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Abstract—With the imminent development of sixth-generation
(6G) networks, there will be a demand for high-accuracy,
computationally-efficient, and low-inference time automatic mod-
ulation classification (AMC) algorithms. To address this need,
we propose a new deep-learning based model for AMC that is
called the threshold denoise recurrent neural network (TDRNN).
The TDRNN combines an adaptive threshold denoising (TD)
algorithm and a recurrent neural network (RNN) that together
achieve high accuracy and fast inference. The TD module
adaptively reduces the noise level of the received signal, while
the RNN module performs the modulation classification on
the denoised result. The two subsystems are jointly optimized
to reach the optimal architecture. The proposed TDRNN is
evaluated for various modulation schemes and signal-to-noise
ratios (SNR). The experimental results demonstrate that the
TDRNN outperforms existing methods in terms of accuracy,
speed, and computational complexity making it an ideal solution
for 6G wireless communication systems.

Index Terms—Automatic modulation classification, beyond
fifth generation (B5G), deep learning, signal denoising, sixth
generation (6G).

I. INTRODUCTION

IN the rapidly evolving landscape of mobile wireless net-
works, successive generation cellular systems are intro-

duced approximately once every decade driven in part by the
demand for enhanced data rates and improved wireless con-
nectivity. With the successful launch of fifth-generation (5G)
wireless communication systems, the groundwork has been
laid for the exploration and development of sixth-generation
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(6G) systems [1]. Although 6G is still in its early stages,
several key performance indicators (KPIs) have already been
identified as the focal points that will drive specific technical
decisions [2], [3].

One of the envisioned KPIs for 6G systems includes ultra-
high reliability where the aim is to ensure that the wireless
link is available 99.99999% of time [4]. This highly ambitious
target is needed to enable new highly dependable and robust
communication services across a variety of mission-critical
scenarios. Ultra-low latency is another critical requirement for
6G networks, where network delays less than 0.1 milliseconds
(ms) will be targeted. Extremely low latency like this ensures
near-instantaneous transmission and response times, setting the
stage for seamless and real-time applications [2].

Against this backdrop, future wireless systems will require
supporting algorithms that will need to be heavily optimized
to ensure their low-latency operation. One class of crucial
algorithms for future wireless communication is automatic
modulation classification (AMC). Principally, AMC will pri-
marily be designed to identify the modulation of unknown
wireless signals. In the context of 6G systems, AMC will be
a key technology since modulation classification is critical for
optimizing spectral efficiency [5], mitigating interference [6],
enabling channel-adaptive communication, enhancing security,
facilitating cognitive radio and spectrum sharing, streamlin-
ing signal processing at the receiver [7], and elevating the
quality of service [5]. As communication systems become
more complex, AMC’s ability to classify modulation schemes
efficiently will play a crucial role in enhancing overall system
performance in future wireless networks [6], [7].

A. AMC in The Deep Learning Era

While traditional AMC approaches can be categorized
as likelihood-based (LB) and feature-based (FB), in recent
years, machine learning (ML)-based schemes have dominated.
ML, and particularly deep learning (DL), has emerged as a
prominent technology across various engineering and scientific
domains. The efficacy of DL in real-time decision-making has
led to its widespread application in adaptive and challenging
wireless environments [8]. DL has also been successfully
applied in AMC, where artificial neural networks (ANN),
convolutional neural networks (CNN) [9], and recurrent neural
networks (RNN) have been widely used [10], [11].

CNNs, specifically designed for image and video processing
tasks, excel at automatically learning spatial feature hierarchies
from input images or video frames. This makes them highly
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suitable for AMC scenarios involving visual information (e.g.
spectrograms). On the other hand, RNNs are well-suited
for processing sequential data, such as natural language or
time series data. Thus, RNNs have shown their superiority
when processing the in-phase and quadrature components of
complex baseband communication signal samples [12].

In the context of developing an AMC system for ultra-
reliable low-latency communications (URLLC) in 6G net-
works, RNNs have emerged as a promising technology. RNNs
possess inherent capabilities to process sequential data and
capture temporal dependencies, making them well-suited for
modulation classification. Due to their recurrent connections,
RNNs can efficiently learn and adapt to evolving modulation
schemes, enabling faster and more accurate modulation classi-
fication. This speed and adaptability position RNNs as one of
the first choices for meeting the stringent requirements of 6G
networks. In terms of latency, the performance of the AMC
RNN-based model is expected to be highly efficient.

B. This Paper

This paper presents a novel approach to AMC in wire-
less communication, underpinned by the Threshold Denoise
Recurrent Neural Network (TDRNN) model. The primary
objective of our approach is to vastly improve model size
and inference time while at the same time delivering clas-
sification performance that is comparable to the state-of-the-
art. The proposed model combines two crucial components:
The threshold denoiser (TD) layer and the recurrent neural
network (RNN) layer. The first component is responsible for
denoising the input signal based on a threshold which is
calculated dynamically depending on the modulation and the
noise conditions. After denoising the input signals, they are
classified by the RNN.

The system that we propose, and briefly described, aims to
enhance both the speed and accuracy of AMC in emerging
wireless communication systems that require low latency in
AMC inference time.

Overall, the contributions of this work are the following:
• We propose a novel approach to AMC, based upon

TDRNN, specifically targeted at delivering URLLC in
future networks such as 6G. Our model achieves an
impressive inference time of 0.007 ms per a single mod-
ulation example, while reducing computational overhead
and energy consumption. The proposed scheme outper-
forms state-of-the-art methods in both inference time and
classification accuracy, making it well-suited for green
and sustainable wireless communication networks.

• We demonstrate the effectiveness of the Threshold De-
noiser, an adaptive algorithm that automatically learns the
optimal denoising threshold for each modulation scheme
based on the SNR. This adaptive approach significantly
reduces the impact of noise, leading to a remarkable
improvement of nearly 16% in the average accuracy of
the AMC model.

• We conduct an in-depth study of the architecture of
the TDRNN, and analyze in detail the impact of the
number of Gated Recurrent Units (GRU) in the TDRNN

model, as well as the influence of the number of hidden
layers within the GRU. This means that our results can
be readily used to design the optimal TDRNN model,
tensioning performance against complexity.

• We assess the performance of the TDRNN through a
comprehensive evaluation, comparing it with state-of-the-
art AMC techniques. Our model demonstrates significant
improvements in three key areas: it has the fewest pa-
rameters, approximately 2 to 10 times fewer than the
benchmark; it achieves the fastest inference speed, with
a time of only 0.007 ms per a single modulation exam-
ple; and it provides competitive classification accuracy,
outperforming state-of-the-art methods on the RadioML
2016.10A dataset and delivering comparable performance
on the RadioML 2018.01A dataset.

C. Paper Organization

The rest of this paper is organized as follows. Section II
provides an overview of the related work, while Section III
presents in detail our assumptions and the proposed system.
Section IV presents the results and discusses the thorough
performance evaluation and comparison with related work.
Finally, Section V concludes the paper by summarizing the
key findings and their implications of wireless communication
systems.

II. RELATED WORK

AMC based on DL has been investigated in several studies
in recent years due to its promise to enhance the performance
of future networks. In [13] an AMC system based on a CNN
model that consisted of two convolutional layers and three
fully-connected layers was proposed. The system was designed
for orthogonal frequency division multiplexing (OFDM), and
also considered the presence of phase offset in the signal. Even
though the system delivered a significant accuracy improve-
ment in the classification of several modulation techniques, it
was found to be very complex. While in [14], the authors
proposed a Complex CNN model to compute a complex
convolution. The problem was solved by implementing a
linear combination that has a two-dimensional in-phase and
quadrature (I/Q) data stream. While this system provided a
30% improvement for a single I/Q model with 256 and 260
nodes, but required 2.7 million parameters, which is higher
than the number of parameters required by the approach
proposed here.

Another study succeeded in reducing the number of param-
eters required by implementing a system called convolutional,
long short-term memory, deep neural network (CLDNN) [15].
This system combined shallow CNNs and long short-term
memory (LSTM) and used a course-to-fine method to find the
best length for the input sequences. The results showed that
the accuracy in the time domain, frequency domain, or auto-
correlation domain was increased. Based on the comparison
in [16], the CLDNN required 849K parameters. On the other
hand, a system named MCLDNN implemented integrated one-
dimensional convolution, two-dimensional convolution, and
RNN classification [17]. MCLDNN adopted a multi-stream
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TABLE I
RELATED PREVIOUS WORKS.

References Denoise Basic Structure Parameters Inference time (ms)

CNN-Based AMR [13] x CNN 4 million not mentioned

Complex CNN [14] x CNN 2.7 million not mentioned

CLDNN [15] x CNN + LSTM 849,583 0.477

MCLDNN [17] x RNN 406,199 0.061

SCRNN [18] x CNNs + LSTMs 398,731 0.661

CGDNet [16] x CNN + RNN 124,676 0,267

TL-CSNN [19] x DNN + TL 119,627 not mentioned

SCNN [20] x CNN 96,020 not mentioned

Combined CNN [21] x Deep + Shallow CNN 113,000 not mentioned

PET-CGDNN [22] x CNN 71,871 0.039

MCMBNN [23] x CNN 63,494 not mentioned

TDRNN (Ours) ✓ RNN 41,821 0.007

structure to process information from multiple I/Q channels,
equipped with independent input channels to extract signal
features. As a result of this approach, both in-phase and
quadrature spatial features can be combined, where the CNN
was responsible for spatial mapping, and the LSTM was
applied to analyze the sequential data by considering it as
part of the temporal extraction procedure. This resulted in up
to 10% accuracy improvement over previous methods, while
MCLDNN required 406K parameters. Overall, these studies
have shown that while DL can be complex, in terms of the
number of parameters required for model implementation, they
show much promise for modulation type identification. In this
instance, DL is learning to identify complex patterns that are
difficult to detect with traditional model-based methods.

When there is a high number of parameters, this can lead
to a rise in computational complexity. This, in turn, can have
a negative impact on the overall effectiveness of the system.
The authors in [18] presented the SCRNN that reduces the
number of parameters required and does not require hand-
crafted expert features. The system used a CNN for feature
extraction and dimensionality reduction and also an LSTM to
remember long-term dependencies. Requiring 398K parame-
ters, the system improved identification accuracy by up to 15%
and reduced training time by 74% compared to independent
CNN or RNN systems.

Another interesting study proposed a deep learning-based
model called CGDNet, which consists of three convolutional
layers followed by an LSTM block to detect temporal changes
in the given modulation sequence [16]. The system underwent
comparative analysis with various state-of-art models, such
as the CLDNN model. The result found that the CGDNet
model exhibited an improvement in accuracy of up to 36.6%
compared to prior research. When compared with the CLDNN
model, it was found that CGDNet required significantly fewer
parameters, standing at 124K. In addition, CGDNet boasted a
faster inference time of 0.21 ms, 85% faster than the CLDNN
model. TL-CSNN proposed in [19] consists of a cascaded
single neural network with transfer learning that identifies

the modulation format and optical signal-to-noise ratio (SNR).
Because the authors implemented transfer learning, they used
identical training sets for all schemes to ensure a fair com-
parison while comparing their system with other models. The
experimental results indicated that with 119K parameters, the
proposed approach demonstrated faster convergence, greater
precision, heightened stability, and with down to 37% fewer
parameters that previous models. In [20], the authors focused
on implementing decentralized learning for AMC with a
separable CNN (SCNN). SCNN featured model consolidation
and lightweight design. The proposed model proved to be more
efficient than the SCNN-based centralized AMC. It enhanced
training efficiency and reduced communication overhead while
maintaining classification performance. With 96K parameters,
the training efficiency of SCNN was determined as being
approximately N times that of SCNN-based centralized learn-
ing, where N represented the number of edge devices. Their
model showcased enhanced accuracy compared to standard
CNN while reducing space and time complexity by as much
as 94% and 96%, respectively.

According to the aforementioned studies, fewer parameters
are required for system training. However, it is important to
acknowledge that the decline in the number of parameters
is related to the level of accuracy, as shown in [21]. Con-
sequently, it is important to consider all relevant factors so as
to ensure optimal system performance.

To address this, several studies have tried to enhance the
accuracy while reducing the number of parameters and de-
creasing the inference time. In [24], the authors proposed a
combined CNN scheme to identify single modulation mode
signals accurately. To overcome the challenges of misclassi-
fying single-sideband amplitude modulation with carrier and
suppressed carrier, the authors employed a shallow network
to complement both of those networks, which have a deep
structure. Utilizing 113K parameters, their system achieved a
peak accuracy of 98.7%.

A different research study introduced a system known
as PET-CGDNN [22]. This system prioritized lightweight
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Fig. 2. Threshold Denoiser architecture.

and low-complexity models by reducing the kernel size of
CNN layers and that of feature maps. Furthermore, it imple-
mented a parameter estimator and transformer to minimize
the negative impact on the phase of the signal. The authors
conducted a thorough analysis by comparing PET-CGDNN
with other models, including MCLDNN. It was found that
the PET-CGDNN model exhibited an average accuracy of
60.44% while utilizing fewer parameters and computational
resources. Meanwhile, in [23], a lightweight decentralized-
learning-based AMC system called MCMBNN was proposed.
This system utilized spatiotemporal hybrid DNN based on
multichannel and multifunction blocks. The authors applied
three channels to extract the phase, spatial, and temporal fea-
tures with low complexity in certain function blocks. Results
indicated that the system required 63K parameters to train
the RML2016.10A dataset with GRU 64 delivering a 55.82%
probability of correct classification. Based on the combined
CNN scheme [24].

As highlighted in the aforementioned studies, it is apparent
that high accuracy could be accomplished even with a few
parameters. However, in the process of designing AMC, it
is crucial to consider not only accuracy and parameter count
but also the computational cost that translates to latency in
inference time. The latter is particularly important in the
context of future wireless networks (e.g.6G), which is expected
to achieve the URLLC. Our system takes a significant step
towards achieving this goal, proposing a powerful new AMC
approach that delivers high accuracy, achieved with low com-
putational cost. A comparative summary of our system with
the literature models that we thoroughly discussed is presented
in Table I.

III. SIGNAL MODEL AND METHOD

A. Signal Model

This work considers modulation classification in real
wireless channel conditions, incorporating effects such as
frequency-selective fading, delay spread, sampling timing off-
set (STO), carrier frequency offset (CFO), additive white
Gaussian noise (AWGN), etc.

The received baseband modulated signal r(t) is:

r(t) = A(t)ej(2πfot+θ)
∑
k

s[k]h(t− kT + ν) + n(t), (1)

where n(t) represents the complex AWGN, and A(t) is the
amplitude of the received signal at time t. Regarding the phase
of the signal in the exponential term, it is affected by fo
which is the CFO that creates a time varying phase offset,
and θ indicates the constant phase offset of the signal. In this
expression we sum the output of each transmitted symbol s[k]
(indexed by k) with T being the symbol period. The impulse
response h(.) contains the combined effect of transmit and
receive filtering (e.g. raised cosine) and the channel. Finally,
ν indicates the STO.

The received signal r(t) is sampled with an analog-to-digital
converter (ADC) that brings it to a discrete form. Sampling
with rate fs Hz, the in-phase and quadrature (IQ) components
of the complex signal r(t), produces complex samples r[n].

The complex samples can be decomposed into its discrete
IQ components: I [n] = ℜ (r [n]) with ℜ being the operator
for real part. Similarly, Q [n] = ℑ (r [n]), with ℑ being
the operator for imaginary part. In this study, we use I/Q
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TABLE II
TDRNN ARCHITECTURE

Layer Type Input Size Output Size Details

Input 2x128x1 - -

BN 2x128x1 2x128x1 -

Conv2D 2x128x1 2x128x16 Filter: 16, Kernel size : 2 x 3, ReLu

Auto Learning Threshold 2x128x16 2x128x16 -

Conv2D 2x128x16 2x128x32 Filter: 32, Kernel size : 2 x 3,ReLu

Conv2D 2x128x32 1x126x64 Filter: 64, Kernel size : 2 x 3,ReLu

Reshape 1x126x64 126x64 -

GRU 126x64 64 Hidden units: 64

FC 64 11 Softmax

*The architecture has 41,821 parameters
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information as an input to the AMC model. The input signal
vector can be described as follows:

X =

(
Xi

Xq

)
=

(
ℜ [r[1], .....r[L]]

ℑ [r[1], .....r[L]]

)
(2)

where X is a complex vector composed of two parts which
are Xi, Xq denoting the in-phase and quadrature components
respectively, r[.] is the received complex baseband sample, and
L is the length of the sample that will be used by the TDRNN.

B. Proposed Method

In this part, we present the proposed novel architecture for
a deep-learning network based on a RNN [25] and adaptive
denoising. This model is called Threshold Denoise Recurrent
Neural Network (TDRNN), which discovers modulation pat-
terns automatically in the training stage and determines their
class in the prediction stage.

The predicted modulation type is the one that maximizes
the posterior probability value for the current input signal,
expressed as:

ypred = argmax
y

f(y|X;W ), (3)

TABLE III
INFLUENCE OF THE NUMBER OF GRU LAYERS ON MODEL PERFORMANCE

GRU layer Parameters Interence time (ms) Average accuracy %

1 layer 41821 0.0074 0.635

2 layer 66781 0.01 0.63

3 layer 91741 0.012 0.634

where y, ypred are the ground truth and the predicted modula-
tion type, respectively, X is the current input signal, and W
represents the weights of the model.

The TDRNN model consists of two main parts: Feature
Extraction and Classification. Fig. 1 shows the architecture of
the TDRNN model.

1) Feature Extraction: The TDRNN starts with the input
layer, in which the sample size is 2 ×L. In this study, we
set L = 128 to match the size of the frames in the RadioML
2016.10A dataset but of course our model can support different
L. After the input layer, batch normalization (BN) is used
to reduce covariance shift and normalize the feature in every
sample. BN makes the following calculations:

µ =
1

k

k∑
n=1

xn (4)

σ2 =
1

k

k∑
n=1

(xn − µ)2 (5)

x̂n =
xn − µ√
σ2 + ε

(6)

where xn and x̂n represent the input and the normalization
input features of each observation in a mini-batch, respectively.
k represents neurons in this layer, µ is the mean, σ2 indicates
its standard deviation, while ε is a small constant with ϵ → 0.

As soon as the signal has been normalized, it is passed into
the first convolutional layer, which contains 16 filters. This
layer uses rectified linear units (ReLU) for activation:

ReLU(x) =

{
1, if x > 0,

0, if x ≤ 0.
(7)
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In the next step, the signal is denoised by the threshold de-
noiser sub-network, which can automatically learn the thresh-
old value for each incoming signal. The threshold denoiser
structure is illustrated in Fig 2.

Since noise levels vary across different modulation types,
each modulation scheme encounters a distinct level of noise.
As a result, a fixed threshold would be insufficient for effective
denoising. To address this, we propose a dynamic denoising
function that automatically adjusts the threshold based on
the noise characteristics present in the input signal. This
adaptive approach ensures that only noise-related components
are removed while preserving essential modulation features,
thereby enhancing classification performance.

For calculating the average value of the signal, we apply
the global average pooling (GAP) operation in order to get an
average value of the feature map. The GAP can be described
graphically with the help of Fig. 3. Once we have the average
value of the feature map, this value is passed to two fully
connected (FC) layers and one Sigmoid function to obtain
the average value of the signal. The Sigmoid function can be
expressed as follows:

Sigmoid(x) =
1

1 + e−x
(8)

After obtaining the average values, the threshold τ is calcu-
lated based on the average values of a signal as:

τ = 2β (9)

where β is the average value of the signal.
The signal is denoised by transforming features that are

close to zero into zeros, effectively eliminating noise-related
features. Formally, the denoising operation can be described
as follows:

yi =

{
0, if |x| ≤ τ

Sgn(x)(|x| − τ), if |x| > τ.
(10)

The input and output features are represented by x and yi,
respectively, and τ is the threshold value. Sgn(x) is the sign
function, which can be expressed as follows:

Sgn(x) :=


1, if x > 0

0, if x = 0

−1, if x < 0.

(11)

After denoising, the signal is ready for classification. We
use two convolutional layers with ReLU activation and a GRU
layer with 64 hidden units to discover the modulation pattern.
It is important to note that the convolution layer produces a 4D
tensor as an output. Thus, we use a Reshape layer to change
the input shape to the expectation of the GRU, where the 3D
tensor is the input. Table 2 shows details about our model.

2) Classification: The TDRNN uses a fully connected
layer with 11 units, representing the 11 modulation types
of the dataset. A Softmax activation is employed to obtain
probability distributions over the classes. The Softmax acti-
vation normalizes the output from previous layers, ensuring
that the predicted probabilities sum up to 1. This facilitates
confident predictions and enables the identification of the most

probable class for a given input. The Softmax activation can
be mathematically expressed as follows for the i-th class:

Softmax(x)i =
exi∑Classes

j exj

(12)

In addition, for the optimization process, we use the Adam
optimizer along with the categorical cross-entropy (CCE)
function as the loss function. The CCE function is defined
as:

LCCE =

M∑
i=1

Y1 log(Y2) (13)

Y2 = fSoftmax(x)i (14)

In the above Y1 represents the ground truth vector, which can
be encoded using one-hot encoding. Y2 indicates the predicted
vector. M refers to sample types, and Softmax(x)i corresponds
to the result of the ith AMC output.

C. Dataset

In this work, we employ two widely used datasets, RadioML
2016.10A, and RadioML 2018.01A, which simulate realistic
wireless communication scenarios with various modulation
schemes and channel effects, including additive white Gaus-
sian noise, multipath fading, frequency offsets, and timing
offsets [26], [27].

• The RadioML 2016.10A dataset contains 220K signals
for 20 different SNRs from -20dB to +18dB with a frame
length of 128 samples. This equates to 1K signals per
modulation technique per SNR level. It consists of 11
modulation schemes: AM-DSB, AM-SSB, BPSK, QPSK,
8PSK, QAM16, QAM64, GFSK, CPFSK, PAM4, and
WBFM [26].

• The RML2018.01A dataset contains more than 2.5
million signals for 26 different SNRs from -20dB
to +30dB with a frame length of 1024 samples.
This dataset includes 24 modulation schemes: OOK,
ASK4, ASK8, BPSK, QPSK, PSK8, PSK16, PSK32,
APSK16, APSK32, APSK64, APSK128, QAM16,
QAM32, QAM64, QAM128, QAM256, AMSSBWC,
AMSSBSC, AMDSBWC, AMDSBSC, FM, GMSK and
OQPS [27].

Due to hardware limitations, we select half of the
RML2018.01A dataset, ensuring that all modulation schemes
are represented with an equal number of samples.

D. Training and Testing

This paper uses the RadioML 2016.10A for training and
evaluating our proposed model. This is because the RadioML
2016.10A is the most challenging dataset. For this dataset, the
state-of-the-art model, which is MCLDNN [17] achieves the
highest accuracy of only 91%. However, the highest accuracy
achieved by the MCLDNN for the more comprehensive Ra-
dioML 2018.01A dataset is 97%.

While RadioML 2018.01A contains way more modulations,
it is considerably larger and increases significantly the training
time. Hence, the benefit of RadioML 2016.10A is that it is
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relatively smaller by more than 30 times, thereby reducing
training costs.

To train the TDRNN model, we employ a random selection
approach, allocating 60% of the data for training, 20% for
testing, and 20% for validation. For training, we set the hyper-
parameters to 500 epochs, the learning rate to 0.001, and used
1024 batches. To enhance the learning process and prevent
overfitting, we incorporate an Early Stopping procedure and
use the Adam optimization algorithm. The TDCNN model
is built using Google’s TensorFlow 2.9, a machine-learning
framework based in Python. Our experiments and models
utilize Keras, TensorFlow, and NVIDIA GeForce RTX 2080
GPUs.

E. Evaluation Metrics

To evaluate the performance of the proposed system, we
consider two key metrics: inference time and average accuracy.
These metrics provide insights into both the efficiency and
effectiveness of our approach.

Inference time is a key metric for assessing latency in
real-time signal classification. It represents the average time
required for the deep learning model to classify a single
modulation example. Inference time is defined as:

Tinf =
Ttotal

N
(15)

where Tinf is the inference time to classify a single mod-
ulation example, Ttotal is the total inference time for all
modulation examples in the test dataset, and N is the total
number of modulation examples in the test set.

Average accuracy represents the overall classification per-
formance, evaluated across different modulation schemes and
SNR levels. It can be expressed as:

Acc =

∑
Accuracy

Nm
(16)

where Acc is average accuracy across all modulations and
SNR values,

∑
Accuracy is sum of accuracy values for all

modulations at all SNR levels, Nm is the total number of
modulation schemes evaluated across all SNR levels.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we first conduct some experiments in order
to determine the impact each component has on the overall
system in the proposed model, and then, based on the results
of the experiments, we choose the ideal architectural design.
Second, we conduct a comparative analysis of our model
against current work across two datasets. Finally, we discuss
our findings.

A. Experimental Evaluation

The first experiment examines the effectiveness of the
hidden layers in the GRU within the complete TDRNN
framework. To assess the impact of the number of GRU hidden
layers, we analyze the accuracy and complexity of the TDRNN
with a varying number of hidden GRU layers, specifically 16,
32, 64, 128, and 256 hidden layers. In Fig. 4, we present the
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Fig. 4. Classification performance of different GRU hidden layers. The
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Fig. 5. Complexity expressed in difference of the number of hidden layers
in the GRU.
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Fig. 6. Comparing TDRNN model with and without Threshold Denoiser.

classification accuracy versus SNR for different numbers of
GRUs. The results demonstrate that as the number of hidden
layers increases, there is a general improvement in accuracy
allowing the network to extract more relevant information.
Notably, there is an improvement of approximately 3.5% when
transitioning from GRU models with 32 hidden layers to those
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with 64 hidden layers, with marginal improvements achieved
with fewer layers (from 16 to 32 hidden layers).

Regarding complexity, Fig. 5 presents a comparison of the
TDRNN complexity expressed in terms of the number of
parameters and the inference time per a single modulation
example, for various numbers of hidden layers in the GRU.
Overall, there is a progressive increase in complexity as the
number of hidden layers rises. Examining Fig. 5, it becomes
evident that GRU models with 16, 32, and 64 hidden layers
exhibit a relatively small number of parameters, ranging from
20,000 to 42,000. However, GRU models with 128 and 256
hidden layers have 92,061 and 266,269 parameters, respec-
tively, which are approximately two and six times higher than
those of the 64 hidden layer model.

In terms of inference time per a single modulation example,
the fastest models are the GRU models with 16 and 32 hidden
layers. The former can finish classification in 0.0067 ms and
the latter at 0.0071 ms. Close behind is the GRU model
with 64 hidden layers, with an inference time of 0.0074 ms.
Comparatively, the slower models include the GRU models
with 128 and 256 hidden layers, with inference times of 0.011
ms and 0.017 ms, respectively. These inference times are
approximately 1.5 and 2.3 times lower than those of the GRU
models with 64 hidden layers.

Based on this analysis, we see that selecting the GRU model
with 64 hidden layers offers an excellent balance between high
accuracy and computational complexity. It exhibits significant
improvements in accuracy, when compared to models with
fewer layers, while it maintains a relatively small number
of parameters and inference time per a single modulation
example.

In the second experiment, we analyzed the impact of the
Threshold Denoiser on the performance of the TDRNN model.
We compared two variations: one incorporating the Threshold
Denoiser and one without it. The results, presented in Fig. 6
clearly demonstrate that the TDRNN model with the Threshold
Denoiser consistently outperforms the model without it across
all SNR conditions. Notably, the denoiser-enhanced TDRNN
model achieves a peak accuracy of 93%, which is approxi-
mately 11% higher than the accuracy of the model without
the denoiser.

Furthermore, the Threshold Denoiser significantly improves
the model’s average accuracy, increasing it by 15.8%, from
54.8% to 63.5%. This substantial enhancement highlights
the effectiveness of the Threshold Denoiser in mitigating
noise and improving classification performance under varying
SNR conditions. These findings emphasize the critical role of
adaptive noise suppression in enhancing the robustness and
accuracy of the TDRNN model.

For the next experiment, we examine the impact of the
number of GRU layers on the overall performance of the
model. Table 3 provides a comprehensive comparison of the
TDRNN model performance with varying numbers of GRU
layers, focusing on parameters, inference time per a single
modulation example, and average accuracy. As the number of
GRU layers increases, there is a corresponding increase in the
number of parameters, increasing the model complexity. At
the same time, there is a marginal increase in inference time
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Fig. 7. Classification accuracy with different SNR in five different models
on RadioML 2016.10A dataset.
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per a single modulation example as more layers are added.
However, it is noteworthy that the average accuracy remains
consistently around 63.3% across different layer configura-
tions, suggesting that the influence of GRU layers on accuracy
is limited. Consequently, given the trade-off between model
complexity and computational efficiency, it may be sufficient
to choose a model with a single GRU layer. This decision is
supported by the fact that additional layers lead to a higher
number of parameters and a slightly longer inference time
without yielding significant improvements in average accuracy.
Therefore, opting for a single GRU layer strikes a balance
between accuracy and computational efficiency.

B. Comparative Evaluation

Next, we conduct a comprehensive comparison between
the TDRNN model and other recent AMC models, namely
MCLDNN [17], PET-CGDNN [22], MCNet [28], and SCNN
[20]. To ensure a fair evaluation, all systems are trained
and evaluated using the same dataset and under the same
experimental conditions.

First, we compare the accuracy of all five models on
the RadioML 2016.10A dataset and then on the RadioML
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TABLE IV
MODEL COMPARISON ON TWO DATASETS (A: RML2016.10A, B: RML2018.01A)

Model Datasets Parameters Inference time(ms) Average accuracy(%)

MCLDNN
A 406 199 0.16 60.49

B 407 876 0.142 61.68

PET-CGDNN
A 71 871 0.063 59.65

B 75 340 0.083 60.83

MCNet
A 90 763 0.021 58.1

B 126 616 0.051 57.13

SCNN
A 104 395 0.009 47.82

B 2 110 040 0.053 15.19

TDRNN(ours)
A 41 821 0.007 63.5

B 43 642 0.061 60.58

2018.01A dataset, with the results shown in Fig. 7 and Fig.
8, respectively. The results on the RadioML 2016.10A dataset
demonstrate clearly that the TDRNN consistently outperforms
the other models, achieving the highest accuracy values. From
-8dB SNR to the highest SNR values, the TDRNN achieves
a maximum accuracy of 93.2%, followed by MCLDNN with
90.4%, PET-CGDNN with 89.9%, MCNet with 83.9%, and
SCNN with 71.6%. Regarding the RadioML 2018.01A dataset,
MCLDNN achieves the highest accuracy of 97%. The PET-
CGDNN and TDRNN closely follow with an almost similar
highest accuracy of 96%. On the other hand, the SCNN
performs substantially poorer with a maximum accuracy of
only 21%. Overall, for this dataset, we notice that the three
schemes TDRNN, PET-CGDNN, and MCLDNN achieve al-
most indistinguishable accuracy.

The highest accuracy is not the only metric we are interested
in since it is not always the only metric in applications that
require real-time signal classification. Consequently, we also
consider the average accuracy, the number of parameters of the
model, and inference time. Table 4 provides a comprehensive
comparison of these metrics for the five models. Regarding
the RadioML 2016.10A dataset, it is evident from this table
that the TDRNN model achieves the highest average accu-
racy of 63.6%, which is approximately 3-4% higher than
MCLDNN and PET-CGDNN, and around 6% and 16% higher
than MCNet and SCNN, respectively. These results highlight
the superiority of the TDRNN model in terms of accuracy
compared to the other state-of-the-art AMC models. For the
RadioML 2018.01A dataset, the TDRNN model achieves a
competitive accuracy of 60.58%, trailing PET-CGDNN and
MCLDNN by only 0.5-1%.

In terms of computational complexity, our model has the
fewest parameters, approximately by a factor of two to three
times as low as MCNet, PET-CGDNN, and SCNN, and
approximately 10 times lower than that of MCLDNN. This
is of critical importance for modern AI/DNN-enabled systems
where the reduction of the number of model parameters is
itself a central goal [29], [30]. It is worth noting that the
parameters of MCLDNN, PET-CGDNN, and TDRNN exhibit
slight variations when evaluated on the RadioML 2018.01A
dataset, each within a margin of 5%. However, the parameters

of SCNN experience a significant increase, approximately 20-
fold when testing on the the RadioML 2018.01A dataset.

One of the most important metrics in our comparison is the
inference time per a single modulation example. Looking at
the results for the RadioML 2016.10A dataset, our model is
the fastest, with only 0.007 ms required to produce a result,
followed by the SCNN model with an inference time of 0.009
ms. The inference time per a single modulation example for
TDRNN is three times lower than that of MCNet, nine times
lower than PET-CGNN, and over 23 times lower than that of
MLCDNN. When testing the RadioML 2018.01A dataset, our
model is the second fastest with an inference time of 0.061 ms,
trailing MCnet by only 0.01 ms (that achieves lower accuracy).

C. Discussion

When considering the requirements of 6G networks, both
the SCNN and TDRNN models were able to achieve a low
inference time, specifically 0.009 ms and 0.007 ms for the
RadioML 2016.10A dataset, and 0.053 ms and 0.061 ms
for RadioML 2018.01A. While both models demonstrated
favorable results in terms of inference time, TDRNN achieved
a significantly higher level of accuracy and worked well on
both datasets. Additionally, TDRNN achieved its results with
notably fewer parameters in comparison to SCNN and all
the other models. As a result, TDRNN not only satisfies
the expected stringent requirements of 6G networks but also
enhances other aspects of system performance when compared
to existing models like the complexity. Based on evaluations
of RadioML 2016.10A, our model has surpassed five others
in terms of accuracy, inference time, and number of param-
eters. Next we investigated the RadioML 2018.01A dataset,
which comprises a wide range of modulations and a very
large number of training examples. Traditionally, a large and
complex deep learning model is used to classify this dataset,
such as MCLDNN. However, our model was able to achieve a
comparable level of accuracy but with a lower parameter count
and a shorter inference time. This shows that our lightweight
model is an efficient and accurate option for classifying both
datasets.

The presented thorough evaluation suggests that TDRNN is
a step towards a more comprehensive approach for building
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signal classification models by considering not only the high-
est/average accuracy, but also the model size and inference
time. Emerging architectures that will be designed in the
future will need to consider all these aspects especially when
targeting AMC which is an application typically deployed in
real-time systems.

V. CONCLUSION

In this study, we introduced TDRNN which is a new
approach for AMC that is aligned with the expected KPIs of
6G systems in terms of latency. TDRNN combines denoising
techniques and RNN-based classification for enhanced mod-
ulation classification on three metrics. By using a Threshold
Denoiser (TD) to eliminate noise and irrelevant features, we
achieve almost a 16% accuracy improvement when compared
to models without TD. Our proposed TDRNN system demon-
strates significant performance improvements over existing
approaches: compared to MCLDNN, it achieves a 4.98%
improvement in accuracy while exhibiting 23 times faster
inference times and requires ten times fewer parameters on
the RadioML 2016.10A dataset. For the more comprehensive
RadioML 2018.01A dataset TDRNN offers by far the smallest
model size, with similar inference time and average accuracy
with other models. Our proposed system demonstrates promis-
ing applicability in 6G networks, where ultra-low latency and
high throughput are imperative. This is demonstrated by its
remarkable inference times of 0.007 ms and 0.061 ms across
both datasets.
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