

GLOpenCL: Compiler and Run-Time Support for OpenCL on

Hardware- and Software-Managed Cache Multicores
Konstantis Daloukas, Christos D. Antonopoulos and Nikolaos Bellas

University of Thessaly, Greece

 Technology advances have enabled the development of a plethora of

computation substrates for parallel, high performance computing.

 A paradigm shift towards parallel programming.

 A multitude of programming models have been proposed that aim at

handling most of the technicalities, thus allowing the programmer to

focus on algorithmic issues. However, none of them target both ho-

mogeneous and heterogeneous multicores as well as accelerators.

 OpenCL presents itself as a unified programming standard and frame-

work for heterogeneous multicores that integrate both CPUs and ac-

celerators, such as the Cell BE or GPUs. Although, currently available,

vendor specific implementations target either only multicores or ac-

celerators, due to their vast architectural differences.

 Motivation: Design and develop GLOpenCL, a unified framework to

enable native execution of OpenCL applications on both hardware- as

well as software-controlled cache multicores. The framework com-

prises a compiler and a run-time library that shares the same basic

architecture across all platforms.

1 Introduction - Motivation 4 Run-time Support

 Evaluate the framework’s performance using a series of six benchmark

applications on the Intel E5520 i7 and the Cell BE processors, and

compare with the SDKs provided by ATI/AMD and IBM.

5 Performance Evaluation

 OpenCL models the underlying parallel architecture as a host and a

number of compute devices. Each compute device integrates a num-

ber of compute units, each one divided into processing elements.

 Efficient exploitation and mapping of the available parallelism is not

a trivial task.

2 OpenCL Programming Model

Logical Thread Serialization

 Source-to-source transformations that aim at coarsening the granu-

larity of a kernel function from a per-logical-thread to a per-work-

group basis. These transformations enable an efficient mapping of

the available parallelism on multicores without hardware support for

fine-grained threading.

 Logical thread serialization has the additional implicit effect of po-

tentially reducing the local storage that is required by each work-

item.

3 Compiler Support

Elimination Of Synchronization Operations

Variable Privatization

