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Abstract—This paper presents a hybrid data-driven method,
termed moving average-Hankel-dynamic mode decomposition
(MAHankDMD), for joint direction of arrival (DOA) and
frequency estimation in environments affected by both radio
frequency interference (RFI) and Gaussian white noise. The
proposed approach integrates two key components: (1) a moving
average-DMD filter that effectively mitigates Gaussian white
noise and separates RFI from the source signal, and (2) a Hankel-
DMD method that accurately estimates the DOA of the filtered
signal and associates it with the corresponding frequency. The
moving average-DMD stage first enhances the signal-to-noise
ratio and improves the robustness of the estimation process
through noise and inference mitigation, while the subsequent
Hankel-DMD stage enables reliable parameter extraction even for
overlapping sginals or strong interference conditions. Numerical
simulations demonstrate the robustness of MAHankDMD, show-
ing its ability to precisely estimate both DOA and frequency
under challenging conditions involving RFI and Gaussian white
noise interference. The proposed algorithm thus provides an
effective solution for channel parameter estimation in complex
noisy environments.

Index Terms—Radio frequency interference, Gaussian white
noise, direction of arrival, joint estimation, moving average filter,
dynamic mode decomposition.
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I. INTRODUCTION

Within cognitive radio technology, the simultaneous esti-
mation of direction of arrival (DOA) and frequency plays a
critical role in enhancing spectral utilization efficiency [1], [2]
and improving localization accuracy [3], [4], [5], [6]. This
joint estimation process has attracted increasing attention due
to its capacity to improve both spatial and temporal sensing
of the communication environment, thereby strengthening link
quality [7], [8], [9]. To address the joint DOA and frequency
estimation problem, numerous methods have been developed,
including Jacobi rotation [10], general single-pole autoregres-
sive moving-average model [11], estimation of signal param-
eters via rotational invariant techniques (ESPRIT) with sub-
Nyquist sampling [5], [12], 2D multiple signal classification
(MUSIC) [13], convolutional neural network (CNN)-based
methods [14], [15]. These methods have achieved notable
success in extracting signal parameters under various condi-
tions. However, some challenges remain, such as the need for
parameter matching after estimation [16], the assumption of a
known number of sources [17], or sensitivity to interference
and noise [18]. These open problems suggest that there is
still a need for the development of more flexible and robust
techniques that can perform reliably across a wider range of
practical scenarios.

Another major challenge arises from the pervasive presence
of noise and interference in practical signal environments.
Existing methods such as spatial smoothing [19], Kalman
filtering [20], and time-frequency analysis [21] are effective for
mitigating Gaussian noise, but often struggle with structured
interference like radio frequency interference (RFI). RFI,
which may stem from hardware imperfections or intention-
al jamming [22], [23], can significantly degrade estimation
performance by contaminating the spectral environment. This
leads to increased uncertainty and reduced communication
reliability [24], [25]. The problem is especially critical in
cognitive radio systems, where accurate spectrum sensing is
essential for enabling dynamic access and avoiding inter-
ference [26]. Fig. 1 illustrates the conceptual challenge of
joint DOA and frequency estimation in the presence of both
sources and RFI. In this scenario, signals are transmitted
simultaneously toward a uniform linear array (ULA) from mul-
tiple directions, with terrestrial base stations representing the
sources of interest (SOIs) and low-altitude UAVs representing
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RFI. While the goal is to localize and track the SOIs, the
presence of RFI complicates this process, as interfering signals
obscure the spectral and spatial features of the SOIs. In addi-
tion to structured signals such as RFI, Gaussian white noise
represents another significant factor that impairs estimation
performance [27], [28]. In high-noise environments, Gaussian
white noise can overwhelm the true SOIs’ signal components,
further compromising the accuracy of DOA and frequency
estimation. When the noise power is sufficiently high, it
becomes increasingly difficult to resolve weak signal features,
thereby necessitating noise-resilient estimation strategies [29].
While existing dynamic mode decomposition (DMD)-based
methods offer powerful modal analysis tools, they suffer from
sensitivity to Gaussian noise and structured interference [30],
[31]. These challenges highlight the need for the development
of more robust and adaptive joint estimation methods that
can effectively operate under complex interference and noise
conditions.

In this paper, we propose a moving average-Hankel-dynamic
mode decomposition (MAHankDMD) approach to jointly esti-
mate the DOA and frequency of multiple narrowband sources
in environments contaminated by both RFI and Gaussian
white noise. The proposed framework performs simultaneous
DOA and frequency estimation from the space-time signals
received by a ULA. It enables the identification of both
SOIs and RFI, provided that their frequency differences are
known in advance. The proposed method accurately pairs each
frequency component with its corresponding spatial angle,
enabling the separation of useful signals from interference.
The main contributions are highlighted as follows:

1) We introduce the hybrid framework, MAHankDMD, for
joint DOA and frequency estimation in the presence of
RFI and Gaussian white noise. With this approach, fre-
quencies and DOA are extracted directly from the eigen-
values and eigenvectors, respectively. As each eigenvalue-
eigenvector pair corresponds to a distinct signal com-
ponent, the method inherently achieves pairing-free es-
timation, eliminating the need for additional parameter
matching procedures.

2) The moving average filter is incorporated into our
proposed MAHankDMD framework to preprocess the
spatial-temporal signal prior to decomposition. This fil-
tering step reduces the impact of Gaussian white noise
and stabilizes the input data. By enhancing the signal-to-
noise (SNR) ratio before dynamic mode extraction, the
moving average filter substantially improves the robust-
ness of the estimation process. Comparative experiments
show that, particularly under low SNR conditions, the
MAHankDMD method with moving average filtering
achieves significantly better performance than standard
DMD in terms of both stability and estimation accuracy.

3) The proposed framework allows for the precise retrieval
of one-dimensional spatial distributions for both SOI and
RFI. By adopting an augmented Hankel structure, our
method facilitates the accurate extraction of multiple sig-
nal directions from the one-dimensional spatial profiles.
Also, as the number of antennas increases, the spatial
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Fig. 1. Illustration of simultaneous frequency and DOA estimation with
interference from low-altitude UAVs and signal sources from base stations.

resolution improves, leading to enhanced DOA estimation
accuracy. This approach could prove particularly effective
in scenarios involving overlapping signals or strong in-
terference.

The remainder of this article is organized as follows. Section
II provides a detailed formulation of the problem. Section III
introduces the proposed MAHankDMD method and elaborates
on its implementation. Section IV presents several benchmark
examples to validate the effectiveness of the proposed ap-
proach. Finally, Section V concludes this work.

II. PROBLEM FORMULATION

We consider a uniform linear array (ULA) consisting of L
omnidirectional sensors receiving I narrowband signals si(t),
where i = 1, 2, . . . , I , and t denotes the time variable. The
sources are assumed to be in the far field with unknown
directions of arrival θi, i = 1, 2, . . . , I . Assuming identical
sensors and no location uncertainties, the ideal steering vector
for a direction θ is given by:

a(θ) =
[
1, α(θ), . . . , α(θ)L−1

]T
, (1)

where α(θ) = exp
(
−j02πλ−1

s d sin θ
)
, with d being the inter-

sensor spacing, λs the source signal wavelength, j0 =
√
−1

and (·)T indicating the transpose. The observed array output
vector x(t) can be expressed as follows:

x(t) = As(t), (2)

where A = [a (θ1) ,a (θ2) , . . . ,a (θI)] and s(t) =
[s1(t), s2(t), . . . , sI(t)]

T. A means the ideal steering matrix
and s(t) is the vector of signal waveforms. Herein, si(t)
includes also the channel fading coefficient ui(t), namely
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si(t) = ui(t)e
j0(ωit+ϕi). Then, the received signal model at

the l-th antenna is given by

xl(t) =

I∑
i

al(θi)si(t) =

I∑
i

al(θi)ui(t)e
j0(ωit+φ(t)). (3)

With the presence of RFI sources in the channel, the signals
received by the ULA not only contain the desired signals
but also include RFI components. To extend the model by
incorporating RFI, we consider the presence of J narrowband
interferers rj(t), where j = 1, 2, · · · , J . These interference
signals rj(t) originate from independent sources, each with
an unknown DOA φj , assumed to be distinct from the source
signal directions θi, as shown in Fig. 1. The steering vector
for a direction φj corresponding to the j-th interferer can be
expressed as:

b(φ) =
[
1, β(φ), . . . , β(φ)L−1

]T
, (4)

where β(φ) = exp
(
−j02πλ−1

r d sinφ
)

is similar to the signal
steering vector, but defined for the interferer directions. The
interference signals rj(t) are modeled as generic narrowband
sinusoidal tones with random amplitude fading and phases:
rj(t) = vj(t)e

j0(ϑjt+ϕj), so that we can capture any type
of RFI. Herein, vj , ϑj , and ϕj denote the narrowband fading
channel coefficient, frequency, and phase for the j-th interferer.
The array output vector x(t) is thus augmented to include both
the desired signals and interference signals as follows:

y(t) = As(t) + Br(t), (5)

where B = [b (φ1) ,b (φ2) , . . . ,b (φJ)] is the steering matrix
for the interferers, r(t) = [r1(t), r2(t), . . . , rJ(t)]

T is the
vector of interference signals.

Additionally, additive white Gaussian noise (AWGN) is
one of the most common types of impairments in wireless
communication systems. It could originate from thermal noise
in electronic components, environmental electromagnetic e-
missions, and other random fluctuations. Generally, Gaussian
white noise is characterized by random fluctuations with a flat
spectral density and zero-mean Gaussian distribution [5], [6],
which degrades the signal-to-noise ratio (SNR) and thereby
worsens the accuracy of angle estimation. Mathematically, it
can be described as:

n(t) = [n1(t), n2(t), . . . , nL(t)]
T
, (6)

where nl(t) is the noise observed at the l-th sensor. Each
nl(t) is modeled as a zero-mean complex Gaussian random
process, namely nl(t) ∼ CN

(
0, σ2

)
. CN

(
0, σ2

)
denotes a

circularly symmetric complex Gaussian distribution. And σ2

means the noise power, which is typically assumed identical
across all array elements for simplicity. Then, the complete
received signal model can be obtained as

z(t) = As(t) + Br(t) + n(t). (7)

That is to say, incorporating the desired signals, narrowband
RFI components, and additive noise, the received signal at the
l-th antenna is:

zl(t) =

I∑
i=1

al (θi) si(t) +

J∑
j=1

bl (φj) rj(t) + nl(t). (8)

The primary objective of this study is to estimate the DOA,
denoted by θi, and the corresponding source frequencies in the
presence of RFI and Gaussian white noise. This estimation is
critical for robust signal processing and reliable performance
in practical communication systems affected by complex in-
terference environments.

III. METHODOLOGY

The proposed methodology integrates a moving average
filter for Gaussian with noise suppression and a Hankel-DMD
for robust DOA estimation. This section first introduces the
traditional DMD and then the moving average-DMD, followed
by the proposed MAHankDMD approach for the DOA and
frequency estimation in the presence of RFI and Gaussian
white noise.

A. Dynamic Mode Decomposition

According to (7), the received spatial-temporal signal of the
ULA with a T + 1 time period can be obtained as

Z =
[

z0 · · · zt · · · zT
]
∈ CL×(T+1), (9)

where zt = [z1(t), · · · , zl(t), · · · , zL(t)]
T ∈ CL×1. The

traditional DMD is a purely data-driven method designed to
build the governing equation based on the received data. In
particular, the received spatial-temporal signal, Z, is initially
reshaped into two adjacent matrices:

Z1 =
[

z0 · · · zt · · · zT−1

]
∈ CM×T , (10)

Z2 =
[

z1 · · · zt · · · zT
]
∈ CM×T . (11)

Based on the linear assumption between two adjacent states,
i.e., zt+1 = Fzt, the relationship between (10) and (11) can
be expressed as Z2 = FZ1. Herein, F refers to the mapping
matrix, and the purpose of DMD is to calculate the leading
eigenvalues and eigenvectors of F. Singular value decomposi-
tion (SVD) is used to implement the DMD steps [32]. Initially,
we apply the SVD to the first matrix Z1, which is expressed
as

Z1 = UΣV∗, (12)

where ∗ denotes the conjugate transpose. By substituting (12)
into Z2 = FZ1, we can derive the mapping matrix F as

F = Z2VΣ−1U∗. (13)

Then, U is employed to project the original system into a
corresponding reduced-dimensional system. Specifically, the
original snapshots are transformed using the proper orthog-
onal decomposition (POD) basis. It can be represented as
Ẑ1 = U∗Z1 and Ẑ2 = U∗Z2. In this reduced-dimensional
system, indicated by the notation (̂·), we define the transfor-
mation matrix F̂ = U∗FU. Consequently, we can express the
mapping relationship in the reduced-dimensional system by:

Ẑ2 = F̂Ẑ1. (14)

Importantly, the mapping matrix F̂ in the reduced-dimensional
system effectively captures dynamic characteristics. We then
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Fig. 2. Flowchart of the proposed MAHankDMD method.

address the eigenvalue problem in this compressed framework
by performing an eigendecomposition of F̂:

F̂D = DΛ, (15)

where D consists of the eigenvectors of F̂, and Λ, a di-
agonal matrix, contains the eigenvalues, denoted as λk for
k = 1, 2, ...,K. Leveraging these results, we define the DMD
eigenvectors in the original system as follows:

G = Z2VΣ−1D. (16)

The data at a given time can be represented as:

zt =

K∑
k=1

gkbke
ωkt. (17)

Here, gk is the k-th column of the matrix G, and ωk =
real(ωk) + j0imag(ωk) = ln(λk)/∆t.

By comparing the DMD expression of the data, namely
(17), to a standard signal model, namely (7), we can deduce
the frequencies of both source signals (ωi) and interference
signals (ϑj) from the distribution of ωk. Assuming prior
partial knowledge of the frequencies or the identities of SOI
and RFI, we can categorize the SOI and RFI based on the
calculated values of ωk. That is to say, we have determined
the frequency distribution, but we have not yet estimated
the angles. Additionally, due to the interference from RFI
and Gaussian noise, accurately estimating these frequencies
presents a challenge. Therefore, in the next subsections, we
will use the moving averaging technique to eliminate the
interference from Gaussian white noise and the Hankel DMD
for the angle estimation.

B. Moving Average-Dynamic Mode Decomposition

The moving average technique is a well-established method
for mitigating the impact of Gaussian white noise in signal
processing [19], [33]. Herein, by averaging adjacent columns
of the data matrix, the random fluctuations caused by noise
are smoothed out, while the underlying signal structure is
preserved. This could be particularly useful in the context of
the DMD method, a purely data-driven method, where the
accuracy of computed eigenvalues and eigenvectors depends
on the quality of the input data. Herein, we refer to this hybrid
approach as moving average-DMD.

Specifically, given the received data matrix Z, the moving
average is applied by summing and averaging ζ consecutive
columns. Mathematically, ζ refers to the window size of the

moving average filter. For a temporal signal at times tq , tq +
∆t, · · · , tq + (ζ − 1)∆t, the moving average process can be
defined as:

zq =
1

ζ

ζ−1∑
i=0

z (tq + i∆t) , (18)

where zq represents the smoothed signal at time tq . Substitut-
ing (8) into (18), one can obtain:

zq =
1

ζ

ζ−1∑
i=0

x (tq + i∆t) +
1

ζ

ζ−1∑
i=0

y (tq + i∆t)

+
1

ζ

ζ−1∑
i=0

n (tq + i∆t)

=xq + yq + nq.

(19)

Herein, 1
ζ

∑ζ−1
i=0 x (tq + i∆t) = xq , 1

ζ

∑ζ−1
i=0 y (tq + i∆t) =

yq , and 1
ζ

∑ζ−1
i=0 n (tq + i∆t) = nq . xq , yq , and nq refer to the

smoothed true signal component, smoothed RFI component,
and smoothed noise, respectively. Due to the zero-mean prop-
erty of Gaussian noise, the moving average reduces the noise
variance by a factor of ζ, effectively attenuating its impact:

Variance of nq =
σ2

ζ
. (20)

Clearly, the variance of the original noise σ2 is reduced to
σ2

ζ . By choosing an appropriate window size ζ, we ensure
sufficient noise suppression without distorting the temporal
resolution of the signal. Notably, the selection of the window
size ζ is critical. It should be sufficiently large to achieve noise
suppression, but not so large that it distorts the underlying
signal dynamics. A general guideline is to ensure ζ is smaller
than one-quarter of the shortest signal period:

ζ <
Tmin
4∆t

, (21)

where Tmin is the minimum signal period of interest, and ∆t
is the sampling interval. This ensures the moving average pri-
marily reduces noise while preserving the temporal resolution
of the signal.

Next, the moving average is integrated to the DMD frame-
work as a preprocessing step to refine the data matrices Z1

and Z2. For a received signal Z, the smoothed data matrices
Z1 and Z2 are constructed by replacing each column with the
averaged values over the window size ζ as:
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Z1 =
[
z0, z1, . . . , zT−ζ−1

]
, (22)

Z2 =
[
z1, z2, . . . , zT−ζ

]
. (23)

After applying the moving average, the smoothed data
matrices Z1 and Z2 are used in place of the original matrices,
i.e., (10) and (11) in the DMD process. To be specific, we first
perform SVD on Z1:

Z1 = U Σ V
∗
. (24)

Then, the mapping matrix F can be computed as follows:

F = Z2V Σ
−1

U
∗
. (25)

Next, U is used to project the original system into its corre-
sponding low-rank one. After that, we adopt the eigendecom-
position of F in the low-rank system to extract the system’s
dynamic modes and frequencies. Finally, the state with the
moving average can be modeled as follows:

zt =

K∑
k=1

gkbke
ωkt. (26)

Herein, zt refers to the smoothed version of the original
signal at time t after applying the moving average filter
to the received data. gk means the dynamic modes of the
system, obtained from the eigenvectors of the mapping matrix
F in the low-rank projection space. bk is the amplitudes
associated with the dynamic mode gk. ωk corresponds to
the frequencies associated with each dynamic mode, which is
derived from the eigenvalues of F. It is clear that the signal zt
represents the reconstructed signal that captures the underlying
dynamics of the system while mitigating the Gaussian white
noise interference. When signal properties are unknown, the
moving average window size can be initialized from a coarse
spectral estimate of the interference bandwidth and refined by
minimizing the reconstruction error.

C. Moving Average-Hankel-Dynamic Mode Decomposition

After applying the moving average filter, we focus on the
spatial modes and their Hankel matrix construction for the
augmented DMD analysis. To facilitate the augmented DMD
analysis, we construct the Hankel matrix using the moving-
averaged states. This approach enables effective separation
of distinct dynamic modes, which is particularly crucial for
accurate DOA estimation. The Hankel matrix is formed by
systematically stacking spatially shifted copies of the mea-
surement sequence.

In particular, we first define the spatial mode sk after
applying the moving average filter to the system’s original
state. The k-th spatial mode sk is defined as

sk = gkbk =
[
s̄1, · · · , sl, · · · , sL

]T ∈ CL×1, (27)

where gk is the dynamic mode for the k-th source. bk is
the amplitude corresponding to the k-th mode. L is the total
number of sensors in the ULA system.

Next, we shift the spatial modes into the corresponding
Hankel matrix by stacking sliding windows of the spatial
modes, which is obtained as follows:

SH =


s̄1 s̄2 . . . s̄L−c s̄L−c+1

s̄2 s̄3 . . . s̄L−c+1 s̄L−c+2

...
...

. . .
...

...
s̄c s̄c+1 · · · s̄L−1 s̄L

 . (28)

Each row of this Hankel matrix, SH, corresponds to an
augmented snapshot of the spatial modes. c is the number
of space delays used to shift the window of spatial modes. A
typical choice is to set c lager than the number of the signal
and tones. Thus it must satisfy c ≥ 2 to properly characterize
each spatial mode. We proceed with the decomposition of this
Hankel matrix SH to extract the augmented system’s dynamic
modes and their corresponding spatial frequencies information.
Similar to the DMD method, we first sort the SH into two
adjacent matrices as follows:

S
1

H =


s̄1 s̄2 . . . s̄L−c
s̄2 s̄3 . . . s̄L−c+1

...
...

. . .
...

s̄c s̄c+1 · · · s̄L−1

 , (29)

S
2

H =


s̄2 s̄3 . . . s̄L−c+1

s̄3 s̄4 . . . s̄L−c+2

...
...

. . .
...

s̄c+1 s̄c+2 · · · s̄L

 . (30)

Also, we assume that adjacent columns in the matrix SH
are related by a mapping function. This relationship can be

expressed in the following matrix form, S
2

H = FHS
1

H. We start
by performing SVD on S

1

H as follows:

S
1

H = UH ΣH V
∗
H , (31)

where UH and VH are the left and right singular vectors,
respectively. ΣH is the diagonal matrix of singular values.
Next, the mapping matrix FH can be derived as

FH = S
2

H VH Σ
−1

H U
∗
H . (32)

Finally, the augmented state in the Hankel matrix sc can be
modeled as:

sc =

Q∑
q=1

g
H
q b

H

q e
ω̄H

q l , (33)

where g
H
q represents the eigenvector associated with the q-

th dynamic mode, ωH
q is the eigenvalue corresponding to the

frequency for the k-th mode, b
H

q is the amplitude associated
with the q-th mode. The DOA is derived from the eigenvalue
ω

H
q . This allows us to pair the DOA and frequency, facilitating

the identification of the SOI and the separation from RFI. As
a result, the angle information can be effectively extracted,
allowing clear separation of the SOI from both RFI and
additive Gaussian white noise. Fig. 2 shows the flowchart of
the proposed MAHankDMD method. It is worth noting that
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MAHankDMD assumes the RFI and source signal occupy dis-
tinct frequency bands. If their frequency components overlap
significantly or coincide, the method may fail to separate them,
as the distinction relies on spectral differences. In addition,
MAHankDMD remains effective in separating the SOI from
RFI even when both signals share the same DOA, as long
as they exhibit different frequencies. Classical methods such
as MUSIC and ESPRIT rely on assumptions of spatially
white noise and uncorrelated sources, making them unsuitable
for scenarios with the RFI, where they fail to distinguish
structured interference from the SOI.

IV. RESULTS

In this section, we comprehensively evaluate the proposed
MAHankDMD method for joint DOA and frequency estima-
tion in the presence of RFI and Gaussian white noise.

A. Moving Average Filter for Frequency Estimation in the
Presence of Gaussian White Noise

To investigate the performance of the MAHankelDMD
method for frequency estimation in the presence of Gaussian
white noise, we simulate a scenario in which a ULA receives
signals from multiple sources and RFIs, with added Gaussian
white noise. The SOI configuration includes N = 2, θ1

1 =
30◦, ω1

1 = 2 GHz, θ1
2 = 45◦, ω1

2 = 2 GHz. The RFI sources are
defined by J = 2, θ2

1 = 20◦, ω2
1 =5 GHz, θ2

2 = 60◦, ω2
2 = 5

GHz. Six different SNR levels were simulated, which includes
-3 dB, -1 dB, 1 dB, 3 dB, 5 dB, and 7 dB. Each configuration
is evaluated through 500 Monte Carlo trials. In this example,
the total time sequence length was set to 300, and a moving
average filter with ζ=20 was applied, effectively smoothing
the data before performing the MAHankDMD analysis.

Fig. 3 presents the frequency estimation results obtained
by the conventional DMD and the proposed MAHankDMD
methods under the six SNR conditions. Note that the ob-
tained eigenvalues are complex numbers, where the imaginary
part corresponds to the frequencies and the real part to the
damping factors. To further examine the robustness limits of
MAHankDMD, we extended the simulations to more chal-
lenging noise conditions, i.e., SNR = -7 dB, -9 dB, and -
11 dB, whose result is plotted in Fig. 4. It is clear that
the method maintains reliable frequency estimation capability
up to SNR = -9 dB. For a more intuitive comparison, the
mean absolute error (MAE) of the estimated frequencies is
plotted in Fig. 5. The results demonstrate that for both DMD
and MAHankDMD, frequency estimation accuracy improves
as the noise level decreases, which aligns with expectations.
Importantly, across all SNR levels, the MAHankDMD method
consistently achieves lower MAE values when compared to
the conventional DMD, indicating superior performance. In
particular, under low SNR conditions such as -3 dB and -1 dB,
the DMD method exhibits significant estimation errors, often
failing to produce accurate frequency estimates. In contrast,
the MAHankDMD method remains robust, highlighting its
effectiveness in handling strong Gaussian white noise envi-
ronments. It is clear that the incorporation of the moving
average step effectively suppresses random fluctuations caused

by Gaussian white noise and significantly improves the overall
estimation performance, particularly in low-SNR scenarios.
Hence, we can conclude that the proposed MAHankDMD
method demonstrates strong robustness and superior accuracy
for frequency estimation under varying levels of Gaussian
white noise, making it a reliable solution in noisy environ-
ments.

B. Effect of Varying Window Size in Moving Average

To further investigate the impact of the moving average
filter on the performance of frequency estimation, we ex-
plore how different window sizes ζ influence the accuracy
of the proposed MAHankDMD method. The same simulation
scenario as described previously is adopted, with two SOI
sources and two RFI sources impinging on a ULA of 9
antennas, under the presence of additive Gaussian white noise.
The frequency and angular parameters remain unchanged, and
the SNR is fixed at a moderate level of 3 dB to ensure
sensitivity to changes in denoising performance. We eval-
uate different window sizes for the moving average filter:
ζ = 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50. Note that ζ = 1
corresponds to the case without any moving average filtering.
For each simulation, 500 Monte Carlo trials are performed,
and the MAE of the estimated frequencies is calculated to
assess accuracy.

Fig. 6 illustrates the effect of varying the window size ζ in
the moving average filter on the mean absolute error (MAE)
of frequency estimation using the proposed MAHankDMD
method. The x-axis denotes the number of points in the
moving average window, while the y-axis represents the cor-
responding MAE of the estimated frequencies. The bar chart
shows the MAE for each tested window size, with an overlaid
orange line and diamond markers depicting the overall trend.
As observed, the MAE is substantially high when no averaging
is applied (ζ = 1), indicating poor estimation accuracy in
noisy environments. As the window size increases, the MAE
decreases rapidly, reaching its lowest values in the range of
ζ = 20 to ζ = 30. This indicates that moderate smoothing
effectively reduces noise while preserving essential signal
dynamics. However, beyond ζ = 35, the MAE begins to rise
again. This degradation is likely due to the excessive smooth-
ing effect, which distorts the underlying temporal structure of
the signal and hampers accurate frequency extraction. This U-
shaped trend highlights the critical importance of selecting
an appropriate window size to strike a balance between
noise suppression and signal fidelity within the MAHankDMD
framework. The results suggest that a window size of ζ = 20
offers an optimal trade-off in our simulation setting, yielding
the best overall performance. Therefore, careful tuning of the
moving average window size is recommended when applying
the MAHankDMD method in practical noisy environments to
ensure reliable and accurate frequency estimation.

C. Two SOIs with Two RFI Sources

To verify the proposed method, we first consider an example
of the interference model of two SOIs with two RFI sources,
as shown in (8). Specifically for this first part of our model
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(a) (b) (c)

(d) (e) (f)

Fig. 3. Comparison of frequency estimation results between DMD and MAHankDMD methods in the presence of different Gaussian white noise environments:
SNR = (a) -3 dB, (b) -1 dB, (c) 1 dB, (d) 3 dB, (e) 5 dB, and (f) 7 dB.

(a) (b) (c)

Fig. 4. Frequency estimation results obtained by MAHankDMD methods with SNR = (a) -7 dB, (b) -9 dB, (c)-11 dB.

Fig. 5. Comparison of MAE of the estimated frequency between the tradition-
al DMD and the proposed MAHankDMD method, where SOI configuration
includes N = 2, θ11 = 30◦, ω1

1 = 2 GHz, θ12 = 45◦, ω1
2 = 2 GHz. The RFI

sources are defined by J = 2, θ21 = 20◦, ω2
1 =5 GHz, θ22 = 60◦, ω2

2 = 5
GHz.

Fig. 6. Illustration of varying the window size ζ in the moving average filter
on the MAE of frequency estimation using the MAHankDMD method, where
the configuration is the same as Fig. 5.
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Fig. 7. Analysis results of interference model: (a) real part of the distribution of original data, (b) imaginary part of distribution of original data, (c)
distribution of MAHankDMD eigenvalues, (d) comparison of the real distribution of extracted mode 1 and the analytical solution of source, (e) comparison
of the imaginary distribution of extracted mode 1 and the analytical solution of source, (f) joint estimation result for the source: N = 2, θ11 = 30◦, ω1

1 =2
GHz, θ11 = 45◦, ω1

2 = 2 GHz, (j) comparison of the real distribution of extracted mode 2 and the analytical solution of the RFI, (h) comparison of the
imaginary distribution of extracted mode 2 and the analytical solution of the RFI, (i) joint estimation result for the RFI: J = 2, θ21 = 20◦, ω2

1 =5 GHz,
θ22 = 60◦, ω2

2 = 5 GHz.

regarding the SOIs, the parameters are set as N = 2,
θ1

1 = 30◦, ω1
1 = 2 GHz, θ1

2 = 45◦, ω1
2 = 2 GHz, and for

the RFI sources the configuration parameters are J = 2,
θ2

1 = 20◦, ω2
1 =5 GHz, θ2

2 = 60◦, ω2
2 = 5 GHz. The ULA

comprises 20 antennas. The sampling frequency is 10 GHz,
and the sampling period is 10 ns. Therefore, 100 points are
sampled in the time dimension. Then, the received spatial-
temporal signal has a dimension of 20× 100.

The MAHankDMD method decomposes the received signal
into eigenvector components and their corresponding spatial
modes. Fig. 7(a) and (b) display the real and imaginary parts of
the original spatial-temporal data, while Fig. 7(c) presents the
distribution of the eigenvalues derived from the MAHankDMD
method. Clearly, the estimated frequencies corresponding to
each mode are correctly identified at 2 GHz and 5 GHz. To
evaluate the accuracy of spatial mode estimation, Fig. 7(d)
and (e) compare the real and imaginary parts of the ex-
tracted dynamic mode associated with the SOIs (mode 1)

against the analytical solution. A high degree of agreement
is observed. Similarly, Fig. 7(g) and (h) show the comparison
for the second mode corresponding to the RFI components,
again demonstrating excellent consistency. The results of the
joint frequency and DOA estimation are shown in Fig. 7(f)
and (i) for the SOIs and RFIs, respectively. The estimated
values using MAHankDMD closely match the ground truth,
confirming the accuracy and effectiveness of the proposed
method in extracting both frequency and spatial information
in the presence of strong interference. In summary, the results
clearly demonstrate that the proposed MAHankDMD method
can accurately estimate the frequency and DOA of multiple
signal components in the presence of strong radio frequency
interference and Gaussian white noise. The extracted dynamic
modes align closely with analytical solutions in both the real
and imaginary domains, and the joint estimation results for
frequency and DOA show excellent agreement with ground
truth values. These findings validate the robustness and relia-
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(a) (b)

(c) (d)

Fig. 8. Frequency estimation performance of the MAHankDMD method at
different sampling frequencies: (a) 1 GHz, (b) 2 GHz, (c) 5 GHz, and (d) 10
GHz.

bility of MAHankDMD in separating and identifying sources
and interfering signals in complex noisy environments.

D. Estimation with Subsampling

For further verification, we investigate the effect of subsam-
pling using the same parameter settings as in Fig. 7. Fig. 8(a)-
(d) respectively illustrate the distribution of MAHankDMD
eigenvalues at sampling frequencies of 1 GHz, 2 GHz, 5 GHz,
and 10 GHz. As shown in Fig. 8(a), the estimation results
at 1 GHz are inaccurate, indicating that a 1 GHz sampling
rate is insufficient for accurate spectral analysis. In contrast,
Figs. 8(b)-(d) reveal that at 2 GHz, 5 GHz, and 10 GHz, the
eigenvalue distributions exhibit well-defined mode structures,
allowing correct frequency characteristics to be recovered.
Notably, the Nyquist rate for the original signal is 10 GHz;
however, unlike traditional Fourier-based methods [34], which
rely on orthogonal basis projections and require Nyquist-
compliant sampling, the proposed MAHankDMD method does
not impose this constraint. It remains effective even when
applied to subsampled data. These results demonstrate that the
MAHankDMD method can accurately estimate both DOA and
frequency in the presence of noise and interference, even under
subsampling conditions. This capability reduces the demand
for high-rate data acquisition, thereby mitigating dependence
on expensive or high-performance hardware components.

E. Performance

To further validate the effectiveness and robustness of the
proposed MAHankDMD method under noisy environments,
a comprehensive noise analysis was conducted. Fig. 9(a) and
(b) illustrate the root mean square error (RMSE) of frequency
estimation as a function of signal-to-noise ratio (SNR), for
the first frequency component ω1

1 = 2 GHz and the second

frequency component ω2
1 = 5 GHz, respectively. Each subplot

compares performance across four configurations of the ULA
with different numbers of antenna elements: 12, 15, 18, and
20. As expected, the RMSE consistently decreases as the SNR
increases, confirming that both frequencies are estimated more
accurately under higher SNR conditions. This trend aligns
well with theoretical expectations, as lower noise environments
enable more reliable signal decomposition and dynamic mode
extraction.

(a)

(b)

Fig. 9. RMSE versus SNR for (a) the first frequency, ω1
1 = 2 GHz, and (b)

the second frequency, ω2
1 = 5, with different numbers of antennas.

In addition to the effect of noise, the number of antennas
also plays a critical role in estimation accuracy. For any
fixed SNR level, increasing the number of antennas leads to
a significant reduction in RMSE for both frequency compo-
nents. For instance, in low SNR regimes (e.g., 0-10 dB), the
performance gap between 12 and 20 antennas is substantial,
underscoring the importance of spatial diversity in overcoming
noise and interference. Even in higher SNR conditions (e.g.,
above 30 dB), the improvement remains evident, albeit with
a diminishing margin. This behavior can be attributed to
the increased spatial resolution and array aperture provided
by a larger antenna array, which enhances the ability of
the MAHankDMD framework to extract accurate dynamic
modes from the received data. A larger ULA enables finer
discrimination of angular and spectral features, thereby im-
proving both the frequency and DOA estimation. Hence, these
results confirm the dual importance of both high SNR and
sufficient antenna elements in achieving reliable performance



10

with the MAHankDMD method. The method not only remains
robust across varying noise levels but also benefits significantly
from increased spatial sampling, making it highly suitable for
practical array signal processing applications under diverse
operational conditions.

V. CONCLUSIONS

In this work, we introduced the MAHankDMD method for
joint DOA and frequency estimation in environments affected
by both RFI and white noise. By combining the moving
average filter for noise suppression with the Hankel-DMD
approach for DOA estimation, the proposed method effectively
mitigates the impact of Gaussian white noise, allowing for
accurate separation of the SOI from interference. Numer-
ical simulations validate the robustness of MAHankDMD,
demonstrating its capability to reliably estimate DOA and
frequency even in complex noisy environments. MAHankD-
MD provides a powerful, data-driven solution that enhances
signal estimation accuracy and offers a promising tool for
cognitive radio and wireless communication systems that face
interference even more nowadays. Our method is well-suited
for integrated sensing and communication systems, where
reliable joint DOA and frequency estimation is required under
noisy and interfered conditions.
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