
Dynamic Page Migration in Software DSM Systems

Thomas Repantis1 Christos D. Antonopoulos2 Vana Kalogeraki1 Theodore S. Papatheodorou2

1 Department of Computer Science & Engineering
University of California, Riverside

Riverside, CA 92521, USA

2 Computer Engineering & Informatics Department
University of Patras
26500 Patras, Greece

http://www.cs.ucr.edu/˜trep/

Abstract

We introduce a protocol for dynamically migrating memory pages in home-based Software
DSM systems. In these systems each page has a designated home node; yet our protocol
allows a node that heavily modifies a page to become its new home. The process is dynamic
and totally transparent to the applications programmer. The benefits of our page migration
mechanism include the reduction of remote page modifications, faster memory accesses, and
less communication overhead.

Introduction

• Computer clusters are a flexible and inexpensive platform for high performance computing.

• Using the architecture of Distributed Shared Memory (DSM) in computer clusters makes
the work of the application programmer easier. A Software DSM library provides the
notion of a shared address space to the programmer, although application threads may
execute on different cluster nodes with physically distributed memory.

local_memory_3

Global Shared Virtual Memory

local_memory_1

node_2

node_5

node_i

local_memory_i

Interconnection Network

node_3

local_memory_5

local_memory_2

node_4

Software DSM Layer

local_memory_4

node_1

�����
�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

��������������

�����
�����
�����
�����

�����
�����
�����
�����

	�	�	�	
	�	�	�	

�
�


�
�


������������


�
�


�
�


�
�


�
�


�����
�����
�����
�����

�������
�������
�����
�����

������������

�����
�����
�����
�����

�����
�����
�����
�����

�������
�������
�������
�������

������������

�����
�����
�����
�����
�����

�����
�����
�����
�����

�������
�������
�����
�����

��������������

�����
�����
�����
�����

 � � 
 � � 
 � � 
 � � 

!�!�!�!
!�!�!�!
"�"�"
"�"�"

#�#�#�#$�$�$

%
%
%
%
%
%
%
%
%
%

&
&
&
&
&
&
&
&
&
&

'
'
'
'
'
'
'
'
'
'

(
(
(
(
(
(
(
(
(
(

)
)
)
)
)
)
)
)
)
)

*
*
*
*
*
*
*
*
*
*

+
+
+
+
+
+
+
+
+
+

,
,
,
,
,
,
,
,
,
,

-
-
-
-
-
-
-
-
-
-
-

.
.
.
.
.
.
.
.
.
.
.

/
/
/
/
/
/
/
/
/
/

0
0
0
0
0
0
0
0
0
0

1
1
1
1
1
1
1
1
1
1

2
2
2
2
2
2
2
2
2
2

3
3
3
3
3
3
3
3
3
3

4
4
4
4
4
4
4
4
4
4

5
5
5
5
5
5
5
5
5
5

6
6
6
6
6
6
6
6
6
6

Figure 1: The Software DSM layer provides the applications with the illusion of shared
memory.

• In home-based Software Distributed Shared Memory systems each memory page has a
home:

– The home gathers all page modifications (diffs).

– All page access faults can be resolved with one request to the home of the particular
page.

– The performance however depends greatly on the distribution of pages across nodes,
with respect to the memory access pattern of the application. Remote page accesses
incur extra communication cost.

Motivation

Dynamic page migration (explicitly moving the home of a page from some node to another
at run-time) offers several advantages when employed in DSMs:

• Reduces the average latency of memory accesses by increasing the locality.

• Enables the system to adapt to the applications’ memory access patterns.

• Improves resource utilization. It allows the system to consider the computational and com-
municational needs of the applications and also to adapt to changing resource availability.

• Achieves the above with lower overhead than traditional approaches that rely on thread
migration.

The Dynamic Page Migration Protocol

We propose a simple and efficient page migration mechanism, that dynamically allocates
shared memory pages to home nodes:

• Each page has an initial, designated home node.

• Nodes that heavily modify the pages can become their new homes.

• The migration decision is taken locally, at the home of each page, according to the sizes of
the diffs that have been created for each page by the nodes that modified it.

• To avoid redundant page transfers, we perform migration only when the number of modi-
fications of a page by a remote node becomes higher than a threshold.

Propagation of the Migration Decisions

• The migration information is piggybacked on the existing synchronization (barrier) mes-
sages to minimize the communication overhead. Thus our implementation targets a DSM
that uses scope-consistency. However this does not affect the generality of our approach.

• Each node arriving at a barrier sends its migration decisions to the barrier manager.

• The barrier manager then propagates the collected migration decisions to all nodes.

• Thus the page tables of all nodes are updated before any thread is released from the barrier.

• Pages are transferred from the old to the new homes, if the latter don’t have an accurate
copy already (if they were not the single modifiers during the last barrier interval).

• Only after a migrating page has arrived, does the new home refer to it. The old home does
not unmap a migrating page, before it is sent to its new home.

operation

nodes manager hwmd_1
barrier 

lockid wtnt_1 ... wtnt_n STOP addr_1 ... addr_m hwmd_m
all 

barrier

tofrom data

Figure 2: The modified barrier request message, incorporating the addresses of the
pages that will migrate from this home, as well as the hosts with the maximum sizes of
applied diffs, which will become the pages’ new homes.

operation

hwmd_1lockid wtnt_1 ... wtnt_n STOP addr_1 ... addr_k hwmd_k
barrier
grant

barrier 
manager

all 
nodes

from to data

Figure 3: The modified barrier grant message, incorporating all hosts’ migration
decisions, which were gathered by the barrier manager.

Experimental Setup

• We have implemented our mechanism in the JIAJIA software DSM and evaluated it using
real application benchmarks.

• – 4 Intel Pentium III nodes, 256KB cache, 256MB RAM each.

– GigaBit Ethernet

– Linux 2.4.18, gcc 3.2.2

• We have compared our mechanism to JIAJIA’s home migration protocol, where a page
moves to a new home only if that was the only modifier during the last barrier interval.

Applicability of Dynamic Page Migration Protocol

• For several applications there are pages that are remotely modified by multiple nodes.

2048

47

29

48

02048

95

11

SOR

TSP

WATER

Remotely modified 

pages a single node

Pages modified by 

multiple nodes

Pages modified by Application

Figure 4: Number of pages that are remotely modified for some applications.

• In such cases a migration protocol that relies on detecting a single modifier pattern will
not be triggered and will offer no optimization.

Preliminary Performance Evaluation

We have compared the performance of the dynamic page migration protocol to the execution
without migration and to JIAJIA’s home migration protocol, for a variety of metrics.

Figure 5: Performance of bucket sort (white: no migration, blue: JIAJIA’s home
migration protocol, yellow: the new, dynamic page migration protocol).

Our dynamic page migration protocol:

• Reduces remote page modifications.

• Reduces transfers of pages and diffs (bytes received).

• Improves average memory access latencies (time spent in serving segmentation violations).

Conclusions and Future Work

• Dynamic page migration, when employed in Software DSM systems, reduces remote page
modifications.

• That results to faster memory accesses and less communication overhead.

• The cost of executing the algorithm and of migrating the pages is amortized by the benefits
gained.

Our future work includes:

• Extensive experimental evaluation of our protocol.

• Study and evaluation of more elaborate migration policies.


