smt-SPRINTS: Software Precomputation with
| ntelligent Streaming for Resource-Constrained SMTs

Tanping Wang, Christos D. Antonopoulos and Dimitrios S.d\jpoulos

Department of Computer Science
The College of William and Mary
McGlothlin—Street Hall. Williamsburg, VA 23187-8795
{twang,cda,dsn }@cs.wm.edu

Abstract. We presentSPRINTS a source-level speculative precomputation
framework for scientific applications running on SMTs wittotexecution con-
texts. Our framework targets memory-bound applicatiort raaluces memory
latency by prefetching long streams of delinquent datassese A unique aspect
of SPRINTSiIs that it requires neither hardware nor compiler suppbfs. hased
on partial cache simulation and a compression algorithnthvban accurately
summarize very long streams of cache mis&RRINTSextracts patterns from
the streams, which are in turn used to generate source-leigtlly optimized
precomputation codeSPRINTSachieves significant performance improvements
over plain thread-level parallelization and indiscrimisn@recomputation based
on code cloning. We demonstrate these improvements usinggayistic scien-
tific applications.

1 Introduction

Simultaneous multithreading (SMT) allows multiple thread concurrently issue in-
structions to different execution units of the same phygicacessor. SMT has been
recently used as a core architecture by several processmfataurers [7, 11, 14], since
it has the potential of achieving better performance thawventional superscalar pro-
cessors, at a minimal additional cost. The main reason éotadist effectiveness of SMT
processors is that threads share a common set of execusimurces. The major short-
coming of resource sharing is that it may result to perforoeaoss, should threads
on the processor end up competing for resources such astiexeanits, instruction
buffers and cache space. This performance loss is moseabtiein parallel scientific
computations, in which threads tend to be memory-boundaheite identical resource
requirements.

Speculative precomputation (SPR) [4] is a technique whiebsiuthread contexts
in an SMT to eliminate L2 cache misses from the main companatireads, by pre-
executing future memory accesses. SPR has demonstratedtéhial of speeding up
pointer-based, single-threaded code on multithreadeckgsors and several hardware
and software implementations have been investigated inela¢ed literature [3, 8—
10,12]. This paper makes a case for using SPR as an alternatthread-level par-
allel execution on SMTs with two hardware contexts and khiexecution resources.
The motivation for using SPR in scientific codes stems fromdWwservations. First, the

hardware of existing SMTs can not handle the resource prefsum multiple memory-
and execution unit-bound threads. A carefully designed Sélieme can reduce this
pressure to a minimum, while still reducing memory latenaffesed by co-executing
application code. Second, most memory-bound scientifiegaiffer from memory
latency caused by long, but quite predictable streams of ongmmccesses. SPR is a
mechanism which can effectively prefetch such streams.

The contribution of this paper is a user-level software SRIRnEwork, which sup-
ports stream-based SPR for scientific applications, witharaware or compiler sup-
port. We named our framewot&PRINTS(SoftwarePRecomputation witiNTelligent
Streaming). In the heart of this framework lies a compressind pattern extraction
algorithm, the purpose of which is to identify streams ofimiglient loads which can
be directly mapped to streams of data accesses in the soodesof the program.
Although multiple forms of streams exist in a program (sushdgnamic instruction
streams, streams of data addresses and so on), our frameptsrkor identifying a
form of streams which can be directly mapped back to comjmutaind data structures
in the source codeSPRINTSrepresents streams of L2 cache misses as strings of inter-
miss iteration distances, using feedback from a cache atmult uses the compression
grammar to identify strong patterns in the loop iteratidva tncur L2 cache misses and
feeds these patterns back to a source code generator. Tive sode generator trans-
lates streams into precomputation loops which have snm&tuaotion working sets and
are amenable to optimization by the back-end compiler.

SPRINTShas a humber of advantages, both as a self-contained toclampared
to other precomputation strategies. The first is simpliaty there is no requirement
for compile-time analysis, or additional hardware to tréee code. The second is au-
tomation and transparency to the programmer. The thirdiapility across SMT ar-
chitectures. The stream identification and compressicofdpression engine is inde-
pendent of the target architecture and works end-to-enthusnly source code. Fi-
nally, SPRINTSis engineered for high performance, using optimizatiorch s store
removal, prefetch distance control, and prefetch targeicgen. We have evaluated
SPRINTSon a Hyperthreaded Intel Xeon. Our results show SaRINTSspeeds up
scientific applications for which thread-level parallalion performs poorly.

The rest of the paper is organized as follows: Section 2 ¢hcesSPRINTSand
provides implementation details. The experimental evadnaf SPRINTSis presented
in section 3. In section 4 we discuss related work. Finadlgtisn 5 concludes the paper.

2 Precomputation with Intelligent Streaming

SPR implementations [4, 15] adopt a “top-10” approach fentifying delinquent loads
and emitting precomputation code. More specifically, aeattural simulation is used
to identify a few loads which are responsible for most cacleses. Once these loads
are identified, code cloning and slicing are performed todghe instruction paths that
lead to the delinquent loads and the loads themselves inrfdemmputation thread.
The “top-10” approach works well in practice because in ncosles a few static loads
are responsible for large fractions (e.g. more than 90%pohe misses. Another rea-
son for using this approach is that precomputation threatgsfere with their sibling

computation threads, sharing execution units and otheuress in the processor. Indis-
criminate code cloning in precomputation threads wouldseaexcessive interference,
whereas highly selective code cloning and further optitiereof the precomputation
code will reduce the interference. For these reasons we #umftop-10" approach for
precomputation irSPRINTS

SPRINTSuses cache simulation to identify delinquent loads. Thetpa impact
of using simulation is thaBPRINTScan accurately identify critical memory accesses
that need to be prefetched. In contrast, mere code profilmgdwnly discover domi-
nant reference streams without necessarily revealingrimdtion on the cache behavior
of these streams. Cache simulation is a generic method wia&esSPRINTSportable
with reasonable effort between SMT architectures. Por@R&RINTSrequires porting
of the cache simulator to accept memory reference traces &dalifferent ISA and
adaptation of the architectural parameters of the targateckssor’s cache. The port-
ing process can be facilitated by several existing simaretidols.

The profiling mechanism cPRINTShas two distinctive features. Besides detect-
ing delinquent loads, it also recognizes repetitive patién these loads. Moreover, it
maps delinquent loads identified via profiling back to souwmde and actually emits
source code (at the language level) in precomputationdsré&iéhis code prefetches di-
rectly elements of application-level data structures.réuty we map misses back to
array elements, but the same tool can be used to map backnterdie of other data
structures as wellSPRINTSuses partial simulation, taking advantage of the iterative
structure of scientific codes to simulate only a few outeftritegations of the dominant
loops and save significantly on simulation time.

SPRINTStargets loop-based scientific applications, which exlsiioitng patterns in
several aspects of their control and data flow. In partictiter loop-intensive structure
of scientific applications, and the fact that delinquendktend to occur in heavily tra-
versed loops [8] motivate the use of a loop-based approgutetmmputation, in which
the speculative thread prefetcheteeamsof data that would otherwise be streams of
cache missesSPRINTSuses a grammar which detects such streams, by tracking the
loop iterations in which delinquent loads occur and idegimi patterns of distances
between delinquent loads, measured in loop iterationsrati@nale for this technique
is that long streams of loop iterations with delinquent magdhen mapped back to
source code, can be directly translated to highly optimeaburce code loops. Fur-
thermore, using loops for precomputation allo8BRINTSto trigger precomputation
in synch with the sibling computation threads, using lomels as natural synchroniza-
tion boundaries and specific loop iterations as naturagjétigpoints. This property is
desirable because it allows for accurate and effectiverobot the runahead distance
between precomputation and sibling computation, which igiin critical for timely
prefetching [8, 15]. The following sections outline the maomponents o§PRINTS

2.1 Cache Simulation and Trace Collection

SPRINTSuses a cache simulator based on Cachegrind, the cachetsimatamponent
of Valgrind, to obtain complete traces of cache misses. We have modiéiedegrind

! http://developer.kde.org/"sewardj/docs-2.2.0/manual .html

to analyze the instruction address stream and detect baglases in the dynamic con-
trol flow graph of the program. Backward arcs may corresporiddps, however they
may also correspond to other control structu®BRINTSusesobjdump a GNU de-
velopment tool, to uniquely identify loops in the prograrheRool is used to disassem-
ble the object file and extract the first instruction addrésh@body of each loop. The
simulator uses these instructions as anchors in order bodeotectly identify loops and
keep track of the loop iteration count. We have introduceev& module in Cachegrind
to map uniquely memory references that miss in the cacheay atements, using the
current loop iteration count as input.

2.2 Delinquent Load Identification and SPR Code Generation

Following profiling, SPRINTSreorganizes the trace of cache misses, and groups misses
by associating them with the addresses of the instructhuaisttigger them. Typically,
few static instructions are responsible for most missesmaisdes from the same in-
struction tend to exhibit strong repetitive patterns.

SPRINTSuses the Sequitur [1] grammar to compress the trace of misses:
compact representation. The representation stores tisesras strings of symbols, with
each string corresponding to one array reference accassad ioop nest. Each symbol
in a string represents the distance (in loop iterations sweal after loop linearization)
from the previous miss for the same data object in the samte s grammar is com-
posed of rules in which terminals (symbols) represent umitjstances between consec-
utive misses and non-terminals represent concatenatfaiesminals which uniquely
identify the stream of cache misses for each array referébequitur constructs a
context-free grammar with exactly one word for each refeeeifhe grammar can be
represented as a set of DAGs and the whole stream of missdseaaproduced (un-
compressed) from the grammar with one preorder pass, inlifraar to the length of
the grammar. The length of each string is equal to the nunitraisses incurred by the
corresponding reference, which can then be quantified atdn of the total number
of cache misses incurred in the whole program and used teifgldhe reference as
delinquent or not. In order to identify strong patterns witquitur, it suffices to find
non-terminals (sub-strings of the grammar) with multiptewrrences. Each such sub-
string can be translated to a loop which prefetches themstr&aese loops are highly
optimizablé and even parallelizable from a standard back-end compiler.

Consider Figure 1, which shows a loop from the NAS BT benclkaigre loop be-
longs to thex_backsubstitute function of thex__solve module of BT. The right
part of the figure shows the rules of the Sequitur grammarhuiéscribes all the cache
misses incurred in accesses to elementhsf, in a single string of inter-miss loop
iteration distances. For further details on how this gramisiaonstructed the reader is
referred to [1]. In the illustrated example, all integerefpted with an ampersand are
terminal symbols and all other symbols are non-terminate €an easily observe that
after the first miss, cache misses exhibit a very strong pattéh inter-miss distances

2 Dead-code elimination is the only optimization that needbe precluded in precomputation
loops. FurthermoreSPRINT Sreplaces delinquent stores with loads to preserve coesstin
the architectural state.

& 112333456788&51
for (i = grid_points[0]-2; i >= O; i--) % ; %g&gg
or = = 0] I- -
for (j = 1;j < grid_points[1]-1; j++) 2 2 g g
for (k = 1; k < grld p0|nts[2] 1; k++) 5566
for (m = 0; m < BLOCK_SIZE; m++) 6 -> 10 10
f(n=0n<B|_ocR SIZE; n) 7->88
rhs[I][J][h !J il § > 1111
CC][m][n .
10 ->712 12
*rhS[l+1]]]][[k]][[n]: 11 > 13.13
12 >77
13 > &5 2 2 &8
Fig. 1. Sample loop ofx_backsubstitute in NAS BT and compression grammar for the

cache misses incurred by elementshsf , during execution with the Class A problem size.

predominantly equal to 8 iterations, and sporadically étpiaiterations. The grammar
givenin this example describes a total of 6 million cacheseson elemetiits (spread
over 200 iterations executed by BT, with approximately 3fuand misses each) with
only 13 rules and a couple of hundreds bytes of storage. A bfitie envelope calcu-
lation will show that the entire cache miss sequence of tkeifip data access is repre-
sented uniquely with the strin@87 A3972 4512 A128 A64 A8 A4582 whereA = 587. The
grammar is easily translated into tight loops for prefetgithe cache-missing elements
of lhs using a recursive algorithm which visits each rule of thengrear in order.

The precomputation code generation phas&BRINTSuses the loop iterations
as natural units for controlling the distance between trec@mputation and sibling
computation threads. Furthermore, it uses loop iterattorthrottle the precomputa-
tion thread, so that the data fetched in a stream do not owetfle L2 cache. Both
techniques (runahead distance control and throttlingye&om our earlier work [15].
Another optimization applied bPRINTSis the release of processor resources held
by a precomputation thread when the latter is idling and etting streams.

3 Experimental Evaluation

We present experiments obtained with the OpenMP, C versilB$ and FT, two real-
istic application codes from the NAS benchmarks suite [6ihlusing the class A prob-
lem size. BT is a simulated CFD application which uses anitidinite-difference
algorithm based on the alternate direction implicit methodolve 3-dimensional com-
pressible Navier-Stokes equations. FT implements a séivea class of PDEs using
a 3-dimensional bidirectional (forward and inverse) coadFT. BT and in are good
candidates for speculative precomputation techniquesguse their parallelized ver-
sions exhibit performance degradation (in the case of BTyeoy modest performance
gains (in the case of FT), when executed on SMTs with two ei@taontexts. The per-
formance bottlenecks of parallelization stems from cotid@rfor execution units and
cache space. A speculative precomputation thread canedéiéliese problems and pro-
vide speedup by reducing memory latency. The applicatians bheen compiled with
the Intel C/C++ OpenMP compiler, using the highest level gtirnization. Our hard-
ware platform is a four-way SMP with Intel’'s HyperthreadegoX processors, clocked
at 1.4 GHz. Each processor offers two execution contextssaeglipped with 8KB L1
data cache, 12KB L1 instruction trace cache and 256 KB unifiedache.

The Hyperthreaded processors include a hardwired hardprafetching engine.
It is possible that the hardware prefetching engine intedfavith software prefetc-
ing engines, such aSPRINTS by detecting and prefetching some of the references
prefetched also by the software prefetching engine. THecetan not be quantified
with the tools available on the specific processor. It mushdted that the automatic
software prefetching engine of the Intel compiler was @atéd in the baseline sequen-
tial execution of the benchmarks, as well as in parallel etiens of the benchmarks
with two execution contexts per processor. However, thel'prefetching engine was
deactivated while generating code wiBPRINTS We have also experimented with
manual, non-speculative software prefetching via divestto the Intel compiler in both
single-threaded and multithreaded versions of the coddsy® have not seen appre-
ciable performance improvements. In the experiments SRRINTS we have used a
runahead distance of one iteration for each loop targetdtidgoftware precomputa-
tion engine. The runahead distance was controlled withynittwronization, by having
the precomputation thread prefetch references from thanskiteration onwards.

BT L2 Data Cache Misses Distribution FT L2 Data Cache Misses Distribution

N}
w
a

=)
S

a

o

P Sl)
=)

=)

Contribution (%) to the
total number of misses
Contribution (%) to the
total number of misses

o N A O ©

o o

ol St R N, Y, b K S G O O G o ©

%, o % B o B, % %, % % % %, %, %, %% %

o 0 T, R T oy, b R, S o Ty Ty,
A

Delinquent data (function/data object) &S Delinquent data (function/data object)

Fig. 2. The top delinquent data objects and their contribution éatlial number of L2 data cache
misses for BT (left diagram) and FT (right diagram).

Figure 2 depicts the contribution of the top 10 delinquerthdecesses of BT and
FT, to the total number of L2 data cache misses for the twoiegdns. Those objects
are responsible for 85% and 91% of the total cache misses iar®ITFT respectively.
In fact in FT, 4 objects generate 85.5% of the cache missés.tfius reasonable to
generate precomputation code targeting just the top feinglent objects.

Following, we evaluate the impact of 4 different executitrategies to the num-
ber of L2 data cache misses suffered by the applications.résdts are depicted in
figure 3.STstands for the single-threaded execution with one exetgtotext in the
processor. IMTLP (ThreadLevel Parallelism) mode, applications are executed in par-
allel by two threads, each one on a different execution ctrakthe processor. The
SPR (SpeculativePRecomputation) scheme exploits one of the contexts to egexut
precomputation thread, which indiscriminately preexesuwll the memory references
of the computation thread in each loop nest whRR s applied. Finally,SPRINTS
stands for the execution of the application using our premgation framework. The
precomputation thread &PRexecutes exactly the same loopsSBRINTS

BT L2 Data Cache Misses FT L2 Data Cache Misses

100

95

90

85

75

70

: 'l
60 T T T

ST TLP SPR

SPRINTS

5500
5000
4500
4000
3500 -

3000 4

2500 |

2000 1 .

1500 + : : — .
ST TLP SPR

SPRINTS

Cache Misses (millions)
(o]
o

Cache Misses (millions)

Fig. 3. L2 data cache misses under the four different executiotesfiess for BT and FT.

As expected, botlsPRand SPRINTSsignificantly reduce the number of L2 data
cache missesSPRresults to 31.6% and 25.3% less misses for BT and FT respéctiv
The corresponding percentages 8#RINTSare 42.7% and 25.6%. Although the data
accesses targeted by the precomputation strategies aans#sle for 85% and 91%
of the misses triggered by BT and FT respectively, none okttregegies is successful
in eliminating all the misses. Moreover, despite the faat they both target the same
loops andSPRtouches more data tha®PRINTS SPRINTSoutperformsSPRin all
cases. This difference can be explained by a closer lookeathlaracteristics of the
benchmarks. Both BT and FT have tight, memory intensivedoés a result, the ex-
ecution time of the precomputation and computation loopdsi comparable, since
the precomputation thread suffers the latency of cacheasi@sd is as much memory-
bound as the computation thread. This means that computaty run side-to-side or
even overrun precomputation, reducing the effectivenéfisedatter. SinceSPRINTS
produces more compact precomputation code B8R this adverse behavior occurs
less often and the miss coverage is better.

The effect of TLP on cache performance is also highly dependent on the charac-
teristics of applications. The two threads of BT contendf®icache space, since their
working sets do not fit in the cache. This results to a draniatiease of 63% in cache
misses. Contrary to BT, the threads of FT have smaller wgrkets that fit in the L2
cache. Moreover, they share data and each thread benefitsiéita prefetched to the
cache by the other thread. As a consequence, the multigaleadkcution suffers less
L2 data cache misses than the sequential execution.

Table 1. Speedups over the single threaded execution using theatiter execution strategies.

Optimized
TLP|SPRSPRINTY
BT|0.761.02 1.08
FT|1.031.03 1.05

Table 1 shows the speedups achieved by the three executitegsés which exploit
both execution contexts of the processor over the singkatted execution. The per-

formance of theTLP version of BT is poor because of severe cache thrashingpasish
in figure 3. The outcome is a slowdown of 1.32 over the singteadded execution. In
the case of FT, multithreading is beneficial for cache pemnforce, however it yields
a marginal speedup of 1.03. The extensive resource sharimgteél Hyperthreaded
processors clearly does not allow effective exploitatibtoop-level parallelism. For
both benchmarks, the latency overlap achieved with mudtitied execution and the
additional instruction-level parallelism do not measupeto the memory latency re-
duction achieved by precomputation. The overall perforeearf SPRis slightly better.
SPRINTS outperforms botiTLP and SPR Beyond the higher impact §PRINTSon
cache performance, the generation of efficient source aogeécomputation results to
smaller instruction streams and instruction working sets¢le precomputation thread.
This reduces the pressure on shared execution units, teetiefibof the computation
thread. It must be noted that the magnitude of these speethapdd be placed in the
context of the capabilities of Intel's Hyperthreaded pssmes. The speedups attained
with SPRINTSare comparable or higher than the speedups reported sofaipinysi-
cal experimentation with these processors [8].

4 Related Work

Research on SPR can be broadly classified into two classebvéige-based SPR and
software-based SPR. Hardware schemes identify accespesctumpute dynamically,
by recording loads and their latencies at either the instadetch or the instruction
retirement stage. Hardware schemes compose SPR code feaectirded delinquent
loads and issue this code dynamically to hardware-trigh#meeads [3, 13]. The most
aggressive hardware designs provide also a register coratiom mechanism to trig-
ger SPR threads efficiently [12] without involving the ofterg system, and use manual
or semi-automated construction of SPR instruction se(eeS®RINTSshares simi-
larities with p-slices of Roth and Sohi [12] in that conceglly both techniques try to
derive highly optimized sequences of precomputationusions and they both use re-
sults from simulation to drive the hadware/software pregotation engine. However,
SPRINTSis a software technique which requires no hardware or camgilpport.
Software SPR schemes can be based on programmer hintsdtr@iler techniques
[8] or binary modification techniques at load time [9]. Cofepiand programmer-
assisted techniques are more portable than binary modificetchniques. Compiler
techniques are preferable to programmer-assisted tagdmioecause they are easy to
use.SPRINTSshares this advantage with compiler techniques, but atahee dime
it differs in some important aspectSPRINTS does not apply program analysis or
runtime code profiling to detect delinquent loads, or penfany other SPR-specific
optimization. It uses off-line cache simulation to identdll memory accesses that
incur L2 misses and a compression grammar coupled with simeuristics to pick
those accesses that are responsible for dominant stredr@swtisses. The speculative
streaming code is generated in the same high-level lanqasatie sequential code, and
can be optimized and executed efficiently from an unmodifmdpiler back-end and
a standard multithreading runtime syste®fRINTSdoes not require program slicing,
array access analysis, or other advanced compiler suppatentify potential cache

misses. FinallySPRINTStargets specifically memory-bound scientific applicatjons
which have not been targeted earlier compiler-based SP&rseh

SPRINTSbhorrows the algorithm and the Sequitur grammar for comprgst¢reams
of delinquentmemory references from earlier work on dyreami data stream prefetch-
ing [2]. SPRINTSdifferentiates from dynamic hot data stream prefetchinthafol-
lowing aspects: FirstSPRINTSuses offline analysis of traces of memory references
that miss in the L2 cache, rather than online analysis of detapraces of memory ref-
erences as they appear in the program. In other w&BRINTScompresses traces of
misses rather than traces of accesses. This decision isateaiioly the tight time con-
straints of prefetching in scientific applications, whightrn calls for high prefetching
accuracy and timeliness. Seco®RRINTSuses offline, rather than online analysis of
traces. This is dictated by the use of simulation, which isnaerently slow technique
for detecting streams of misses, but detects accurately stseams. An online appli-
cation of SPRINTSwould be possible with additional hardware support for exiffg
streams of cache misses and the associated target memoegsell Intel Itanium pro-
cessors provide such functionality [5]. Thir8PRINTSexploits simultaneous multi-
threading, while dynamic hot data stream prefetching usesge-threaded prefetching
mechanism. Finally, in contrast to dynamic hot data streaafepching which targets se-
guential codes dominated by pointer-chasiBBRINTStargets memory-intensive sci-
entific codes, which are dominated by streams of memoryentes with predictable
patterns.

5 Conclusions

This paper presente8PRINTS a source-level streaming precomputation technique de-
signed to improve the performance of memory-bound scierdifiplications on SMT
processors with limited resources. Resource sharing oftesters the execution engine
incapable of achieving high-performance from regulardi-level parallelization on
these processorSPRINTSrequires no compiler or hardware support. It uses a com-
pact representation of traces of cache misses and explisitepresentation to associate
delinquent memory accesses to data elements in the soute@nd produce highly ef-
ficient, source-level precomputation code. Experimentls véalistic scientific applica-
tions show thaSPRINTSclearly outperforms both TLP and indiscriminate specuéati
precomputation on Intel's Hyperthreaded processors.dmtar future we plan to ad-
dress a number of design and implementation issueSRRINTS including the use

of lossy compression to improve the quality of streams bgrfitig out noisy irregular
references, the use of mechanisms that can project the trésens for multiple data
inputs from one cache simulation with a single represergatiput, and the deployment
of SPRINTSin multi-SMT systems.

Acknowledgements

This work is supported by an NSF CAREER Award (NSF CCF-03Z886) NSF ITR
grant (NSF ACI-0312980) and the College of William and Mary.

References

1.

10.

11.

12.

13.

14.

15.

T. Chilimbi. Efficient Representations and Abstractidos Quantifying and Exploitiing
Data Reference Locality. IRroc. of the 2001 ACM SIGPLAN Conference on Programming
Languages Design and Implementation (PLPBges 191-202, Snowbird, UT, June 2001.

. T. Chilimbi and M. Hirzel. Dynamic Hot Data Stream Prefetg for General Purpose

Programs. IrProc. of the 2002 ACM SIGPLAN Conference on Programming Lages
Design and Implementation (PLDI'20Q3)ages 199-209, Berlin, Germany, June 2002.

. J. Collins, D. Tullsen, H. Wang, and J. Shen. Dynamic Sjp¢ige Precomputation. IRroc.

of the 34th Annual ACM/IEEE International Symposium on bhcchitecture (MICRO-34)
pages 306-317, Austin, TX, December 2001.

. J. Collins, H. Wang, D. Tullsen, C. Hughes, Y. Lee, D. Lgyand J. Shen. Speculative Pre-

computation: Long-Range Prefetching of Delinquent Lodad$roc. of the 28th Annual In-
ternational Symposium on Computer Architecture (ISCAH2&)es 14-25, Godteborg, Swe-
den, July 2001.

. S. Eranian. The Perfmon2 Interface Specification. Teethfeport HPL-2004-200R1, HP

Labs, February 2005.

. H. Jin, M. Frumkin, and J. Yan. The OpenMP Implementatibthe NAS Parallel Bench-

marks and its Performance. Technical Report NAS-99-011SAAmes Research Center,
October 1999.

. Ron Kalla, Balaram Sinharoy, and Joel M. Tendler. IBM Pd@hip: A Dual-Core Multi-

threaded ProcessdEEE Micro, 24(2):40-47, March/April 2004.

. D. Kim and D. Yeung. A Study of Source-Level Compiler Algbms for Automatic Con-

struction of Pre-Execution Cod&CM Transactions on Computer Syste2®(2):326-379,
2004.

. S. Liao, P. Wang, H. Wang, G. Hoflehner, D. Lavery, and JnSRest-Bass Binary Adapta-

tion for Software-Based Speculative PrecomputationPrioc. of the 2002 ACM SIGPLAN
Conference on Programming Languages Design and ImplemiemtgPLDI'2002), Berlin,
Germany, June 2002.

C. Luk. Tolerating Memory Latency through Software Goliéd Preexecution on Simulta-
neous Multithreading Processors. Prmoc. of the 28th Annual International Symposium on
Computer Architecture (ISCA'O1pages 40-51, Goteborg, Sweden, July 2001.

Deborah T. Marr, Frank Binns, David L. Hill, Glenn HintoDavid A. Koufaty, J. Alan
Miller, and Michael Upton. Hyper-Threading Technology Aitecture and Microarchitec-
ture. Intel Technology Journab(1), February 2002.

A. Roth and G. Sohi. A Quantitative Framework for Quatitte Pre-Execution Thread
Selection. InProc. of the 35th IEEE/ACM Annual International SymposiunMicroarchi-
tecture (MICRO-35)Istanbul, Turkey, November 2002.

K. Sundaramoorthy, Z. Purser, and E. Rotenberg. ShigstrProcessors: Improving both
Performance and Fault Tolerance. Rroc. of the 9th International Conference on Archi-
tectural Support for Programming Languages and Operatiggt&ns (ASPLOS-IXpages
191-202, Cambridge, MA, November 2000.

UltraSPAR@)IV Processor Architecture Overview. Technical report, $dinrosystems,
February 2004.

T. Wang, F. Blagojevic, and D. Nikolopoulos. Runtime Saonp for Integrating Precompu-
tation and Thread-Level Parallelism on Simultaneous Mukaded Processors. Rroc.
of the 7th ACM SIGPLAN Workshop on Languages, Compilers amdifrRe Support for
Scalable Systems (LCR’200#ouston, TX, October 2004.

