
Implementation and Performance Analysis of SEAL Encryption
on FPGA, GPU and Multi-Core Processors

Kostas Theoharoulis, Charalambos Antoniadis, Nikolaos Bellas and Christos D. Antonopoulos
Department of Computer and Communications Engineering

University of Thessaly
Volos, Greece

Email: ktheoxaroulis@gmail.com, {haadonia, nbellas, cda}@inf.uth.gr

Abstract—Accelerators, such as field programmable gate
arrays (FPGAs) and graphics processing units (GPUs), are
special purpose processors designed to speed up compute-
intensive sections of applications. FPGAs are highly customiz-
able, while GPUs provide massive parallel execution resources
and high memory bandwidth. In this paper, we compare the
performance of these architectures, presenting a performance
study of SEAL, a fast, software-oriented encryption algorithm
on a Virtex-6 FPGA, a Graphics Processor Unit (GPU), and
Intel Core i7, a 2-way hyper-threaded, 4-core processor. We
show that each platform has relative competitive advantages
in encrypting an input plaintext using SEAL.

Keywords-Cryptography; Encryption; FPGA; Reconfig-
urable Computing; GPU; CMP

I. INTRODUCTION

The demand for efficient cryptographic solutions has been
continuously growing in the last decade. Encryption must
usually be performed at high data rates, a requirement
often met with the help of cryptographic hardware. The
performance of software cryptography is a function of both
the complexity of the algorithm and the quality of its im-
plementation. Typically, algorithms designed and optimized
for software implementations, such as SEAL (Software
Encryption Algorithm) [1], will outperform software ports
of algorithms originally designed for hardware.

SEAL is a stream cipher, i.e. incoming data are streamed
into the algorithm and continuously encrypted. The algo-
rithm is supported in Cisco Internetwork Operating System
(IOS) IP Security (IPSec) implementations. Moreover, it is
exceptionally fast for encrypting streaming data at high data
rates, in applications such as on-the-fly disk I/O encryption.

On the platform architecture front, there has been a major
shift towards systems with multiple cores, driven by the lim-
ited instruction level parallelism and the prohibitive power
dissipation of high frequency, single-threaded / single-core
processors. Moreover, reconfigurable logic – such as FPGAs
– and Graphics Processing Units (GPUs) have been shown
to speed up applications often by orders of magnitude,
compared with conventional, homogeneous multi-cores.

There is little systematic research on how accelerators
based on different computing substrates compare in terms of

performance. Our work compares the performance of these
architectures, presenting a performance study of SEAL on a
high performance Virtex-6 FPGA, an Nvidia GeForce GTX
480 GPU based on the Fermi architecture and the quad-core
Intel Core i7.

The rest of the paper is organized as follows. Section II
provides the details of the SEAL algorithm. Section III
describes the FPGA architecture, implementation and perfor-
mance analysis. Sections IV and V discuss the paralleliza-
tion on the GPU and show its performance improvements
over the optimized Intel Core i7 implementation. Section VI
concludes our work.

II. DESCRIPTION OF SEAL ALGORITHM

SEAL is a pseudo-random function family [2] crypto
object. A length increasing pseudo-random function expands
a 32-bit position index n to an L bit keystream (Figure 1),
under the control of a random 160-bit key . L can be made
arbitrarily large ranging, in realistic applications, from a few
bytes to a few thousand bytes. In this paper, we assume that
the output length L is 4 KB. The L-bit output keystream
y is then used to encrypt input plaintext X using the XOR
operation.

The algorithm is divided in two steps [3]. Step 1 involves
Table generation. This step uses the compression function

Figure 1. Initialization of A, B, C, D , nl , n2, n3, n4 from n.
Initialization is dependent on T and R tables [1].



Figure 2. SEAL functional diagram. Output y is the encrypted keystream.

of SHA-1 to expand the secret key into larger tables T ,
S, and R. These tables are fixed and can be precomputed
after the key has been established. Tables T and S are 2KB
and 1KB in size, respectively. The size of table R depends
on the desired bit length L of the keystream; each 1KB of
keystream requires 16 bytes of R.

Tables generation is typically performed once over the
course of a communication session. Although it is com-
putationally expensive, it is not in the critical path for
applications that do not require rapid key set up [1]. In the
experimental evaluation section, we will assess performance
degradation due to frequent key changes.

The second step is the pseudo-random function. Given the
number of bits L, the tables T , R, and S (determined by
), and a 32-bit position index n, the algorithm stretches n
to an L-bit pseudo-random string y. The algorithm uses the
routine Initialize which maps n to the words A, B, C, D,
n1, n2, n3, n4 (Figure 2). These variables are modified over
64 iterations as shown in Figure 3.

The SEAL algorithm can be applied concurrently on
successive sections of the input as streaming plaintext X
becomes available. Thus, thread-level parallelism, i.e. repli-
cating the computation shown in Figure 2, is scalable with
the number of cores available and is only limited by the
available bandwidth to memory.

Figure 3. Cipher mapping 32-bit index n to an L-bit string under the
control of tables T , R, and S [1].

Figure 4. The block diagram of SEAL hardware implementation.

On the other hand, there is limited instruction and data-
level parallelism at the inner loop of Figure 3, because of
the inter-dependencies among instructions of the inner loop.
However, the outer loop of Figure 3 can be unrolled since
all iterations are independent. This allows the exploitation
of SIMD parallelism in platforms with such capabilities.

We also expect significant performance improvements by
increasing clock frequency and resolving data dependencies
quickly. This is manifested in the experimental evaluation
section by the competitive performance of Core i7, a high
frequency processor with advanced architecture within each
2-way SMT core.

III. FPGA IMPLEMENTATION

Figure 4 depicts the block diagram of the FPGA hardware
implementation. We implemented the module TABLE G
for the production of the three tables R, S, and T . This
module is just the compression function of the Secure Hash
Algorithm SHA-1. Each time TABLE G runs, it produces
a different output (of 160 bits), which is written to five
positions of memory (5x32 bits). We parallelized the process
for the production of the 3 tables. For the implementation
of these tables, we used 32-bit wide BRAMs, with sizes of
2KB for T , 1KB for S and 64 bytes for R.

The Initialize module uses four 32-bit registers, A, B, C,
and D, whose initial values are determined by n and the
key-derived tables R and T . The module maps the 32-bit
position index n and the iteration counter l to eight 32-bit
words A0, B0, C0, D0, n1, n2, n3, n4, which are are
modified over several iterations in the main body of SEAL
encryption to produce Ai, Bi, Ci, Di on each iteration.
Keystream values y derived from this procedure are XORed
with the plaintext data of memory X . We take advantage
of the fact that on-chip memories (BRAMs) of high-end
FPGAs are dual-ported, thus we can overlap reads/writes of
the keystream y.

An interesting design space exploration exercise is the
introduction of pipeline stages in the execution of sequential
computations for Table Generation and main encryption
(Figure 3). For modules that execute non-critical operations
such as Table Generation, we are mostly interested in high



clock frequency, since these modules will determine the
global clock frequency (we use a single clock in our design).
Therefore, these modules are heavily pipelined to increase
clock frequency.

A. Experimental Evaluation of FPGA Implementation

The FPGA design has been implemented on a Xilinx
Virtex-6 XC6VLX760 FPGA in Verilog using the Xilinx ISE
12.4 toolset. The hardware complexity of a single accelerator
is demonstrated in Table I. A single accelerator processes a
4KB input plaintext message X to produce a 4KB encrypted
stream. The XC6VLX760 FPGA can accommodate up to 64
engines for encrypting 64 4KB plaintext sections in parallel.
The 64x accelerator case only replicates the main body of
SEAL encryption, not the Table Generation module. Table I
also shows that we can achieve 149 MHz clock frequency.

In order to measure the performance of our approach
several real-world experiments have been carried out with
different configurations of the system and various data-sets
(Section V).

IV. MULTICORE IMPLEMENTATIONS

One of the objectives of this work is to study the per-
formance of SEAL when fully optimized for both recon-
figurable and multi-core platforms. We use the following
platforms (besides the Virtex-6 FPGA):

a) An Intel-based workstation using the Intel Core i7
870 processor (45nm), clocked at 2.93 GHz with 8GB
DDR3 memory. This processor integrates four identical
cores each with private L1 and L2 caches (32KB and 256
KB, respectively), and a common 8MB L3 Cache.

b) An NVIDIA GeForce GTX-480 high-end GPU (40nm),
clocked at 1.4 GHz with 1.5 GB of GDDR5 device memory.
This GPU is based on the Fermi architecture and includes
480 cores organized in 15 Streaming Multiprocessors (SM)
of 32 cores each. Fermi adds an L1/L2 cache hierarchy to
the memory architecture to reduce memory access latency
and improve programmability. The GTX-480 is connected
to the motherboard via a 16x PCI express bus.

A first, generic optimization was to identify key invariant
computations in Table Generation and remove them from
the critical path, i.e. perform them only once, on program
initialization. The benefits are obvious in the common real-
world case where a large message is encoded using multiple
keys, thus requiring multiple calls to Table Generation.

1 Accel. 64x Accel. FPGA Total
Logic Slices 1,450 93,323 118,560

BRAMs (36KB) 5 320 720
Clock (MHz) 158 149

Table I
RESOURCE UTILIZATION AND MAXIMUM CLOCK FREQUENCY FOR 1

AND 64 ACCELERATORS, IMPLEMENTED ON A VIRTEX-6 XC6VLX760
FPGA.

A. x86 Parallelization

The parallelization on x86 was a two step process: we
first created a vectorized (SIMD) version of the algorithm
and then exploited multithreading.

We introduced vectorization in both the phases of Table
Generation and encryption. Multithreading is applied dur-
ing data encryption, at the granularity of a block (group)
of messages. There are no exploitable opportunities for
multithreading in Table Generation, due to the tight data
dependencies between successive iterations of the outer loop.
However, Table Generation is pipelined with data encryp-
tion, whenever multiple keys are used for the encoding of
a large data set. As was discussed in Section II, in realistic
situations key changes occur at a very low rate. This allows
Table Generation to fully overlap with data encryption,
without becoming a bottleneck.

We have experimented with up to 8 worker threads, in
order to exploit the 4 cores and the 2-way SMT (Hyper-
threading) capabilities of the Core i7 processor.

B. GPU (CUDA) Implementation

GPUs are able to manage parallelism at a very fine gran-
ularity. Abundant parallelism must be available in order to
effectively hide the latency introduced by stalls and to keep
GPU utilization high. Another interesting feature of GPUs –
especially the latest Nvidia Fermi architecture – is that they
allow the configuration of on-chip cache memory as either
software- or hardware-controlled. Moreover, main memory-
to-GPU transfers suffer severe latency and are limited by the
PCIe bus bandwidth.

We implemented SEAL on the GPU using CUDA, a
programming model by Nvidia, specifically designed and
implemented to support general purpose computations on
GPUs. Table Generation proved to perform better on the
CPU than on the GPU, given its limited parallelism. Gen-
erating the T , S and R tables in the CPU also provides
opportunities of pipelining and overlapping Table Generation
with data encryption.

Each block of messages is processed in parallel by 16,384
threads. The block size is an educated choice that satisfies
the trade-off of low memory requirements – so that con-
currently active streams do not overflow any level of the
GPU memory hierarchy – offering at the same time high
parallelism potential – so that GPU computational resources
are efficiently utilized, hiding stalls latency.

GPU upper level caches perform significantly better if
concurrent requests do not result to cache bank conflicts.
This was achieved by transposing data from the input
streams and also results before sending them back to the
main memory. Some extra reorganization of the algorithm
allowed the minimization of the number of high-latency
memory transfers, favoring fewer, large transfers instead of
more, smaller ones. In order to overlap memory transfers



Figure 5. Comparative Performance Evaluation Results.

between device memory and main memory we used the
mechanism of streaming offered by CUDA.

V. EXPERIMENTAL EVALUATION AND COMPARISON

We tested our implementations changing the key after
1 message (32Kbit), 32768 messages (1Gbit) and 262144
messages (8Gbit). We ran each of our 5 implementations
– Initial version (Single Threaded), SIMD version (Single
Threaded), Multithreaded + SIMD version (for 2, 4, 8
threads), CUDA and FPGA – on a random 1GBit input file.

Figure 5 compares the speed-up of SEAL implementations
for all three scenaria over the execution time of SEAL
running as a single thread on Core i7. The single-threaded
code (corresponding to speed up of 1) requires 1.5 secs for
8 Gbit and 1 Gbit sessions, and 11.28 secs for 32 KBit
sessions.

Code optimizations for Core i7 proved very successful in
improving speed-up. Data level parallelism (SIMDization) is
more successful when used in Table Generation and makes
a pronounced contribution to speed up when session size
is 32 Kbits. Running threads in multiple cores provides,
as expected, linear speed up. Somewhat surprisingly, hyper-
threading (moving from 4 to 8 cores) provides a remarkable
speed up of approximately 42% in the first two scenaria.
Hyperthreading typically provides much lower performance
improvements, however in this case (a streaming application)
it proved effective in hiding memory access latency.

The FPGA implementation is easily scalable and manages
to outperform all other substrates. Its performance depends
on the number of accelerators that can fit in the device.
The low performance of a single accelerator is mainly due
to the low clock frequency of FPGAs compared to high
performance processors, and the limited parallelism within
an accelerator. FPGAs perform relatively better when session
size is 32 Kbits. They can offer an efficient implementation
of the Table Generation module, which becomes the bottle-
neck in this usage scenario.

The GPU proved to be an appropriate platform for
implementing the computational part of SEAL (Figure 5,

Co GPU). However, when we take memory transfers into
account (Co+Mem), performance drops considerably below
that of Core i7. Performance is thus limited by the peak
bandwidth of 16x PCIe. We should note, however, that
GeForce GTX-480 is one of the fastest commercially avail-
able GPUs. Figure 5 shows that is is difficult to keep all 480
streaming processors busy given the limited PCIe bandwidth.

VI. CONCLUSIONS

In this paper, we have presented the mapping and opti-
mization of the SEAL Encryption algorithm on an FPGA,
an Intel Core i7, and the Nvidia GeForce GTX480 GPU.
All three platforms were able to exploit the available thread-
level parallelism and achieve the high performance. We have
found that the modern CMP platforms make better use of the
sophisticated hardware-based cache hierarchy as well as high
clock frequencies to sustain high utilization of the data path.
GPUs have the potential to speed up SEAL algorithm even
more provided that they are not limited by the bandwidth of
PCIe. Finally, FPGAs can better exploit parallelism of the
Table Generation module. Thread level parallelism is only
limited by the device size and is the main way to alleviate
the adverse effects of low clock frequency.

ACKNOWLEDGMENT

This work is partially supported by the EC Marie Curie
International Reintegration Grant (IRG) 223819.

REFERENCES

[1] P. Rogaway and D. Coppersmith, “A Software-Optimized
Encryption Algorithm,” in 1993 Cambridge Security Workshop.
Springer-Verlag, 1994.

[2] O. Goldreich, S. Goldwasser, and S. Micali, “How to Construct
Random Functions,” Journal of the ACM, vol. 33, no. 4, pp.
210–217, 1986.

[3] H. Handschuh and H. Gilbert, “x2 cryptanalysis of the seal
encryption algorithm,” in ”Fast Software Encryption”, ser.
Lecture Notes in Computer Science, Springer-Verlag, Ed., vol.
1267, 1997, pp. 1–17.


