
A Comparison of Online and Offline Strategies
for Program Adaptation

Matthew Curtis-Maury1, Christos D. Antonopoulos2 and Dimitrios S. Nikolopoulos1

1Center for High-end Computing Systems 2 Department of Computer Science
Department of Computer Science The College of William and Mary

Virginia Tech and Greek Armed Forces
{mfcurt,dsn}@cs.vt.edu Division of Research and Informatics

cda@cs.wm.edu

ABSTRACT
Multithreaded programs executing on modern high-end com-
puting systems have many potential avenues to adapt their
execution to improve performance, energy consumption, or
both. Program adaptation occurs anytime multiple execu-
tion modes are available to the application and one is se-
lected based on information collected during program exe-
cution. As a result, some degree of online or offline analysis
is required to come to a decision of how best to adapt and
there are a variety of tradeoffs to consider when deciding
which form of analysis to use, as the overheads they carry
with them can vary widely in degree as well as type, as can
their effectiveness.

In this paper, we attempt to qualitatively and quantita-
tively analyze the pros and cons of specific types of on-
line and offline forms of information collection and analy-
sis for use in dynamic program adaptation in the context
of high performance computing. We focus on providing rec-
ommendations of which strategy to employ for users with
specific requirements. To justify our recommendations we
use data collected from two offline and three online analysis
strategies used with a specific power-performance adapta-
tion technique, concurrency throttling. We provide a two-
level analysis, comparing online and offline strategies and
then comparing strategies within each category. Our re-
sults show clear trends in the appropriateness of particular
strategies depending on the length of application execution
– more specifically the number of iterations in the program –
as well as different expected use characteristics ranging from
one execution to many, with fixed versus variable program
inputs across executions.

General Terms
Management, Measurement, Performance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACMSE 2007, March 23-24, 2007, Winston-Salem, N. Carolina, USA
c©Copyright 2007 ACM 978-1-59593-629-5/07/0003...$5.00

1. INTRODUCTION
Although program adaptation is a relatively new area of
research, many techniques have been proposed to allow an
application to adaptively improve its execution time, energy
efficiency, or both. Modern high-performance architectures
contain many layers of parallelism, specifically processors,
cores, and threads. These architectures leave much room for
adaptation because it is not yet fully understood how best
to exploit them given their inherent complexity. Further, it
has been suggested that it is not possible to fully optimize
an application without data collected during an execution
of the program [10, 13].

Some of the more popular forms of adaptation are dynamic
frequency and voltage scaling for energy, dynamically ap-
plying compiler optimizations for performance, and concur-
rency throttling for both. Each of these, and adaptation in
general, can be performed by collecting data offline or on-
line to make a decision on how best to adapt. Using offline
analysis, data is collected during test program executions to
make a decision that will then be used during the live runs.
Alternatively, with online analysis, the data is collected dur-
ing each live execution of the application, allowing for po-
tentially different adaptation decisions for each run. Within
these two general categories exist many specific collection
and analysis techniques with their own advantages and dis-
advantages. Given the proven effectiveness of so many forms
of adaptation, a thorough study of how best to find the op-
timal operating point under different circumstances is both
timely and necessary.

To provide insight into general patterns in the tradeoffs of
different analysis strategies, we have selected specific rep-
resentatives from general categories. The details of the se-
lected techniques are presented in Section 3, however in gen-
eral we picked two offline and three online strategies to eval-
uate. To serve as our example adaptation technique we use
concurrency throttling which adapts a multithreaded appli-
cation to use fewer processors, cores, and hardware threads
to reduce execution time and/or energy consumption. This
is an especially pertinent optimization given the growing
importance of energy-efficient computing.

The results collected from our experiments show clear trends
in the effectiveness and overhead of general classes of anal-
ysis strategies. From this data we are able to make recom-
mendations about which analysis technique is most appro-
priate for a particular user. We feel that our results are

representative of most adaptation strategies and so our rec-
ommendations are applicable to many users.

In the next section, we present related work and provide
background. In Section 3, we describe the adaptation tech-
nique used to evaluate the online and offline analysis strate-
gies as well as the analysis strategies themselves. Section
4 gives our experimental results and our discussion thereof,
including our recommendations. Finally, we conclude in Sec-
tion 5.

2. BACKGROUND
Previous work compares offline empirical-search versus of-
fline model-based analysis within the compiler [16]. The
purpose of this comparison is to determine whether adap-
tation of the form discussed in this paper is necessary at
all. Their results show that using an accurate model for
optimization of linear algebra code by ATLAS yields perfor-
mance comparable to strategies employing empirical-search,
with a significantly reduced offline overhead. However, the
performance of the empirical-search approach is still better
in most cases, and sometimes by a wide margin. This shows
that program adaptation is still necessary, particularly in
areas where highly accurate models do not yet exist.

There is a large body of related work on program adaptation
and the work is largely split between techniques utilizing on-
line and offline analysis strategies. In ATLAS [14], subrou-
tines of BLAS (Basic Linear Algebra Suite) are optimized
by executing each subroutine with many potential optimiza-
tion parameters during offline test runs and selecting the one
that performs the best for use online. Similar techniques are
used in FFTW [6], SPIRAL [15], and PhiPAC [1].

Qasem et al. [11] propose an offline, profile-based analysis
strategy for profitable application of loop fusion and tiling,
which is difficult using compiler analysis alone as it is depen-
dent on the underlying architecture and there are complex
interactions between the two approaches. The offline anal-
ysis they perform is optimized to reduce the cost by using
a realistic model to only test those configurations that are
likely to perform well, rather than exhaustively searching
all possible combinations. This is an effective strategy that
limits the offline overhead. A similar model is used by Yotov
et al. to reduce the offline search overhead of ATLAS [17].

One of the most popular forms of adaptation in the literature
today is DVFS, or dynamic frequency and voltage scaling.
Using this technique the processor frequency can be dynam-
ically reduced to allow it to consume less power, while also
slowing down the computations it performs. This enables
an application to reduce its energy consumption without
adversely affecting performance if it can be known that its
performance is not limited by CPU frequency. DVFS has
been used adaptively in work by Freeh, et al. [5] by sam-
pling particular DVFS-levels live at runtime and using the
one that best matches the desired execution characteristics.
That work is later extended [8] to consider runtime per-
formance prediction to decide DVFS-levels as well as the
number of nodes in a cluster to use for execution.

Work on optimizing MPI calls at runtime has been presented
by Faraj, et al. [4]. Since the same MPI routines are called

many times during an application’s execution, different algo-
rithms can be tested for each routine. The authors perform
the analysis of which algorithm to use at runtime, first with
an exhaustive search and then an approach to heuristically
search the algorithms to reduce the online overhead. Each
MPI call site within the code can be adapted to use the
optimal algorithm based on its properties.

Continuous Program Optimization [10] is a technique where
a program is dynamically recompiled based on feedback col-
lected at runtime, and the newly compiled image is hot-
swapped and used for execution. This process is then re-
peated for as long as the application is running. Kistler
et al. [10] use this method for adapting object layout to
improve cache locality and for dynamic trace scheduling
to improve instruction level parallelism. While these op-
timizations could be performed using compiler analysis, the
authors suggest that runtime information is necessary to
achieve improved performance since program input infor-
mation as well as user actions are only available at runtime.

There are many other examples of program adaptation, how-
ever those presented give a representative sample that ex-
ploit various types of online and offline analysis to determine
optimal operating points.

3. ADAPTATION STRATEGY
To evaluate the various analysis strategies that can be ap-
plied to program adaptation in general in high performance
computing, we chose one particular adaptation strategy, con-
currency throttling, which we have discussed in previous
work [2], to use for experimentation. Using this technique,
an application can dynamically reduce the number of pro-
cessors, cores, and hardware threads used for execution to si-
multaneously decrease both execution time and energy con-
sumption. This approach can lower energy consumption by
reducing the number of execution units actively drawing cur-
rent. At the same time, performance can be improved be-
cause scalability bottlenecks that negatively impact perfor-
mance can be reduced by using a lower degree of parallelism.

Analysis is needed to determine which hardware configura-
tion will provide the desired properties, in terms of either
performance or energy consumption. In this work, we con-
sider adaptive concurrency throttling where the configura-
tion with the highest expected performance is selected for
use. Even with this form of concurrency control, power and
energy consumption are both generally decreased due to the
use of fewer processors in many cases. The decision mak-
ing process requires knowledge of the execution times of the
application running on different hardware configurations, as
is also the case with other adaptation approaches. Different
analysis strategies, however, have different pros and cons,
and the purpose of this paper is to determine under what
circumstances each technique excels.

In the following subsection we discuss the specific analysis
techniques evaluated in this paper and how they relate to
approaches presented in other work. The analysis techniques
chosen are representative of larger classes of strategies, so
the results are applicable to a wide range of approaches,
beyond those specifically mentioned.

3.1 Offline Analysis Techniques
The first two analysis techniques that we considered perform
their analysis on data collected from offline test executions
of the application. This class of analysis strategies is rep-
resentative of all approaches where the work is done offline,
rather than during the live execution. The advantage of
these approaches is that they can search for optimal operat-
ing points without contributing to the execution time of the
application online, however they can be expensive in terms
of their offline overhead as they must be trained separately
for each application.

The first offline strategy that we tested was offline static,
where the program is run once under each possible hardware
configuration and the execution times are recorded. Then,
the configuration with the lowest execution time is used for
the live execution of the specific application. This is similar
to the analysis strategy employed by Whaley, et al. [14].

The second offline strategy we used was offline phases, where
the adaptation occurs at phase granularity rather than stat-
ically for the whole application execution. Program phases
are simply sections where execution properties remain fairly
stable. Using this technique allows for potentially better
performance because different phases within an application
are likely to have varying execution characteristics, resulting
in different optimal configurations [12]. The decision process
for this approach is similar to that of offline static except
that the execution times of all offline test runs are recorded
per phase, and the configuration with the lowest execution
time for each phase is used online.

3.2 Online Analysis Techniques
In addition to the two offline strategies, we also selected
three online analysis techniques. The first two of these work
through live sampling of specific hardware configurations
during runtime and the third works by making performance
prediction based on a limited number of live test configura-
tions. The online techniques exploit the iterative nature of
parallel scientific applications by using the initial iterations
of each phase as test executions on different configurations.
All three techniques are phase aware.

3.2.1 Empirical Search
The first online strategy that we tested was online exh. Us-
ing this approach, each phase of the application is run for
one iteration under each hardware configuration during the
live execution. Once all configurations have been tested, the
observed optimal configuration is used for each phase for
the remainder of execution. This search strategy requires
P ∗ C ∗ T test iterations during the live execution to come
to a decision, where P is the number of processors, C is the
number of cores, and T is the number of hardware threads
available in the system. An example from the literature of
this type of analysis is presented in the STAR-MPI work of
Faraj et al. [4].

We modified online exh to reduce the number of hardware
configurations that are tested online, rather than exhaus-
tively searching all configurations, since there may be many
configurations on modern architectures. This strategy, called
online heur, uses a hill climbing approach to first find the
number of processors, then the number of cores, and finally

the number of hardware threads to use for execution. At
the beginning, the application is run with all execution re-
sources, then along each dimension the resource is decre-
mented by one until the execution time increases, execut-
ing each configuration for one iteration. This reduces the
number of test configurations – and therefore iterations and
online overhead – required to reach a decision to at most
P + C + T . Further, the configurations that are eliminated
from testing are likely to be those that perform the worst,
specifically those with the fewest execution resources. This
strategy is similar to the heuristic work done by Freeh, et
al. [5] and Kistler et al. [10] to reduce the number of iter-
ations required to find an effective configuration. Faraj et
al. [4] also present a enhanced empirical search in their work
on adaptively optimizing MPI collective operations.

3.2.2 Performance Prediction
To further reduce the number of iterations required to find
an effective configuration, we have implemented and tested
a performance prediction based approach, online pred [2].
Here the optimal configuration is not found through active
sampling of different configurations. Rather, we run the
application on predefined hardware configurations and use
information that is collected during the execution to predict
the performance on other configurations. The predictions
are then used to make the decision of which configuration
to use. This technique is similar to the analysis approach
used by Springer, et al.[8].

On architectures with multiple layers of parallelism, only
one configuration is tested to make predictions along each
layer. Specifically, the application is run with all execution
resources active, and from this information predictions are
made for different numbers of physical processors. Then
this is repeated to decide the number of cores and again for
hardware threads. Under this approach, only one test run
is required for each layer of parallelism in the system.

A predefined set of performance counters are collected dur-
ing each test iteration. The selected counters correspond
to areas of processor activity that dominate performance
in multithreaded codes, such as cache misses, bus transac-
tions, etc. During offline training, performance counter val-
ues and execution times are collected for each of the train-
ing benchmarks on each hardware configuration. We then
derive coefficients using regression to calculate the instruc-
tions per cycle – a standard numeric representation of per-
formance that is often used for performance prediction – of
each hardware configuration based on the observed perfor-
mance counter values during the test runs of the training
benchmarks. These coefficients can be applied to counter
values collected online to predict the performance of any
application at runtime.

4. RESULTS AND DISCUSSION
In this section, we describe our experimental methodology
as well as the results of our experiments comparing various
online and offline analysis strategies for program adaptation.

4.1 Experimental Setup
In our experiments, we used the OpenMP version of the NAS
Parallel Benchmark Suite 3.1 [9] (Class A) which is a collec-
tion of scientific applications parallelized using the OpenMP

Execution Time

0

0.2

0.4

0.6

0.8

1

1.2

All Small Large

Category of Benchmark

R
at

io
 o

ve
r

8
T

hr
ea

d
E

xe
cu

tio
n

online_exh online_heur online_pred offline_static offline_phase

Figure 1: The execution times of each strategy
used with concurrency throttling on different sets
of benchmarks. Lower numbers are better.

Energy Consumption

0

0.2

0.4

0.6

0.8

1

1.2

All Small Large

Category of Benchmark

R
at

io
 o

ve
r

8
T

hr
ea

d
E

xe
cu

tio
n

online_exh online_heur online_pred offline_static offline_phase

Figure 2: The CPU energy consumption of each
strategy used with concurrency throttling on differ-
ent sets of benchmarks. Lower numbers are better.

standard [3]. We ran our experiments on a Dell PowerEdge
server composed of four Intel Xeon Hyperthreaded proces-
sors running at 1.4 GHz. The machine was running Linux
kernel version 2.4.25.

We approximate phases with parallel regions in OpenMP.
Parallel regions serve as appropriate estimates of phases
as they are likely to have consistent properties during ex-
ecution. Further, parallel regions are the finest granularity
at which the number of running threads can be changed
in OpenMP. For other application types, some alternative
method of phase detection could be employed, such as the
approaches presented by Sherwood, et al. [12].

In our analysis, we only present the energy consumption of
the CPU, as that is our target for reduction. We estimate
the CPU power consumption during each experiment using
the approach presented by Isci, et al. [7]. This technique
approximates power consumption by collecting performance
counters to determine how active each unit of the processor
is and it has been shown to be very accurate [7].

4.2 Analysis of Results
The results of our performance analysis are shown in Fig-
ure 1 and the CPU energy results are shown in Figure 2. All
numbers are normalized with respect to the non-adaptive

execution using all eight available execution contexts, which
is the default behavior of a naive user. We refer to this
strategy as naive. The left-most group of bars shows the
results averaged over all benchmarks, the middle set of bars
is the average results for benchmarks with a small number
of iterations (15 or fewer in our evaluation), and the right-
most group of bars are averages for benchmarks with a large
number of iterations.

Different applications require a different number of outer-
most loop iterations to reach a solution. For example MG
from NAS requires only 4 iterations while SP requires 400.
We refer to applications with a large and small number of
iterations as large and small applications, respectively. As
applications with different numbers of iterations will benefit
most from different strategies, due to varying amounts of
online overhead, it is important to consider the results for
the two application sizes.

Among the online analysis strategies, we begin by analyzing
online exh. This approach carries with it the largest over-
head of the three online techniques as it must run the most
test executions. Using this form of analysis results in a de-
crease in execution time by 9% and energy by 16% averaged
over all benchmarks compared to naively using all available
execution resources. These benefits are substantial, partic-
ularly since both metrics are simultaneously improved.

We next evaluate online heur, our heuristic search. Using
this technique the online overhead is greatly reduced by
using fewer test executions. The relative improvement of
this approach compared to online exh will continue to in-
crease on machines with more processors, cores, and hard-
ware threads. In terms of performance, our results show on-

line heur outperforming online exh by 2% overall, because it
requires fewer iterations to come to a decision and therefore
can spend more time in the decided optimal configuration.
Despite the reduced execution time, energy consumption
goes up by 3% because online exh can find configurations
that use fewer processors which online heur may not test.

The strength of the heuristic search is its performance on
applications with few iterations, where it outperforms the
exhaustive search by 5%. This gain can be explained by the
fact that with few iterations, the applications are more sensi-
tive to online overhead. On the other hand, for large applica-
tions online exh is better by 1%. The improved performance
on large applications is due to their ability to amortize the
increased overhead expense of a more thorough and effective
search strategy.

The online pred strategy further reduces the online search
overhead by limiting the number of test executions even fur-
ther, to only one per layer of parallelism on the machine. On
our test machine with two layers of parallelism – processors
and hardware threads – only two iterations are necessary.
Using prediction based adaptation shows improvements of
18% in performance compared to naive, 10% better than
online exh and 9% better than online heur. Further, the en-
ergy consumption is reduced by an average of 19% – better
than either online exh or online heur. These two improve-
ments occur because a decision is made in fewer iterations, so
a larger percentage of execution is spent using configurations

ONLINE OFFLINE
EXH HEUR PRED STATIC PHASE

offline overhead 0 0 medium; small; small;
once ever once for each app once for each app

online overhead P*C*T P+C+T L 0 0
recommendations large apps; small apps; any size; any size; any size;

few executions few executions many different apps/inputs many times, one input many times, one input

Table 1: The offline and online overheads of each strategy (P=#procs, C=#cores, T=#threads, L=#layers
of parallelism) and recommendations of appropriate times to use each strategy, based on application size and
use patterns including how many times the application will be executed.

with better performance and lower energy consumption.

It is for small applications that the benefits of the reduced
online overhead for online pred truly appear. Compared to
naive, prediction achieves a 25% speedup with a 29% reduc-
tion in energy consumption. Even compared to the other on-
line analysis strategies for adaptation online pred performs
quite well for small applications, besting online exh by 20%
and online heur by 16%. For large applications, prediction
is still very effective, achieving speedups of 10% compared
to naive and 2% over the heuristic search, while matching
the performance of the exhaustive search.

The results for the two offline search strategies were very
similar to each other, showing a slight edge for offline static.
The explanation for the similarity is that while being phase-
aware allows for the possibility of improved performance,
offline phase suffers from changing the configurations be-
tween phases, thereby hurting cache performance. However,
for both application sizes, as well as overall, the two ap-
proaches see results within 0.5% of each other.

The performance of the offline analysis strategies is the best
of any of the approaches tested. This is not surprising as
the online overhead is reduced to zero when the work is
done offline. Averaged over all benchmarks, the strategies
improve performance by over 19% compared to naive, much
better than the online empirical search strategies, but only
3% better than online pred. Energy consumption is also
reduced by 27% averaged over all benchmarks and 41% on
benchmarks with few iterations.

The offline strategies are only slightly better than online pred

for small applications (by 5%), but for large applications the
results are comparable between the two approaches. In fact,
for large applications the choice of analysis strategy is not
especially significant as they all perform within 2% of each
other – approximately 10% better than naive. This result
shows that all of the techniques are capable of finding effec-
tive operating points, however they differ in their degrees of
overhead. What separates the strategies for large applica-
tions is the amount of work required offline to use each. We
address this issue in more detail in following subsection.

4.3 Recommendations
Having thoroughly compared the performance and energy
consumption of each analysis strategy in the previous sec-
tion, we are now in a position to analyze where each ap-
proach is most appropriate. Our recommendations, shown
in Table 1, are based on the performance of each approach

along with the offline overhead that must be endured by the
users of each strategy. These tradeoffs suggest particular
analysis strategies for users with different needs. Perfor-
mance and energy results match, in general, and the rec-
ommendations for energy optimizing analysis strategies co-
incide with those for performance. This is true because in-
creased online analysis increases both execution time as well
as energy consumption since the selected configuration is be-
ing used for a smaller fraction of the total execution.

The online exh and online heur strategies have the desirable
characteristic that their offline overhead, and therefore their
cost to use, is near zero. The original code must simply be
modified to make calls to the adaptation library before and
after each phase to allow the adaptation to occur, which
could be automated by a preprocessor. For this reason, these
analysis strategies are particularly appropriate for users who
only intend to run an application a small number of times.
While the other strategies have better results, their offline
overheads make them unsuitable for an application that will
only be run once – or a small number of times – because
the large offline overhead will not be amortized over many
executions.

Within the category of applications that are run only a small
number of times, online heur shows itself to be the best
candidate for small applications because it outperforms on-

line exh due to its reduced online overhead. On the other
hand, the exhaustive empirical search yields better results
on large applications, making it the best choice there.

For applications that will be run many times, a strategy
that carries some offline overhead can be selected, because
it will be made up for with the improved performance. The
offline static and offline phase techniques are the best for
applications that will be run many times, however only if the
input is not changed across executions. The offline training
techniques are tuned to the particular execution properties
of an application and cannot adapt to them at runtime, so
it is important that the offline training execution be identi-
cal to the live runs. However, changes in program input –
particularly input sizes – can lead to changes in the applica-
tion’s properties. As a result, offline training must be per-
formed for each application as well as each different program
input. Thus, offline strategies are limited in their applicabil-
ity despite the fact that their performance is the best. They
are, however, the most appropriate for precompiled libraries,
such as ATLAS [14], that will be called many times. They
are also appropriate for many users of scientific applications
who execute the same application a large number of times.

Between the two forms of offline analysis, we favor the use
of phase-aware techniques like offline phase. This is because
phase-aware approaches have been generally shown to out-
perform static techniques [12], even if cache-effects prevent
it from doing so for concurrency throttling.

Finally, online pred has the largest offline overhead of the
strategies evaluated. However, the overhead must only be
paid once and prediction will work for any application of
any problem size. The other online strategies also have this
property, however online pred outperforms these by a large
margin on average. This advantage makes online pred the
most effective choice for applications of any size that will be
run with different inputs or input sizes. Further, the train-
ing for prediction-based analysis works across applications,
whereas the offline strategies require retraining for each ap-
plication, so if multiple programs are to be run it is the best
choice here as well. As online pred works across applications
and program inputs with a single offline training period,
while still achieving comparable results to offline strategies,
we feel that it is the best overall analysis strategy.

5. CONCLUSIONS
This paper has compared five different forms of analysis used
for dynamic program adaptation. The specific techniques
evaluated are representative of popular forms of analysis in
the literature, and a thorough comparison of the strengths
and weaknesses of each one was needed. The results of this
study find that empirical search-based strategies are most
effective when an application will be run a small number of
times, due to the minimal offline overhead associated with
their use. Alternatively, for applications that will be run
many times with a fixed input, offline strategies are effec-
tive because they come with no online overhead. However,
prediction-based analysis was shown to be the most effective
approach for use with applications that will be run multiple
times with different inputs or when multiple applications are
going to be run with adaptation because the offline training
must only be done once while its results were always within
a few percent of the offline strategies.

The findings of this research are important because there
has been an especially strong recent focus on finding ways
of adapting applications at runtime to improve their perfor-
mance or power. This interest has been due to the realiza-
tion that only at runtime can full knowledge of an appli-
cation become available. Our results are applicable beyond
the domain of concurrency throttling and can be used both
by researchers in the area of adaptation as well as users of
adaptable systems.

Acknowledgments
This research is supported by the National Science Founda-
tion (Grants CCR-0346867 and ACI-0312980) and the U.S.
Department of Energy (Grant DE-FG02-06ER25751) and
Virginia Tech. We would like to thank Henry P. Rose for
his helpful suggestions on earlier drafts of this paper.

6. REFERENCES
[1] J. Bilmes, K. Asanovic, C.-W. Chin, and J. Demmel.

Optimizing matrix multiply using PHiPAC: a portable,
high-performance, ANSI C coding methodology. Proc. of

the International Conference on Supercomputing, July
1997.

[2] M. Curtis-Maury, J. Dzierwa, C. Antonopoulos, and
D. Nikolopoulos. Online power-performance adaptation of
multithreaded programs using hardware event-based
prediction. In Proc. of the 20th International Conference
on Supercomputing, June 2006.

[3] L. Dagum and R. Menon. OpenMP: an industry standard
API for shared-memory programming. IEEE
Computational Science and Engineering, 5(1), 1998.

[4] Ahmad Faraj, Xin Yuan, and David Lowenthal.
STAR-MPI: Self tuned adaptive routines for MPI collective
operations. In Proc. of the International Conference on
Supercomputing, June 2006.

[5] Vincent W. Freeh, David K. Lowenthal, Feng Pan, and
Nandani Kappiah. Using multiple energy gears in MPI
programs on a power-scalable cluster. In Proc. of the ACM
Symposium on Principles and Practices of Parallel
Programming, June 2005.

[6] Matteo Frigo and Steven G. Johnson. The design and
implementation of FFTW3. Proceedings of the IEEE,
93(2), 2005.

[7] C. Isci and M. Martonosi. Runtime power monitoring in
high-end processors: Methodology and empirical data. In
Proc. of the 26th ACM/IEEE Annual International
Symposium on Microarchitecture, November 2003.

[8] Robert C. Springer IV, David K. Lowenthal, Barry
Rountree, and Vincent W. Freeh. Minimizing execution
time in mpi programs on an energy-constrained,
power-scalable cluster. In Proc. of the ACM Symposium on
Principles and Practices of Parallel Programming, March
2006.

[9] H. Jin, M. Frumkin, and J. Yan. The OpenMP
implementation of NAS parallel benchmarks and its
performance. Technical report nas-99-011, NASA Ames
Research Center, October 1999.

[10] Thomas Kistler and Michael Franz. Continuous program
optimization: Design and evaluation. IEEE Transactions
on Computers, 50(6), 2001.

[11] Apan Qasem and Ken Kennedy. Profitable loop fusion and
tiling using model-driven empirical search. In Proc. of 20th
International Conference on Supercomputing, June 2006.

[12] Timothy Sherwood, Erez Perelman, Greg Hamerly, and
Brad Calder. Automatically characterizing large scale
program behavior. In Proc. of the International Conference
on Architectural Support for Programming Languages and
Operating Systems, October 2002.

[13] Richard Vuduc, James W. Demmel, and Jeff A. Bilmes.
Statistical models for empirical search-based performance
tuning. International Journal of High Performance
Computing Applications, 18(1), 2004.

[14] R. Clint Whaley and Jack Dongarra. Automatically tuned
linear algebra software. In Proc. of the Supercomputing,
November 1998.

[15] Jianxin Xiong, Jeremy Johnson, Robert Johnson, and
David Padua. SPL: a language and compiler for DSP
algorithms. In Proc. of the Conference on Programming
Language Design and Implementation, June 2001.

[16] Kamen Yotov, Xiaoming Li, Gang Ren, Maria Garzaran,
David Padua, Keshav Pingali, and Paul Stodghill. Is search
really necessary to generate high-performance BLAS? Proc.
of the IEEE, 93(2), 2005.

[17] Kamen Yotov, Keshav Pingali, and Paul Stodghill. Think
globally, search locally. Proc. of the International
Conference on Supercomputing, June 2005.

