seeking the perspectively equivariant keypoints
on the ODIs. Therefore, for the perspective module, its training
objective consists of two parts respectively corresponding to
ODIs and PIs, and thus its loss function is formulated as

L(I0, I1, Is) = λpLp(I
0, I1) + λqLq(I

0, I1, Is), (23)

where Lp and Lq are the losses targeting the PI-to-PI and
ODI-to-PI matchings respectively, and λp and λq are two
regularization parameters.

Because we adopt the Siamese architecture to train the
perspective module, which is similar to that in Stage 1, we
can use the same loss function as Eq.(18), thus we have

Lp(I
0, I1) = λcLc(F, l) + λsLs(x0,p0, l0, x1,p1, l1). (24)

Lq is used to make the perspective module robust to the ODI-
to-PI projection, thus it can be designed as the union of two
contrastive loss functions, and each for one PI-to-ODI pair

Lq(I
0, I1, Is) =

1∑
o=0

λoL
o
q(I

o, Is). (25)

The contrastive loss Lo
q can be written as

Lo
q(I

o, Is) = Lc(F
s,o, ls,o)

=

∑N
n=1 l

s,o
n ||Ds

n −Do
n||2

2Np
+∑N

n=1 l
s,o
n · (max{0, t− ||Ds

n −Do
n||})2

2Nn
.

(26)

b) Spherical loss function: The training for the spherical
module does not involve the descriptor, and it is used to fine-
tune the spherical detector for improved ability to localize
perspectively equivariant keypoints on the ODIs, thus the
spherical detector is expected to focus on the keypoints that
are also detected on the PIs. Our loss function for training the
spherical detector is slightly modified from Eq.(22) by only

considering two PIs and their overlapped spherical surface,
denoted as

L(I0, I1, Is) =
1

mo

mo∑
i=1

||xs
i − x̃0,1

i ||2, (27)

where xs = [xs
1, ..., x

s
mo

] is the collection of keypoints on
the partial spherical surface covered by the two PIs, mo is
the number of spherical keypoints on the partial surface, and
x̃0,1
i is the closest perspective keypoint of the i-th spherical

keypoint, which comes from the collection of the keypoints
on the two PIs (x0,1). x̃0,1

i is achieved by

x̃0,1
i =argmin

x0,1
j

[Dis(xs
i , x

0,1
1 ), ..., Dis(xs

i , x
0,1
2m)]

with j ∈ {1, ..., 2m}.
(28)

V. EVALUATION AND ANALYSIS

A. Experimental Setup

We compare OmniKL with several classic hand-crafted and
learning-based approaches for the keypoint matching task. For
the hand-crafted approaches, we use five baselines including
SIFT [15], ORB [20], Spherical SIFT [8], SPHORB [9], and
BRISKS [10], all of which are entire frameworks including
the keypoint detector and descriptor. For the learning-based
approaches, we choose the state-of-the-art end-to-end train-
able approaches SuperPoint [26], RF-Net [27], and ASLFeat
[28] for comparison. Additionally, we also compare with T-
ASLFeat, which performs ASLFeat on the tangent plane to
detect ODI keypoints. Two matching scenarios including ovo
and ovp are considered, and we use two metrics to evaluate
the performance of all the approaches. The first is the keypoint
repeatability rate, calculated as the ratio between the number
of matched point-to-point correspondences of keypoints and
the lower number of keypoints detected in the two images. The
second metric is the mean keypoint matching accuracy, and it
is computed as the ratio between the correct matchings (3-pixel
threshold) and the total number of matchings [46]. Generally,
the keypoint repeatability rate is used to measure the effective-
ness of the detector, while the matching accuracy indicates the
performance of the descriptor. For fair comparison, we enforce
all the models to consider the same number of keypoints per
image. Considering the training burden, the number is set to
64, which is also a popular setting for the batch size, making
the model easy to process the cropped patches in parallel.

To prepare our data, we select twelve base PI-center-
positions ((±30◦, 0◦), (±30◦,±60◦), (±30◦,±120◦) and
(±30◦, 180◦)) on the sphere, and then generate 36 PIs around
each position with a random offset on latitudes and longitudes
within [−30◦, 30◦]. The PIs for each base PI-center-position
form a group. For each PI, the size is 128 × 128, and the
FoV is 120◦. After obtaining a well-trained model, the FoV
size of PIs will not affect its inference performance because it
has been trained to learn general features on PIs, and thus its
effectiveness is universal on PIs of different FoV. When pre-
training the perspective module, we randomly choose three
pairs of images from each group of PIs, totally 36 pairs for
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TABLE I
PERFORMANCE OF IMAGE MATCHING UNDER THE ROTATIONS AROUND THREE AXES.

Task Scene Method Repeatability Rate Matching Accuracy
Roll Pitch Yaw Average Roll Pitch Yaw Average

ovo

PanoContext

SIFT 0.669 0.688 0.832 0.730 0.607 0.625 0.792 0.675
ORB 0.737 0.741 0.825 0.768 0.600 0.608 0.765 0.658

Spherical SIFT 0.729 0.746 0.869 0.781 0.627 0.637 0.782 0.682
SPHORB 0.742 0.751 0.869 0.787 0.641 0.643 0.808 0.697
BRISKS 0.733 0.746 0.858 0.779 0.650 0.649 0.812 0.704

SuperPoint 0.691 0.709 0.829 0.743 0.580 0.572 0.767 0.640
RF-Net 0.710 0.702 0.840 0.751 0.597 0.594 0.762 0.651

ASLFeat 0.724 0.706 0.843 0.758 0.605 0.603 0.793 0.667
T-ASLFeat 0.739 0.738 0.875 0.784 0.653 0.635 0.829 0.709
OmniKL 0.759 0.767 0.891 0.806 0.679 0.683 0.885 0.749

Panoramic 3D Outdoor

SIFT 0.586 0.580 0.815 0.660 0.505 0.506 0.767 0.593
ORB 0.661 0.678 0.781 0.707 0.481 0.485 0.729 0.565

Spherical SIFT 0.710 0.715 0.826 0.750 0.565 0.526 0.790 0.627
SPHORB 0.722 0.733 0.839 0.765 0.581 0.541 0.791 0.638
BRISKS 0.706 0.707 0.822 0.745 0.563 0.521 0.776 0.620

SuperPoint 0.651 0.663 0.769 0.694 0.484 0.477 0.742 0.568
RF-Net 0.694 0.705 0.807 0.735 0.535 0.486 0.774 0.598

ASLFeat 0.682 0.695 0.799 0.725 0.526 0.487 0.769 0.584
T-ASLFeat 0.713 0.719 0.833 0.755 0.573 0.527 0.806 0.635
OmniKL 0.741 0.738 0.859 0.779 0.587 0.538 0.802 0.642

ovp

PanoContext

SIFT 0.658 0.660 0.649 0.656 0.287 0.289 0.284 0.287
ORB 0.549 0.543 0.540 0.544 0.259 0.257 0.264 0.260

Spherical SIFT 0.794 0.808 0.827 0.810 0.329 0.313 0.321 0.321
SPHORB 0.805 0.812 0.827 0.815 0.336 0.321 0.324 0.327
BRISKS 0.780 0.792 0.801 0.791 0.317 0.304 0.299 0.307

SuperPoint 0.763 0.764 0.776 0.768 0.202 0.199 0.218 0.206
RF-Net 0.778 0.782 0.778 0.779 0.223 0.214 0.225 0.221

ASLFeat 0.775 0.781 0.790 0.782 0.231 0.218 0.230 0.226
T-ASLFeat 0.799 0.806 0.839 0.815 0.354 0.342 0.351 0.349
OmniKL 0.839 0.842 0.859 0.847 0.371 0.365 0.383 0.373

Panoramic 3D Outdoor

SIFT 0.629 0.618 0.603 0.617 0.262 0.251 0.252 0.255
ORB 0.484 0.490 0.505 0.493 0.230 0.241 0.238 0.236

Spherical SIFT 0.762 0.749 0.743 0.751 0.289 0.265 0.276 0.277
SPHORB 0.771 0.759 0.758 0.763 0.297 0.262 0.283 0.281
BRISKS 0.755 0.743 0.741 0.746 0.276 0.251 0.257 0.261

SuperPoint 0.720 0.717 0.720 0.719 0.138 0.136 0.152 0.142
RF-Net 0.731 0.727 0.727 0.728 0.163 0.173 0.173 0.170

ASLFeat 0.728 0.722 0.716 0.722 0.169 0.171 0.179 0.173
T-ASLFeat 0.755 0.739 0.763 0.752 0.307 0.256 0.273 0.279
OmniKL 0.767 0.769 0.772 0.769 0.310 0.285 0.289 0.295

twelve base PI-center-positions for one ODI, while for pre-
training the spherical module, we select one PI from each
group of PIs for every ODI to generate ground-truth keypoints
covering the whole spherical surface. In the co-training stage,
an ODI and one of its corresponding perspective pairs are
chosen to form the triplet input, totally 12 triplets for each
ODI.

The models used for evaluation are trained on the PanoCon-
text [47] and Multi-modal Panoramic 3D Outdoor dataset
[48], respectively, towards keypoint detection in indoor and
outdoor scenes. We randomly select 100 images from each
scene contained in the dataset for training, and the remaining
images are used for evaluation. The Adam optimizer [49] is
used for tuning the weights, with a learning rate of 0.0001,
and the total number of epochs is 100. For the scaling factors
that balance the loss functions, we set λc = 0.5 and λs = 0.1
in Eq.(18) and Eq.(24), λp = 0.1 and λq = 1.0 in Eq.(23),
and λo = 0.5 in Eq.(25).

B. Matching between Synthetic Images

1) ODIs vs. ODIs (ovo): OmniKL is evaluated for the
keypoint matching between ODIs rotated from 5◦ to 35◦. Since
there are three axes for a 3D rotation, including roll, pitch and
yaw, our experiments are performed individually on each axis.

Tab. I shows the average results on all the rotation angles.
Among the three axes for this scenario, all the approaches
perform the best on the yaw axis. It is because the rotation
around the yaw axis for an ODI is equivalent to translating
the projected panorama image along the horizontal axis,
which reserves the most similar features compared to the
rotations around other axes. We also notice that the spherical
approaches (OmniKL, Spherical SIFT, SPHORB, BRISKS,
and T-ASLFeat) perform better than the planar approaches. For
example, on the indoor scene dataset, the average repeatability
rates of SPHORB and ours are 0.787 and 0.806, respectively,
while the maximum of those of the planar approaches is 0.768;
the average matching accuracy of SPHORB and OmniKL are
0.697 and 0.749, while the maximum for the planar ones
is 0.675. Besides, OmniKL is superior to SPHORB with
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(a) (b)

(c) (d)

Fig. 7. The results of ovo matching on the indoor scene dataset, where the
top row shows the results with roll rotation and the bottom row shows those
for yaw rotation.

more than 1% and 5% in repeatability rate and matching
accuracy, which indicates the effectiveness and robustness of
OmniKL in learning ODI keypoints. Admittedly the match-
ing under only 64 keypoints is a challenging work because
fewer keypoints means also fewer candidates for calculating
the correspondences. Therefore, the superiority of OmniKL
also indicates its capability in maintaining the ranking of
the keypoints against the geometric transformations. For our
evaluation dataset SPHORB does not achieve results that are
comparable with those reported in the original paper that
included the code publicly on a website. A potential reason
is that we used a different testing dataset when compared to
[9] which means that a different data distribution may lead
to results with minor differences. When compared with ORB,
the improvements of SPHORB in our experiment and [9] are
similar. It is also worth noting that T-ASLFeat that operates
on the tangent plane also achieves a good performance which
is due to the fact that suffers from lower distorted represen-
tations for the omnidirectional images. However, it relies on
repeated operations on a collection of tangent images, and the
recombining strategy for aligning or blending the keypoints
from different tangent images is still an open problem.

Fig. 7 further presents the results by plotting the curves of
the repeatability rate and the matching accuracy at different
rotation angles on the indoor scene dataset. As the behaviors
of the approaches on the roll and pitch axes are similar, we
only show the results on the roll and yaw axes. It can be
seen that the lines indicating the results of the four spherical
approaches are always above the other lines, and the red
line which corresponds to OmniKL in the beginning is quite
ahead relative to the other lines. The behavior on the yaw
axis is rather different from that on the roll axis. As we can
see, the repeatability rates and matching accuracies do not
always decrease with the increasing of the angles, instead, the

change of the accuracies (or the rates) is periodic, and they
reach their peaks when the rotational angle is approximately
25◦. A possible reason for this is that the yaw rotation of
the original ODI is equal to the periodic translation of the
panorama along the longitude axis. As the pixels on the ODI
occur cyclically during the translation, if the image is rotated
to a position in which some key objects in it are split to
the left and right sides of the image, the performance of the
methods will decrease. Instead, when the image is rotated
to reserve more integrated objects, the methods will perform
better, and the rotation of a 25◦ angle may be one of the
rotation angles that can retain more accurate features of the
image for processing. Another reason may be that we only use
the top-64 keypoints for evaluation, which makes it harder to
explore the correspondences among the keypoints, especially
on the ODIs, whose resolutions are often relatively high. We
observe a similar phenomenon on the outdoor scene dataset,
and due to space limitations, we only present the results on
the indoor ODIs.

To evaluate the generalizability of OmniKL, we perform a
cross validation for the models trained on different datasets.
First, it is done for the model trained with the indoor ODIs on
the test images from the outdoor dataset, and the repeatability
rate and matching accuracy is 0.73 and 0.62, respectively.
Then we exchange the training and testing data, and the
repeatability rate and matching accuracy reduce to 0.7 and
0.58, respectively. The variation of the results is induced from
the differences of the ODIs in the two datasets: The images in
the indoor dataset are of high quality, then the model trained
on them can capture more general features for ODIs, and
thus it can generalize well to the outdoor dataset. On the
other hand, the quality of the ODIs in the outdoor dataset
are of relatively poor quality, which affects the capability
of the trained model for extracting accurate features, and it
further limits its generalizability to other datasets. Despite the
differences on the two datasets, the results still indicate that
OmniKL can generalize to unknown ODIs.

2) ODIs vs. PIs (ovp): We evaluate the performance of
OmniKL for detecting perspectively equivariant keypoints by
calculating the correspondences between PI and ODI key-
points.

The results of this experiment are shown in Tab. I. Here
we observe that the repeatability rate of OmniKL outperforms
those of others by 1% ∼ 30%, which indicates the detector can
localize the spherical keypoints with high correspondence to
perspective keypoints. Compared to the repeatability rate, the
matching accuracies of the approaches are obviously lower,
due to the difficulty of generating consistent feature repre-
sentations from two different domains. The average match-
ing accuracy of OmniKL reaches 0.373, which outperforms
those of other approaches by 2% ∼ 16%. The comparative
performance in matching accuracies demonstrates that Om-
niKL can capture accurate features from the perspective and
spherical domains synchronously. Additionally, the spherical
baselines, especially SPHORB, achieve better performance in
matching accuracy among the baselines, which indicates their
effectiveness in capturing robust features against the projection
between ODIs and PIs. However, Spherical SIFT needs an
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(a) SIFT, 31.3% (b) SuperPoint, 26.6% (c) ASLFeat, 28.1%

(d) Spherical SIFT, 39.0% (e) SPHORB, 42.2% (f) OmniKL, 45.3%

Fig. 8. Matching between perspective and omnidirectional images for PanoContext dataset. The matching accuracies are listed for each approach.

(a) SIFT, 21.8% (b) SuperPoint, 23.4% (c) ASLFeat, 25.0%

(d) Spherical SIFT, 31.3% (e) SPHORB, 32.8% (f) OmniKL, 37.5%

Fig. 9. Matching between perspective and omnidirectional images for Panoramic Outdoor dataset. The matching accuracies are listed for each approach.

additional mapping step to align the spherical descriptions with
the planar perspective ones that are generated by SIFT. The
approach seems fussy and the mapping itself will introduce
description alignment errors. Although SPHORB and BRISKS
achieve a matching between ODIs and PIs by projecting the
PIs to the sphere, since the specific pose parameters for PIs
are not known in advance, they make a strong assumption on
the PIs with a fixed focal length and a constant FoV. This does
not conform with the actual case. Contrary to that, OmniKL
does not require the assumption for the a-priori knowledge of
the PIs, and directly makes a match for PI with a spherical
one using consistent descriptions generated in a data-driven
manner, which is more skillful in extracting in-depth and
accurate features than the hand-crafted approaches.

Fig. 8 and Fig. 9 show some examples of ovp matching for
SIFT, SuperPoint, ASLFeat, Spherical SIFT, SPHORB, and
OmniKL. The correct matchings are plotted in green color and
the false ones are in red. Admittedly, the great gap of the FoV
between PIs and ODIs raises difficulties for ovp matching.
Yet, OmniKL still keeps its competitiveness compared to the
baselines in this scenario. In the PIs, the meaningful objects,
including the bookshelf and wall hangings in Fig. 8 and
buildings and trees in Fig. 9, still receive more attention than
the background (floors, walls, skies). Not only that, the PI
keypoints are also detected on the ODIs, and nearly 30%-40%

of them are matched accurately through their descriptions. The
visualization results indicate the effectiveness of OmniKL in
detecting perspectively equivariant keypoints and generating
consistent descriptions for them.

C. Matching between Realistic Images

The performance of OmniKL is also evaluated on the real
captured images, and we show the matching results in Fig. 10
and Fig. 11. Fig. 10 shows the ovo matching results in the
scene containing a building1. It can be observed that OmniKL
outperforms other baselines almost 3%-20% under the condi-
tion of the moving camera. Besides, it is worth noting that
the two images are captured from different viewpoints, which
indicates that our proposed approach is robust to viewpoint
changes. We further perform experiments on 200 images from
the KASHIWA dataset [50] consisting of images captured
with changing viewpoints, and the results are shown in Tab.
II. It can be seen that even with the small-scale viewpoint
changes, due to the preferable image quality all the approaches
perform better than those in the conditions illustrated in Tab. I.
Among the approaches, OmniKL exceeds the others on both
repeatability rates and matching accuracies, which indicates
its effectiveness in the case of viewpoint changes. Moreover,

1https://github.com/openMVG/Image-datasets
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(a) SIFT, 67.7% (b) SuperPoint, 83.5% (c) ASLFeat, 85.2%

(d) Spherical SIFT, 81.9% (e) SPHORB, 86.3% (f) OmniKL, 89.1%

Fig. 10. Matching between ODIs captured around the building with different viewpoints. The matching accuracies are listed for each approach.

we do not re-train our model in this experiment, and it shows
that OmniKL can generalize to unseen datasets with different
scenes, viewpoints, and camera intrinsics.

TABLE II
THE REPEATABILITY RATES (REP.) AND MATCHING ACCURACIES (MAT.)

OF THE OVO MATCHING ON ODIS WITH CHANGING VIEWPOINTS.

SIFT Spherical SIFT SPHORB SuperPoint ASLFeat OmniKL
Rep. 0.752 0.821 0.836 0.787 0.796 0.843
Mat. 0.602 0.763 0.776 0.729 0.751 0.788

Fig. 11 shows the ovp matching results on two pairs of
realistic images. Compared to Spherical SIFT and SPHORB,
OmniKL achieves better matching performance in both im-
ages. Besides the matching accuracy, the distribution of the
keypoints detected by OmniKL is more uniform than others.
For example, in the top row, Spherical SIFT and SPHORB
mainly focus on the statue, while OmniKL can detect the
keypoints on other areas including the pedestal and the clouds,
which helps it better estimate the camera pose. We also notice
that all of the approaches perform better on the two real
captured images than the synthetic datasets including indoor
and outdoor ODIs. The reason is that the PIs corresponding
to the realistic ODIs are captured around the equator of the
ODIs, and they do not suffer from significant deformation
when compared to PIs from other positions. Therefore, the

features extracted from them are more accurate, and they lead
to a good matching performance.

D. Ablation Study

We perform an ablation study to test the performance of the
kernel-adaptive convolution, DCPS, and spherical cropper.

1) Kernel-adaptive Convolution: We replace the kernel-
adaptive convolution in the spherical detector with EquiConv
to evaluate its impact on the performance of OmniKL. The
results presented in Tab. III indicate that the kernel-adaptive
convolution improves both the repeatability rate and matching
accuracy compared to the EquiConv, which only uses latitude-
specific deformations to deform its kernels. For ovo matching
on the PanoContext dataset, the improvement of the repeata-
bility rate when applying kernel-adaptive convolution is 1.5%,
and that of the matching accuracy is 0.8%. The ascendant
performance of the kernel-adaptive convolution derives from
its ability to extract accurate features from ODIs, which is
the consequence of the convex-hull-based deformed kernels
and the strategy to make the kernels learn to fine-tune their
receptive fields to be adaptive to the semantic information.

2) DCPS: In this experiment, the DCPS operations in both
the spherical and perspective modules are replaced by the
traditional spatial softmax, with the other components fixed.
The experimental results are shown in Tab. III.



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. XX, NO. XX, XX XX 13

(a) Spherical SIFT, 41.2% (b) SPHORB, 47.7% (c) OmniKL, 54.6%

(d) Spherical SIFT, 50.9% (e) SPHORB, 55.3% (f) OmniKL, 59.4%

Fig. 11. Matching between two pairs of real captured perspective and omnidirectional images. The matching accuracies are listed for each approach.

TABLE III
AVERAGE RESULTS ON THREE ROTATION AXES OF ABLATION EXPERIMENT.

Task Scene Approach Repeatability Rate Matching Accuracy

ovo

PanoContext
OmniKL (with EquiConv) 0.791 0.741

OmniKL (with spatial softmax) 0.766 0.721
OmniKL (with bilinear cropper) 0.775 0.679

OmniKL 0.806 0.749

Panoramic 3D Outdoor
OmniKL (with EquiConv) 0.772 0.637

OmniKL (with spatial softmax) 0.736 0.631
OmniKL (with bilinear cropper) 0.750 0.593

OmniKL 0.779 0.642

ovp

PanoContext
OmniKL (with EquiConv) 0.836 0.365

OmniKL (with spatial softmax) 0.813 0.334
OmniKL (with bilinear cropper) 0.825 0.307

OmniKL 0.847 0.373

Panoramic 3D Outdoor
OmniKL (with EquiConv) 0.760 0.283

OmniKL (with spatial softmax) 0.747 0.260
OmniKL (with bilinear cropper) 0.738 0.249

OmniKL 0.769 0.295

It can be observed that the DCPS operation dramatically
improves the performance of OmniKL compared to that using
the spatial softmax. Specifically, DCPS is superior to spatial
softmax with repeatability rates and matching accuracies of
3%-5% on almost all the matching tasks. The remarkable
capability of DCPS for localizing keypoints on the feature
map benefits from the global ranking of candidate keypoints
generated by DCPS in the training stage, and it makes the
learning at the detector directly focus on the points with
globally high scores on the whole feature map, while the
spatial softmax can only provide local points from narrow
windows.

3) Spherical Cropper: In our design, we project the
panorama to the spherical surface and use rectilinear projection
to generate patches for ODIs to avoid the deformation raised
by directly performing bilinear crop on the panorama. To
evaluate the necessity of this processing, we replace the
spherical cropper in the spherical module with a bilinear
cropper as in the perspective module, and the results are shown
in Tab. III.

Generally, the spherical cropper outperforms the bilinear
cropper, especially on the matching accuracy. Take the ovo
matching as an example, the matching accuracy of the ap-
proach with bilinear cropper on the PanoContext dataset is

only 0.679, while that with our proposed spherical cropper
reaches 0.749, which verifies that the spherical cropper can
generate patches with low deformation for ODIs, resulting in
more robust descriptions for spherical keypoints. Additionally,
although the two comparative frameworks in this experiment
share the same architecture of detector, the approach with the
spherical cropper still performs better than that with the bi-
linear cropper, and it indicates that the inaccurate descriptions
negatively affect the training of the detector, and decrease its
ability to localize keypoints.

Synthetically analyzing the results of four approaches in
Tab. III, we conclude that kernel-adaptive convolution, DCPS,
and spherical cropper are essential components in OmniKL
for localizing keypoints and generating descriptions.

TABLE IV
AVERAGE PERFORMANCE OF DIFFERENT APPROACHES UNDER THE

CONDITION OF 2K KEYPOINTS ON THREE ROTATIONAL AXES.

Spherical SIFT SPHORB SuperPoint ASLFeat OmniKL
Rep. 0.934 0.949 0.907 0.916 0.963
Mat. 0.801 0.812 0.761 0.779 0.821
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TABLE V
ROTATION ERROR RATES OF DIFFERENT APPROACHES FOR POSE ESTIMATION.

Threshold SIFT Spherical SIFT ORB SPHORB SuperPoint ASLFeat OmniKL
0.2◦ 0.55 0.32 0.59 0.25 0.62 0.56 0.28
0.5◦ 0.29 0.18 0.21 0.14 0.26 0.17 0.12
1.0◦ 0.08 0.04 0.05 0.02 0.08 0.09 0.01

TABLE VI
TRANSLATION ERROR RATES OF DIFFERENT APPROACHES FOR POSE ESTIMATION.

Threshold SIFT Spherical SIFT ORB SPHORB SuperPoint ASLFeat OmniKL
5◦ 0.60 0.57 0.57 0.54 0.55 0.58 0.54
10◦ 0.41 0.32 0.38 0.30 0.42 0.60 0.32
20◦ 0.34 0.30 0.34 0.29 0.67 0.31 0.28

TABLE VII
COMPUTATION TIMING FOR EACH APPROACH ON ODIS SIZED OF 1024×512.

Approach SIFT Spherical SIFT ORB SPHORB SuperPoint ASLFeat OmniKL
Time (ms) 380 44179 122 857 667 6750 1433

E. Detecting More Keypoints

In this experiment, we increase the number of keypoints
to 2k, and evaluate some well-performed approaches shown
in Tab. I in detecting ODI keypoints on the indoor scene
PanoContext dataset, and the average results over three ro-
tational axes are shown in Tab. IV. We are surprised to
notice that both the repeatability rates and matching accuracies
improve compared to those in Tab. I when the number of de-
tected keypoints is increased, the main reason of which is that
the image transformations affect the ranking of the detected
keypoints, and thus fewer number of keypoints means lower
overlap of the keypoints on different images. Among all of the
approaches, it can be observed that OmniKL is still superior
to others under this setting. It is important to point out that we
reuse the model that was trained with 64 keypoints, instead of
re-training it with 2k keypoints in this experiment. Therefore,
its generalization to the case of 2k keypoints indicates that our
model learns not only the ranking of the keypoints, but also
more general representations for the input ODIs. Additionally,
re-training OmniKL with 2k keypoints will definitely improve
further its performance, while the training procedures of other
DNN-based approaches are number-irrelevant, and thus there
is less space for improvement for them in this case.

F. Cross-View Camera Pose Estimation

Cross-view pose estimation with ODIs is a key step in
several computer vision applications. The typical pipeline for
solving this problem is to match the keypoints in two views
and then use the point-level correspondences to estimate the
camera pose. In this experiment, we reuse the models trained
on the indoor scene dataset, rather than re-train them on the
new dataset. We consider ODI pairs captured by a moving
camera and estimate the rotation matrix or a translation
vector from them. Note that rotations and translations are
estimated separately, thus the transformations are also applied
on the camera separately. We follow the methods in [51], and

use Blender2 to generate 100 realistic synthetic ODIs from
public 3D models including Classroom, Urban, and Indoor.
We change the camera pose to render ODI pairs, and the
rotation angles range from 5◦ to 40◦ (the rotational axis is not
fixed, which means the image is rotated around multiple axes
simultaneously), while the translation distances range from
0.1m to 2m. Tab. V shows the average estimation error rates
for ten runs under different rotational angles for the camera. It
can be observed that the estimation error rates for our approach
are lower than those of the baselines with up around 1% to
30%, which indicates the superior performance in localizing
and describing keypoints of OmniKL. We also evaluate the
localization ability of OmniKL for translating cameras. Since
the estimated translation vectors are obtained up to a scale
parameter, we compute the translation error as the angle from
the ground truth. We evaluate the translation error rates on
different angle thresholds, and the results are shown in Tab.
VI. It can be observed that all the approaches achieved over
30% errors even though the threshold up to 20◦. Despite the
difficulties for localizing translating camera in this experiment,
OmniKL still outperforms slightly the other schemes. As the
model is not re-trained, it indicates the good generalization
capability of OmniKL towards pose-changing matching.

G. Timing

We compare the timing of OmniKL with those of the
baselines on a computer installed with an Intel Xeon E5-
2680 CPU and an NVIDIA TITAN Xp GPU, and the re-
sults are presented in Tab. VII. For the same ODI sized of
1024×512, the two planar hand-crafted approaches, including
SIFT and ORB, process faster than the other approaches.
However, considering their limitation in accuracy against large
viewpoint variations, the millisecond-level improvement on
computational cost is insignificant. When it comes to the
spherical approaches, SPHORB is the fastest, OmniKL is

2https://www.blender.org
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slightly behind, and Spherical SIFT is much more time-
consuming than them. A vital reason for the lower time cost
for SPHORB is that it pre-computes the geodesic projection
matrix for ODIs. However, the matrix is strongly correlated to
the spatial size of the ODIs, and thus it should store massive
matrices corresponding to different image sizes, which is not
practical in real-world systems. In contrast, our approach can
take images with any size as its input, and the processing
speed is also competitive. Note that the most time-consuming
step in OmniKL is generating candidate keypoints in DCPS,
while the number of the retained keypoints does not affect
this operation. Besides, the patch cropping step is essentially
an interpolation operation, which can be realized in parallel.
Therefore, OmniKL can maintain similar processing speeds
for different number of detected keypoints.

VI. CONCLUSION

With the objective of detecting perspectively equivariant
keypoints on the ODIs, in this paper, we propose a learnable
framework, namely OmniKL for localizing and describing
keypoints on the ODIs and PIs, generating universal and
consistent descriptions for them. We introduce a kernel-
adaptive convolution and a DCPS operation in the detector for
improving its capability in localizing keypoints, and we devise
a spherical cropper to generate non-deformed patches from
ODIs for more accurate spherical descriptions. Furthermore,
we propose a training strategy that combines self-supervision
and co-supervision to train the whole framework from scratch
without requiring any labeled data. Massive experiments per-
formed on the synthetic and realistic 360◦ images for ovo and
ovp matching show that OmniKL is superior to the state-of-
the-art approaches.
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[38] T. S. Cohen, M. Geiger, J. Köhler, and M. Welling, “Spherical cnns,” in
International Conference on Learning Representations (ICLR), 2018.

[39] C. Esteves, C. Allen-Blanchette, A. Makadia, and K. Daniilidis, “Learn-
ing so (3) equivariant representations with spherical cnns,” in Proceed-
ings of the European Conference on Computer Vision (ECCV), 2018,
pp. 54–70.

[40] G. Potje, R. Martins, F. Chamone, and E. Nascimento, “Extracting
deformation-aware local features by learning to deform,” in Advances
in Neural Information Processing Systems (NIPS), 2021, pp. 10 759–
10 771.

[41] C. Curto, V. Itskov, A. Veliz-Cuba, and N. Youngs, “The neural ring:
An algebraic tool for analyzing the intrinsic structure of neural codes,”
Bulletin of Mathematical Biology, vol. 75, 06 2013.

[42] C. Curto, E. Gross, J. Jeffries, K. Morrison, M. Omar, Z. Rosen, A. Shiu,
and N. Youngs, “What makes a neural code convex?” SIAM Journal on
Applied Algebra and Geometry, vol. 1, no. 1, pp. 222–238, 2017.

[43] Y. Zhang, Y. Liu, J. Liu, J. Miao, A. Argyriou, L. Wang, and Z. Xu,
“360-attack: Distortion-aware perturbations from perspective-views,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2022, pp. 15 015–15 024.

[44] M. Blondel, O. Teboul, Q. Berthet, and J. Djolonga, “Fast differentiable
sorting and ranking,” in International Conference on Machine Learning
(ICML), 2020, pp. 950–959.

[45] T. Cohen and M. Welling, “Group equivariant convolutional networks,”
in International Conference on Machine Learning (ICML), 2016, pp.
2990–2999.

[46] K. Mikolajczyk and C. Schmid, “A performance evaluation of local
descriptors,” IEEE Transactions on Pattern Analysis and Machine Intel-
ligence (TPAMI), vol. 27, no. 10, pp. 1615–1630, 2005.

[47] Y. Zhang, S. Song, P. Tan, and J. Xiao, “Panocontext: A whole-room
3d context model for panoramic scene understanding,” in European
Conference on Computer Vision (ECCV), 2014, pp. 668–686.
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