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Abstract

Software DSMs (SDSMs) are an appealing alternative to
message passing, since they facilitate the programmability
of clusters. However the ease of programming comes at the
expense of performance. Although accesses of data that re-
side to the memory of remote nodes are transparent to the
programmer, they suffer from significantly higher latencies
compared to local accesses. As a consequence, it is desir-
able to move data as close as possible to the nodes that need
them most.

In this paper we introduce a protocol for dynamically
migrating memory pages in home-based SDSM systems. In
these systems each page has a designated home node; yet
our protocol allows a node that heavily modifies a page to
become its new home. The new protocol targets multiple-
writer DSMs, i.e. DSMs that allow multiple nodes to con-
currently modify the same page. The process is dynamic
and transparent to the applications programmer. Moreover,
it does not assume a specific consistency protocol.

Experimental results show that our page migration pro-
tocol reduces remote page modifications, decreases the av-
erage memory access latency, as well as the overhead for
the preservation of memory consistency. The benefit for the
end-user is a significant improvement in application perfor-
mance.

1. Introduction

Computer clusters have been established as a flexible
and inexpensive platform for high performance computing.
Message passing models, which are often preferred for pro-
gramming clusters, require all data exchanges between pro-
cesses to be explicitly specified by the programmer. On
the other hand, application development can be significantly
easier on top of Distributed Shared Memory (DSM) archi-
tectures. DSM architectures provide the notion of a globally

shared address space to the programmer, although applica-
tion threads or processes may execute on different cluster
nodes, with physically distributed memory (figure 1). The
shared address space notion can be implemented in hard-
ware or software. A Software DSM (SDSM) layer may be
offered as either part of the operating system kernel or as a
run-time library.

Figure 1. The DSM layer provides the applica-
tions programmer with the illusion of a glob-
ally shared memory address space.

The programming simplicity that SDSMs offer does
however come at a performance cost. The SDSM layer
has to preserve consistency of copies of memory pages of
the shared address space residing at different nodes. Ad-
vances in programming languages for deep multiproces-
sor systems, such as Unified Parallel C [5] or Co-Array
Fortran [18] introduce extensions for selective data shar-
ing, programmer-driven data distribution and association
between data and computation. The enriched semantics of
those languages can be exploited as hints to an underlying
SDSM middleware, in order to effectively reduce the over-
heads associated with the consistency protocol and improve



the overall performance.
In the simple approach of the sequential consistency

model [11], when a shared memory page is requested, the
most recent version of that page is fetched. That model,
however, delivers poor performance, mainly due to the
problem of false sharing of memory pages [9]. If the DSM
does not deal with false sharing, it unnecessarily forbids
processes to access the same memory pages concurrently,
even when the accessed addresses are unrelated. More re-
laxed memory consistency models, such as Lazy Release
Consistency (LRC) [10] deal with this problem. In LRC,
modifications of a memory page are only propagated to a
process when it acquires a corresponding lock. Even though
a protocol like that alleviates the problem of false sharing
and allows multiple processes to write on the same shared
memory page concurrently, it still has several drawbacks:
The memory overhead for keeping consistency-related data
in each node is large, as is the communication overhead to
gather the modifications of a page from multiple nodes and
bring a stale page up-to-date.

Home-based protocols [8] address the aforementioned
limitations. Home-based SDSMs associate each shared
memory page with a specific node, its home. The home
node is responsible for producing and distributing all the
copies of the page and for gathering and applying all the
modifications (diffs) to it, in order to maintain its consis-
tency. When a page fault occurs, the node attempting to
access the page can directly fetch it from the correspond-
ing home node, since the latter is always guaranteed to have
a valid copy of the page. Changes on a page by its home
node do not produce copies and diffs, whereas changes by
other nodes are applied collectively, once, at the home node.
Hence, the overheads of diff book-keeping and message ex-
change are reduced.

The performance of home-based DSMs depends highly
on the proper distribution of pages across nodes, with re-
spect to the memory access pattern of the application,
since remote page accesses incur extra communication cost,
whereas local accesses at the home node can be satisfied in-
stantly. The placement of memory pages together with the
processes that access them is crucial, in order to reduce the
number of remote memory accesses, the size of produced
diffs, the cost of the consistency protocol as well as the av-
erage memory access latency.

The benefits of a sophisticated page placement motivate
dynamic home migration, i.e. explicitly moving the home
of a page from some node to another at run-time. The ad-
vantages of employing dynamic home migration in SDSMs
are numerous: First, increasing the locality reduces the av-
erage latency of memory accesses and the amount of net-
work traffic caused by the transfer of both pages and modi-
fications. Second, the system is able to adapt to the applica-
tions’ memory access patterns, which may not be known at

compile-time or may even change throughout the execution.
In these cases, an initial home distribution –no matter how
clever it might be– cannot deliver optimal performance. Fi-
nally, resource utilization can be improved, since variations
in memory availability can be taken into account. If a node
does not have enough memory, pages can migrate to other
nodes. Adaptation to varying resources and application re-
quirements is achieved with lower overhead than that of tra-
ditional approaches which rely on thread migration [26].

Even though several home migration protocols for DSMs
have been proposed, they either target only single-writer
memory access patterns [6, 7], or introduce further com-
munication overhead by considering multiple homes [20].
Yet, in the majority of shared-memory applications mem-
ory pages are remotely modified by multiple nodes concur-
rently [21, 22].

Application By Single Node (%) By Multiple Nodes (%)

SOR 0 100
TSP 50.53 49.47

WATER 81.82 18.18

Table 1. Percentage of pages modified re-
motely by a single node or by multiple nodes
within a barrier interval, over the total number
of modified pages, for applications running
on top of a Software DSM.

Table 1 summarizes the percentage of pages modified by
a single and by multiple remote nodes for a variety of ap-
plications running on top of a Software DSM. While fine-
tuning the application code to minimize the sharing of mem-
ory pages among nodes can improve application behavior,
these examples serve as motivation for a migration proto-
col that detects multiple-writer memory access patterns. A
migration protocol that relies on detecting asinglemodifier
pattern will not be activated for memory pages that are be-
ing concurrentlymodified by multiple nodes, and will thus
offer no optimization. On the other hand, complicated mi-
gration protocols that introduce several new messages and
phases to migrate the pages and to keep them coherent may
incur too high of an overhead, not outweighed by the bene-
fits of migration.

In this paper we introduce DPMIG, a low-overhead, ef-
ficient, dynamic page migration mechanism. DPMIG dy-
namically distributes shared memory pages to home nodes
and is effective in the presence of both single- and multiple-
writer memory access patterns. Each page has an initial,
designated home node, however nodes that heavily modify
pages become their new homes. The migration decision is
taken locally, at the home of each page, based on the sizes of
the diffs that have been generated by the nodes that modified



it. To avoid redundant page transfers, we perform migration
only when the extent of modifications of a page by a remote
node becomes higher than a threshold. Local accesses to a
page are also taken into account to avoid migrating a page
that is locally accessed by its home. Ping-pong of pages is
tackled by detecting pages that have already migrated. The
migration information is piggybacked on the existing syn-
chronization messages and thus the communication over-
head is minimized.

We have implemented our mechanism on top of the JI-
AJIA software DSM [1, 23]. The choice of JIAJIA as an
implementation platform does not influence the generality
of our approach. We evaluated our mechanism using appli-
cation benchmarks. We quantified its benefits by compar-
ing it with the single-writer migration protocol of JIAJIA
(JIAMIG), as well as to the execution without migrations
(NOMIG). Our experimental results indicate that the new
mechanism significantly reduces remote page modifications
and hence network transfers, reduces the overhead of the
consistency protocol and achieves lower overall execution
time than its competitors.

The rest of this paper is organized as follows: In Sec-
tion 2 we introduce our implementation platform and we
describe in detail the new migration protocol. Section 3
presents the performance evaluation results and analysis.
Section 4 discusses related work and finally Section 5 con-
cludes the paper.

2. The Multiple-Writer Dynamic Page Migra-
tion Protocol (DPMIG)

2.1. The JIAJIA Software DSM

JIAJIA is a home-based SDSM system, based on a scope
consistency protocol. Each node acts as the host of a por-
tion of the shared memory. Memory accesses are local when
they resolve to locally homed pages. Remote pages need to
be fetched from the respective home nodes and cached lo-
cally for subsequent accesses. JIAJIA uses three basic page
tables at each node for the management of shared memory.
Thehomepage table registers pages that have the particular
node as a home. Thecachepage table keeps track of the
non-homed pages that are cached in the particular node. If
the footprint of cached pages gets larger than the available
cache, old pages must be evicted to make room for new
pages. Finally, theglobalpage table, common for all nodes
–though physically implemented and maintained as an in-
dependent copy on each node– is used to keep track of the
location of each page in the home and cache page tables.

JIAJIA implements a scope consistency protocol. The
processor that acquires a lock makes its shared memory
pages consistent only with respect to previous changes re-
lating to the specific lock. The changes, propagated as write

notices relating to the particular lock, enable the acquir-
ing host to identify obsolete cached pages. Barriers, on the
other hand trigger consistency operations which result to a
totally consistent shared memory image across all partici-
pating nodes. Each barrier, as well as the consistency op-
erations associated with it, are handled by a specific host,
the barrier manager. The barrier manager changes between
consecutive barriers in a round-robin fashion, in order to
avoid overloading specific nodes.

JIAJIA offers a single-writer home migration algorithm
(JIAMIG) [7], that is conservative in its migration decisions
and limited in its applicability. In JIAMIG, the home of a
page is migrated to a specific node if that node was the only
writer of the page between two consecutive barriers and still
has an accurate copy of the page locally cached. Then the
migration can occur without an actual page transfer being
required. JIAMIG takes advantage of write notices to iden-
tify pages that have been singly-written since the last bar-
rier and apparently targets software DSMs that use scope
consistency. The migration protocol we introduce, on the
contrary, is capable of targeting pages modified by multiple
hosts. Moreover, even though our implementation has been
optimized to exploit the existing synchronization messages,
the protocol itself does not rely on any particular consis-
tency protocol assumptions.

2.2. DPMIG Design and Implementation

We propose a multiple-writer dynamic page migration
protocol, which improves the performance of applications
by optimally placing pages, even if they are concurrently
modified by multiple nodes. If the main page modifier is
not the current home of the page, the migration of the page
to the main modifier can improve the locality of the appli-
cation and thus reduce the time-consuming remote memory
accesses, diff creations, transfers and applications.

The basic phases of our generic page migration mech-
anism are the following:(a) On-line monitoring of the re-
mote diff sizes, (b) Migration decisions, (c) Propagation of
the migration decisions, and(d) Page table updates. An ex-
ample of the page migration procedure is shown in figure 2.
We describe the different phases in detail in the following
paragraphs.

2.2.1. On-Line Monitoring of Remote Diff Sizes. All
the changes made to a page by any node are sent to the
home of that page in the form of diffs. The home of each
page is the most appropriate node to monitor the amount of
modifications applied to the page and, thus, to identify the
node that modified it most heavily. The home extracts the
size –in bytes– of the modifications directly from the mes-
sages carrying the diffs. In other words, the number of bytes
in a page that a node modified is recorded as the size of the
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Figure 2. An example of the page migration procedure. Nodes 1 and 7 modified page i, whereas
nodes 3 and 9 modified page k (a). According to the sizes of the m odifications, page i is migrated
from node 4 to node 7 and page k is migrated from node 6 to node 3. The migration decisions are
propagated from the homes of the pages to the barrier manager (b) and from the barrier manager to
all the nodes (c).

diff coming from that particular node. Modifications by a
node on its home pages are done directly and no diffs are
created. Those local memory write accesses are however
detected and taken into account in the migration decisions.

2.2.2. Migration Decisions. When a host reaches a bar-
rier, it identifies –for each page that it accommodates as a
home– the main modifier node, as well as the extent of the
modifications contributed from that node. The main modi-
fier of a page is defined as the node that has produced the
largest amount of modifications (diffs) for that particular
memory page so far. Based on this information,the home
decides to migrate the page to the main modifier after ap-
plying all diffs, only if all following three conditions are
satisfied:

1. The modifications are above a certain threshold.
2. The page has not been modified by its current home

since the last barrier.
3. The page was not migrated at the previous barrier.

Condition 1:Triggering the migration protocol even for
minor modifications would result to excessive migrations.
In order to avoid that, the extent of modifications must first
reach a certain threshold before the migration procedure is
triggered for a page. That threshold depends on the appli-
cation, the interconnection network, the memory and the
processing power of the nodes. Currently the value of the
threshold is specified by the application programmer using
an API call. For our experiments, we heuristically set this
threshold to 512 bytes. Page migration is beneficial even if
the threshold is left to the default value of 0; however we are
in the process of investigating automated ways to estimate
it at run-time.

Condition 2: Since local page modifications are per-
formed without the intervention of the SDSM in the sense
that they do not produce diffs, we cannot evaluate their ex-
tent and take them into account when reaching migration
decisions. It is however reasonable not to risk migrating
a page that is being modified by its current home, even if
another node has also been modifying it. Hence we detect
such pages and do not migrate them. Detecting local page
accesses is possible, because even the home of a page has
to acquire permission from the SDSM before writing it.

Condition 3: A common problem of page migration al-
gorithms is the ping-pong phenomenon, manifesting itself
as pages bouncing between two nodes. In order to deal with
this side-effect, we do not allow a home to migrate twice
during two consecutive barriers. This allows a page to build
some history on the node. Even though this approach just
reduces the possibility of ping-pong, we chose not to elim-
inate the phenomenon by locking pages in certain nodes
or prohibiting pages from migrating again to their earlier
homes [15]. This way the protocol is still able to adapt to
dynamically changing application memory access patterns.
In the case of page ping-pong, whether i) allowing a page to
migrate, ii) locking it in its current home, or iii) delayingthe
migration will provide the best performance, depends on the
future memory access pattern of the application and is there-
fore difficult to predict. Delaying repeating migrations, in
combination with forbidding locally accessed pages to mi-
grate, helps us in dealing with ping-pong in a non-intrusive
way, leaving room for adaptability.

Following the migration of a page, the diff statistics re-
lated to it are reset, so that old access information does not
affect future migration decisions.



Figure 3. The modified barrier request mes-
sage, incorporating the addresses of the
pages that will migrate from this home, as
well as the hosts with the maximum sizes of
applied diffs, which will become the pages’
new homes.

Figure 4. The modified barrier grant message,
incorporating all hosts’ migration decisions,
which were gathered by the barrier manager.

2.2.3. Propagation of Migration Decisions. JIAJIA im-
plements scope consistency, hence the consistency preser-
vation operations take place at synchronization points. Bar-
riers usually mark important synchronization points in par-
allel applications, therefore we chose to take and apply mi-
gration related decisions at barriers as well. In JIAJIA, the
“barrier manager” is responsible for collecting and prop-
agating the migration information. The barrier manager
changes from barrier to barrier, thus no single host becomes
a bottleneck in the procedure. By propagating migration de-
cisions only at barriers, the overhead of the migration mech-
anism is also minimized.

Each host in the system is responsible for producing in-
formation on the migration decisions for the pages it is the
home of. The addresses of the pages to be migrated away
from the node are piggybacked together with the identifiers
of the new homes on the “barrier request” message sent to
the barrier manager (figure 3). As a consequence, the bar-
rier manager actually collects all the migration information.
When all requests for a barrier have been received, the bar-
rier manager sends the accumulated migration information
to all hosts. That information is attached to the “barrier
grant” message (figure 4). Thus, while the home of each
page is responsible for taking the migration decision, the
barrier manager is responsible for propagating the decisions
of all homes to all the nodes.

2.2.4. Page Table Updates. Upon receiving a barrier
grant message each host updates its page tables (global,
home, and cache). The updates are based on the migration
information piggybacked on the message. More specifi-
cally, each host checks the addresses of the migrating pages,
together with the respective new homes and reacts, accord-
ing to the following rules:

1. If the host is the new home of the migrating page, then:

(a) If it was not the sole modifier of the page and
hence does not have a valid copy of it, it asks
the page’s previous home for a valid copy. We
keep track of arriving pages in order to ensure
that the new home will not attempt to access the
page before it is received from the old home.

(b) If it was the single modifier of the page, and
still has a valid copy of the page locally cached,
no page transfer occurs. If the page is not
cached anymore, it is transferred from the pre-
vious home.

A slot is then allocated for the new page in thehome
page table of the host and its place in thecachepage
table is freed.

2. If the host is the old home of a migrating page, then
the page’s slot in thehomepage table of the host is
freed. The page is either invalidated, if there is no
free position in thecachepage table, or preserved as
a valid cached copy if a free position is available. We
make sure, however, that if the migrating page needs
to be transferred to the new home, the old home will
not update its page tables and unmap the page before
its actual reception from the new home.

3. Theglobal page tables of all hosts in the system are
updated to point to the new home.

2.2.5. Communication Overhead. From the previous
discussion it is clear that DPMIG keeps the message ex-
changes required for the migration to a minimum. The mi-
gration information is piggybacked to the existing barrier
request and grant messages. In the case of a single modi-
fier of a page, the migration takes place without an actual
page transfer as long as the single modifier still has a valid
cached copy of the page. In the case of multiple modifiers
though, the new home inevitably has to get the page from
the previous one, since this is the only host guaranteed to
have a valid, updated version of the page.

By taking and propagating migration decisions at barrier
synchronization points, we limit the applicability of the pro-
tocol to applications that use barriers as a synchronization
mechanism. Apart from the fact that this is often the case –
especially in popular programming models for shared mem-
ory, such as OpenMP [19]– we also feel that this choice is
well balanced due to the simplicity and minimal overhead
it provides: Neither extra synchronization phases, nor extra
messages are introduced by the migration protocol. There
is some minimal overhead imposed on the barrier manager
for collecting and propagating the migration information,
however this overhead is amortized among all hosts, since a
different node adopts the role of the manager for each bar-
rier.



3. Experimental Evaluation

The performance of our protocol (DPMIG) has been
compared with both JIAJIA’s single-writer home migra-
tion protocol (JIAMIG) and the performance of applications
when executed without activating migrations (NOMIG).
Throughout this section, the results from the NOMIG ex-
ecution are used as a reference for the calculation of perfor-
mance improvements, ratios etc.

We carried out our experiments on a cluster of 8 nodes,
with AMD Athlon XP processors, clocked at 1674 MHz and
equipped with 256 KB of outer-level (L2) cache and 1GB
main memory each. Nodes were interconnected with a 100
MBps Ethernet network. The operating system was Linux
(kernel version 2.6.7) and the application binaries were cre-
ated using the gcc compiler (version 3.3.3).

We used the following applications as benchmarks: Wa-
ter from the SPLASH-2 suite [25], IS from the NAS Par-
allel Benchmarks [13], a synthetic matrix multiplication
(MM) and EM3D from the JIAJIA software DSM distri-
bution [24].

Water simulates forces between 288 different molecules.
It uses an array of data structures, each corresponding to a
molecule. The array is statically divided into equal parts,
each of which is assigned to a processor. Processors use
locks to protect the update of force values relating to the
molecules. The calculation proceeds in 100 time steps. Bar-
riers are used to ensure that all processes perform calcu-
lations corresponding to the same time step, as well as to
guarantee global memory consistency at the beginning of
each step.

IS applies bucket sort to sort a sequence of 215 keys.
Keys are assigned to processors and each one has a local
bucket, while there is also a global bucket for all proces-
sors. Initially, each processor counts the keys in its local
bucket. Afterwards the counts are accumulated in the global
bucket during a critical section protected by a lock. Then
keys are sent to the local buckets they correspond to, taking
advantage of the information collected in the global bucket.
Finally each processor sorts its local bucket. The different
phases of the algorithm are separated by barriers.

MM performs the calculation A=(B×C)100 with matri-
ces of dimension 1024x1024 each. Matrices A, B and C are
shared by all processors. The A×B matrix multiplication
does not require any synchronization, since each processor
computes a different band of lines of the resulting matrix.
However, barriers have been introduced between the con-
secutive matrix multiplications used to raise the result of
A×B to the power of 100.

EM3D is a parallel, finite difference, time domain al-
gorithm that computes the resonant frequency of a waveg-
uide loaded 3D cavity. The main shared data structures
are three electronic and three magnetic field components as

well as eight coefficient components. The electronic and
magnetic field components are updated alternatively in the
x- and y-directions, whereas parallelism is exploited in the
z-direction. The computation progresses in 100 time steps,
with barriers between consecutive time steps to enforce
memory consistency. The application is hand-optimized for
the JIAJIA SDSM, so that the initial data allocation is opti-
mal.

The first performance metric used for the comparison
among the page migration strategies is theexecution time
of applications, expressed as the performance improvement
over the execution without migration. This metric is a good
indication of the overall end-user experience. The results
are depicted in figure 5.
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Figure 5. Execution time improvement at-
tained by the activation of the DPMIG and JI-
AMIG page migration policies, over the exe-
cution without migrations (NOMIG).

Figure 5 shows that the DPMIG policy achieves perfor-
mance improvement of up to 18% (as shown in the case
of IS). JIAMIG’s policy on the other hand results to slow-
downs on all applications except MM. MM is the only
application where all pages are singly-written by the same
node throughout the execution, and therefore JIAMIG man-
ages to improve performance. DPMIG behaves signifi-
cantly better. All applications, with the exception of EM3D
benefit. EM3D suffers a minimal slowdown under both
DPMIG and JIAMIG. Its performance is practically indis-
tinguishable from that of the NOMIG execution. The rea-
son, as it is further explained in the following paragraph, is
that the code has already been optimized by the application
programmer.

Figure 6 depicts theratio of home migrations over the to-
tal number of pagesunder the DPMIG and JIAMIG proto-
cols. This ratio is not equivalent to the percentage of pages
having their home migrated, since the home of the same
page may migrate to more than one nodes throughout the
execution. However, it is a good indication of how often
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Figure 6. Ratio of home migrations triggered
by the two protocols, over the total number of
pages.

each migration protocol is triggered. The home migration
ratio of EM3D is less than 0.01 in both cases (155 and 63
out of 21176 pages for DPMIG and JIAMIG respectively).
As aforementioned, the application is hand-optimized for
execution with JIAJIA. It has a predictable memory access
pattern, which allows an optimal initial allocation of shared
data to be applied off-line. None of the migration protocols
manages to get triggered enough to allow home migrations
to have measurable effect in the execution time. For MM,
on the other hand, the migration ratio is 0.29. The experi-
mental results from the execution of IS and Water indicate
that the ratio of home migrations over the total number of
pages can not alone offer a safe indication of a protocol’s
effectiveness. JIAMIG reaches a migration ratio of 0.88 for
IS, since many pages have a single modifier some time dur-
ing the execution. However, the modifications are minor
and do not justify the migration, nor does the access pattern
generally repeat. DPMIG, which takes into account the ex-
tent of modifications before triggering a migration is more
conservative and limits the ratio to 0.13, resulting however
to better performance than JIAMIG. The behavior of the
two protocols is the opposite for Water. The relatively irreg-
ular modifications pattern of Water limits the opportunities
for page migrations under the JIAMIG protocol. DPMIG
looks for migration candidates beyond singly-written pages
and manages to perform more migrations, attaining better
performance compared with both JIAMIG and NOMIG.

Table 2 summarizes thenetwork traffic, in MBytes, pro-
duced by the four benchmarks under the three different
migration strategies. The sophisticated page placement
achieved by DPMIG results to an average 30.51% reduc-
tion of network traffic, compared with the execution without
migrations (NOMIG). JIAMIG also reduces network traf-
fic. It moves 9.95% less data than NOMIG. Despite the fact
that DPMIG may require page transfers during home migra-
tions –should the new home not be the single modifier of the

IS MM Water EM3D
NOMIG 5266.05 816.52 320.16 169.98
JIAMIG 5264.35 81.57 320.46 222.14
DPMIG 4065.37 81.64 223.09 174.64

Table 2. Total network traffic (in MBytes)
caused by each application under the three
different page migration strategies.

page between the last two barriers– it produces less overall
network traffic than JIAMIG. The better home placement
it achieves compensates for the additional page transfers.
DPMIG results to more data traffic than NOMIG only in
EM3D. The additional network traffic is 2.74% or just 4.66
MBytes. The minimal overhead indicates that, even in cases
the DPMIG migration protocol has no room to improve the
locality of memory accesses, it will not have adverse effects
on application performance. It should be pointed out that
in the case of EM3D JIAMIG causes even higher network
overhead than DPMIG.

In the case of MM it is also noteworthy that, although
both migration protocols manage to reduce the network traf-
fic by a factor of 10, this reduction does not translate into
a significant improvement of the execution time. As afore-
mentioned, all pages of the result matrix (C) are singly writ-
ten and, after the first step, the modifier nodes have valid
copies of them. In other words, the overhead of the con-
sistency protocol is limited to the calculation of diffs and
their transfer to the corresponding home nodes. However,
since no node ever requests a page from its home node, this
procedure is actually not in the critical path of the execution
and overlaps with the wait time at barriers for the most part.
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Figure 7. Overhead breakdown for each appli-
cation under the three page migration strate-
gies.



Figure 7 depicts theoverheadcaused by the memory
consistency protocol when it is combined with the three mi-
gration strategies. The total overhead is, in all cases, nor-
malized with respect to that of the execution of the same ap-
plication without migrations (NOMIG). Given that the page
migration mechanism is integrated with the memory con-
sistency operations, the measurements capture the overhead
caused by the migration protocol as well.

Three different sources contribute to the total overhead:
(i) The Segmentation Violation Handler (SigSegV), which
resolves memory accesses that cannot be satisfied inside
the node without DSM intervention, either because the ac-
cessed page is not locally homed or cached, or because the
node does not have the correct access privileges. (ii) The
Memory Server (Server) of each node responds to requests
from the SigSegV handlers of remote nodes concerning lo-
cally homed pages. (iii) The Synchronization Server (Syn)
is responsible for handling synchronization requests among
different nodes, in the form of locks or barriers. However,
since the triggering points of JIAJIA’s memory consistency
protocol are closely related to synchronization operations,
the Syn server is also responsible for memory consistency
preservation as well. Moreover, page migration protocols
also execute in the context of that server.

DPMIG reduced the overall overhead by 16.12% in av-
erage. JIAMIG, on the contrary, increased the overhead
by 38.65%, in comparison with the execution without page
migrations (NOMIG). The sophisticated page placement
achieved by DPMIG results to better locality and as a conse-
quence lowers the cost for the preservation of memory con-
sistency. The rigid JIAMIG protocol, on the other hand, did
not manage, at least for the specific applications, to trigger
the appropriate page migrations. It often proved oversensi-
tive, as in the case of IS, or undersensitive, as in the case of
Water. As a result, the overall overhead is higher than that
of NOMIG, due to both the cost of executing the migration
algorithm and the overhead of inopportune page migrations.

Interesting conclusions can also be drawn from the
breakdown of contributions of the three individual sources
to the total overhead. DPMIG improves the locality of
memory references, which results to a measurable reduc-
tion of the execution time of the SigSegV handler and
the memory server. The average reduction, in compari-
son with NOMIG, is 38.84% and 29.06% respectively. This
is not the case for JIAMIG, which results to 227.10% and
45.74% higher SigSegV and memory server overheads than
NOMIG. The performance problems of JIAMIG are more
evident in the case of IS. However, even if IS is excluded,
the SigSegV handler and memory server are again more
time consuming than in the case of NOMIG, this time by
5.73% and 29.83% respectively.

Despite the fact that the synchronization server overhead
is inflated by the cost of the migration protocol, DPMIG

manages to reduce that overhead by 11% over NOMIG,
since the educated distribution of page homes to nodes re-
sults to less memory consistency operations at synchroniza-
tion points. Again though, JIAMIG is not successful at
compensating for the cost of the home migration protocol
through better locality. The synchronization server con-
sumes in average 4.09% more cycles than when home mi-
grations are not activated.

4. Related Work

Since the introduction of Ivy [12], the first Software
DSM, many techniques have been proposed to improve
SDSM performance. Due to space limitations, we focus
mainly on previous efforts related to dynamic home migra-
tion.

Fanget al [6] introduce an adaptive home migration pro-
tocol that detects only single-writer patterns and is imple-
mented in a distributed Java Virtual Machine. They em-
ploy a per-object threshold that is adjusted continuously to
guide migration decisions. The threshold is tuned accord-
ing to feedback generated from previous home migration
decisions made at run-time.

Peng and Speight [20] propose a home-based lazy re-
lease consistency protocol, in which the number of home
nodes for each shared page can vary. The protocol relies on
multicast –if available– to propagate page updates to all the
homes simultaneously and reduce the communication cost.
Home nodes can change dynamically according to predic-
tions based on the memory access patterns. Predictions are
based on the comparison of the time needed to update a page
versus the time needed to fetch it.

In Moving Home-Based Lazy Release Consistency
(MHLRC) [3], a page migrates to another node if: i)There
have been no modifications to it by the home node in the
current interval, and ii) the page was not fetched in the cur-
rent interval. This page migration protocol targets only lim-
ited memory access patterns, such as single-writer, where
the new home already has the latest version of the page. To
avoid broadcasting home changes, a linked list that points to
the current home is generated along the migration route and
multicasting is used. At every home transfer the previous
home node creates a pointer to the new home node. Ap-
parently traversing through the linked list can have a non-
negligible overhead.

A home migration protocol has also been implemented
as part of the Orion SDSM [14]. Again, it targets only
single-writer (producer) memory access patterns. Further-
more, page migration decisions are not combined with
any existing synchronization mechanism. Hence, broadcast
messages are needed to announce a page migration. More-
over, page updates and requests may be directed to the old
home during a transient period and need to be forwarded to



the new home.

JUMP [2] is another page migration protocol, where the
processor asking for a page becomes the new home of it,
regardless of whether it was the single writer or not. When
two processors ask to become the home for the same page,
the one that asked first becomes the new home. Migration
notices are used to inform nodes about the home change,
that may introduce traffic overhead. No effort is made nei-
ther to try to migrate a page to the node that actually needs
it the most, nor to prevent unnecessary migrations.

We have already described the home migration proto-
col implemented in the JIAJIA SDSM [7], in which a
singly written page during a barrier interval is recognized
by the barrier manager and is migrated to the processor
that modified it. Migration messages are piggybacked on
barrier messages, thus, no extra communication between
the nodes is required. The authors illustrate that they can
reduce diffs significantly and improve application perfor-
mance, compared to statically distributing the pages to the
nodes. Our work extends that approach towards an adaptive
multi-writer home-based migration protocol that is less con-
servative in its migration decisions and applicable to more
types of memory access patterns. The basis of our page
migration algorithm together with preliminary results were
introduced in [21, 22]. In the current paper we present our
complete protocol together with an extensive experimental
evaluation.

Nikolopouloset al have shown that user-level dynamic
page migration at run-time can improve the performance
of parallel applications on NUMA hardware DSMs. Mon-
itoring of memory page references [15] is combined with
feedback from the operating system kernel scheduler [17] to
keep threads together with their memory affinity sets. The
authors have also shown that the OpenMP run-time environ-
ment can benefit from page migration in hardware DSMs to
offer implicit data distribution and redistribution schemes
without programmer intervention [16]. The benefits of dy-
namic page migration are more profound in SDSMs, due
to the significantly higher remote / local memory access la-
tency ratio involved. At the same time, page migration is
more challenging in SDSMs, because SDSMs do not – and
technically can not – provide any support for monitoring lo-
cal monitory accesses, similar to the functionality available
in certain hardware DSMs and exploited in [15–17].

Concerning the execution of OpenMP applications on
top of software DSMs Costaet alhave also proposed to en-
courage cooperation between the SDSM and the OpenMP
runtime [4], instead of relaxing the consistency seman-
tics [10].

5. Conclusions

In this paper we introduced DPMIG, a simple yet effi-
cient dynamic page migration mechanism for home-based
software DSMs. Unlike previous efforts, our mechanism
is applicable in the presence of both single- and multiple-
writer memory access patterns. The new mechanism is gen-
eral and at the same time keeps migration-related commu-
nication minimal. It does not presume any specific memory
consistency protocol, however its implementation in JIAJIA
is closely integrated with the scope consistency protocol,
thus minimizing its overhead.

We evaluated DPMIG using application benchmarks.
By comparing our multiple-writer migration protocol to a
single-writer one (JIAJIA’s home migration protocol), as
well as to operation without migration, we were able to
quantify its benefits. Our experimental results show that our
mechanism significantly reduces remote page modifications
and hence network traffic, reduces the memory consistency
protocol overheads and achieves better performance than its
competitors.

We are currently experimenting on the automatic calcu-
lation of the migration threshold at run-time. The estimate
should ideally take into account static technical characteris-
tics of the system as well as dynamically changing param-
eters of the execution environment. Moreover, we are eval-
uating the applicability in the context of SDSMs of tech-
niques traditionally used to reduce the average memory ac-
cess latency in multiprocessors, such as prefetching or pre-
computation.
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