
smt-SPRINTS: Software Precomputation with
Intelligent Streaming for Resource-Constrained SMTs

Tanping Wang, Christos D. Antonopoulos and Dimitrios S. Nikolopoulos

Department of Computer Science
The College of William and Mary

McGlothlin–Street Hall. Williamsburg, VA 23187–8795
{twang,cda,dsn }@cs.wm.edu

Abstract. We presentSPRINTS, a source-level speculative precomputation
framework for scientific applications running on SMTs with two execution con-
texts. Our framework targets memory-bound applications and reduces memory
latency by prefetching long streams of delinquent data accesses. A unique aspect
of SPRINTSis that it requires neither hardware nor compiler support. It is based
on partial cache simulation and a compression algorithm which can accurately
summarize very long streams of cache misses.SPRINTSextracts patterns from
the streams, which are in turn used to generate source-level, highly optimized
precomputation code.SPRINTSachieves significant performance improvements
over plain thread-level parallelization and indiscriminate precomputation based
on code cloning. We demonstrate these improvements using two realistic scien-
tific applications.

1 Introduction

Simultaneous multithreading (SMT) allows multiple threads to concurrently issue in-
structions to different execution units of the same physical processor. SMT has been
recently used as a core architecture by several processor manufacturers [7, 11, 14], since
it has the potential of achieving better performance than conventional superscalar pro-
cessors, at a minimal additional cost. The main reason for the cost effectiveness of SMT
processors is that threads share a common set of execution resources. The major short-
coming of resource sharing is that it may result to performance loss, should threads
on the processor end up competing for resources such as execution units, instruction
buffers and cache space. This performance loss is most noticeable in parallel scientific
computations, in which threads tend to be memory-bound and to have identical resource
requirements.

Speculative precomputation (SPR) [4] is a technique which uses thread contexts
in an SMT to eliminate L2 cache misses from the main computation threads, by pre-
executing future memory accesses. SPR has demonstrated thepotential of speeding up
pointer-based, single-threaded code on multithreaded processors and several hardware
and software implementations have been investigated in therelated literature [3, 8–
10, 12]. This paper makes a case for using SPR as an alternative to thread-level par-
allel execution on SMTs with two hardware contexts and limited execution resources.
The motivation for using SPR in scientific codes stems from two observations. First, the



hardware of existing SMTs can not handle the resource pressure from multiple memory-
and execution unit-bound threads. A carefully designed SPRscheme can reduce this
pressure to a minimum, while still reducing memory latency suffered by co-executing
application code. Second, most memory-bound scientific codes suffer from memory
latency caused by long, but quite predictable streams of memory accesses. SPR is a
mechanism which can effectively prefetch such streams.

The contribution of this paper is a user-level software SPR framework, which sup-
ports stream-based SPR for scientific applications, with nohardware or compiler sup-
port. We named our frameworkSPRINTS(SoftwarePRecomputation withINTelligent
Streaming). In the heart of this framework lies a compressionand pattern extraction
algorithm, the purpose of which is to identify streams of delinquent loads which can
be directly mapped to streams of data accesses in the source code of the program.
Although multiple forms of streams exist in a program (such as dynamic instruction
streams, streams of data addresses and so on), our frameworkopts for identifying a
form of streams which can be directly mapped back to computation and data structures
in the source code.SPRINTSrepresents streams of L2 cache misses as strings of inter-
miss iteration distances, using feedback from a cache simulator. It uses the compression
grammar to identify strong patterns in the loop iterations that incur L2 cache misses and
feeds these patterns back to a source code generator. The source code generator trans-
lates streams into precomputation loops which have small instruction working sets and
are amenable to optimization by the back-end compiler.

SPRINTShas a number of advantages, both as a self-contained tool andcompared
to other precomputation strategies. The first is simplicity, as there is no requirement
for compile-time analysis, or additional hardware to tracethe code. The second is au-
tomation and transparency to the programmer. The third is portability across SMT ar-
chitectures. The stream identification and compression/decompression engine is inde-
pendent of the target architecture and works end-to-end using only source code. Fi-
nally, SPRINTSis engineered for high performance, using optimizations such as store
removal, prefetch distance control, and prefetch target selection. We have evaluated
SPRINTSon a Hyperthreaded Intel Xeon. Our results show thatSPRINTSspeeds up
scientific applications for which thread-level parallelization performs poorly.

The rest of the paper is organized as follows: Section 2 introducesSPRINTSand
provides implementation details. The experimental evaluation of SPRINTSis presented
in section 3. In section 4 we discuss related work. Finally, section 5 concludes the paper.

2 Precomputation with Intelligent Streaming

SPR implementations [4, 15] adopt a “top-10” approach for identifying delinquent loads
and emitting precomputation code. More specifically, architectural simulation is used
to identify a few loads which are responsible for most cache misses. Once these loads
are identified, code cloning and slicing are performed to issue the instruction paths that
lead to the delinquent loads and the loads themselves in the precomputation thread.
The “top-10” approach works well in practice because in mostcodes a few static loads
are responsible for large fractions (e.g. more than 90%) of cache misses. Another rea-
son for using this approach is that precomputation threads interfere with their sibling



computation threads, sharing execution units and other resources in the processor. Indis-
criminate code cloning in precomputation threads would cause excessive interference,
whereas highly selective code cloning and further optimization of the precomputation
code will reduce the interference. For these reasons we adopt the “top-10” approach for
precomputation inSPRINTS.

SPRINTSuses cache simulation to identify delinquent loads. The practical impact
of using simulation is thatSPRINTScan accurately identify critical memory accesses
that need to be prefetched. In contrast, mere code profiling would only discover domi-
nant reference streams without necessarily revealing information on the cache behavior
of these streams. Cache simulation is a generic method whichmakesSPRINTSportable
with reasonable effort between SMT architectures. PortingSPRINTSrequires porting
of the cache simulator to accept memory reference traces from a different ISA and
adaptation of the architectural parameters of the targetedprocessor’s cache. The port-
ing process can be facilitated by several existing simulation tools.

The profiling mechanism ofSPRINTShas two distinctive features. Besides detect-
ing delinquent loads, it also recognizes repetitive patterns in these loads. Moreover, it
maps delinquent loads identified via profiling back to sourcecode and actually emits
source code (at the language level) in precomputation threads. This code prefetches di-
rectly elements of application-level data structures. Currently we map misses back to
array elements, but the same tool can be used to map back to elements of other data
structures as well.SPRINTSuses partial simulation, taking advantage of the iterative
structure of scientific codes to simulate only a few outermost iterations of the dominant
loops and save significantly on simulation time.

SPRINTStargets loop-based scientific applications, which exhibitstrong patterns in
several aspects of their control and data flow. In particular, the loop-intensive structure
of scientific applications, and the fact that delinquent loads tend to occur in heavily tra-
versed loops [8] motivate the use of a loop-based approach toprecomputation, in which
the speculative thread prefetchesstreamsof data that would otherwise be streams of
cache misses.SPRINTSuses a grammar which detects such streams, by tracking the
loop iterations in which delinquent loads occur and identifying patterns of distances
between delinquent loads, measured in loop iterations. Therationale for this technique
is that long streams of loop iterations with delinquent loads, when mapped back to
source code, can be directly translated to highly optimizable source code loops. Fur-
thermore, using loops for precomputation allowsSPRINTSto trigger precomputation
in synch with the sibling computation threads, using loop levels as natural synchroniza-
tion boundaries and specific loop iterations as natural trigger points. This property is
desirable because it allows for accurate and effective control of the runahead distance
between precomputation and sibling computation, which is in turn critical for timely
prefetching [8, 15]. The following sections outline the main components ofSPRINTS.

2.1 Cache Simulation and Trace Collection

SPRINTSuses a cache simulator based on Cachegrind, the cache simulation component
of Valgrind1, to obtain complete traces of cache misses. We have modified Cachegrind

1 http://developer.kde.org/˜sewardj/docs-2.2.0/manual .html



to analyze the instruction address stream and detect backward arcs in the dynamic con-
trol flow graph of the program. Backward arcs may correspond to loops, however they
may also correspond to other control structures.SPRINTSusesobjdump, a GNU de-
velopment tool, to uniquely identify loops in the program. The tool is used to disassem-
ble the object file and extract the first instruction address of the body of each loop. The
simulator uses these instructions as anchors in order to both correctly identify loops and
keep track of the loop iteration count. We have introduced a new module in Cachegrind
to map uniquely memory references that miss in the cache to array elements, using the
current loop iteration count as input.

2.2 Delinquent Load Identification and SPR Code Generation

Following profiling,SPRINTSreorganizes the trace of cache misses, and groups misses
by associating them with the addresses of the instructions that trigger them. Typically,
few static instructions are responsible for most misses andmisses from the same in-
struction tend to exhibit strong repetitive patterns.

SPRINTSuses the Sequitur [1] grammar to compress the trace of missesinto a
compact representation. The representation stores the misses as strings of symbols, with
each string corresponding to one array reference accessed in one loop nest. Each symbol
in a string represents the distance (in loop iterations, measured after loop linearization)
from the previous miss for the same data object in the same nest. The grammar is com-
posed of rules in which terminals (symbols) represent unique distances between consec-
utive misses and non-terminals represent concatenations of terminals which uniquely
identify the stream of cache misses for each array reference. Sequitur constructs a
context-free grammar with exactly one word for each reference. The grammar can be
represented as a set of DAGs and the whole stream of misses canbe reproduced (un-
compressed) from the grammar with one preorder pass, in timelinear to the length of
the grammar. The length of each string is equal to the number of misses incurred by the
corresponding reference, which can then be quantified as a fraction of the total number
of cache misses incurred in the whole program and used to classify the reference as
delinquent or not. In order to identify strong patterns withSequitur, it suffices to find
non-terminals (sub-strings of the grammar) with multiple occurrences. Each such sub-
string can be translated to a loop which prefetches the stream. These loops are highly
optimizable2 and even parallelizable from a standard back-end compiler.

Consider Figure 1, which shows a loop from the NAS BT benchmark. The loop be-
longs to thex backsubstitute function of thex solve module of BT. The right
part of the figure shows the rules of the Sequitur grammar which describes all the cache
misses incurred in accesses to elements oflhs , in a single string of inter-miss loop
iteration distances. For further details on how this grammar is constructed the reader is
referred to [1]. In the illustrated example, all integers prefixed with an ampersand are
terminal symbols and all other symbols are non-terminals. One can easily observe that
after the first miss, cache misses exhibit a very strong pattern with inter-miss distances

2 Dead-code elimination is the only optimization that needs to be precluded in precomputation
loops. Furthermore,SPRINTSreplaces delinquent stores with loads to preserve correctness in
the architectural state.



for (i = grid_points[0]-2; i >= 0; i--)
for (j = 1; j < grid_points[1]-1; j++)

for (k = 1; k < grid_points[2]-1; k++)
for (m = 0; m < BLOCK_SIZE; m++)

for (n = 0; n < BLOCK_SIZE; n)
rhs[i][j][k][m] -=

lhs[i][j][k][CC][m][n]
*rhs[i+1][j][k][n];

&2 1 1 2 3 3 3 4 5 6 7 8 &5 1
1 -> &8 &8
2 -> 1 &8
3 -> 4 4
4 -> 9 9
5 -> 6 6
6 -> 10 10
7 -> 8 8
8 -> 11 11
9 -> 5 5
10 -> 12 12
11 -> 13 13
12 -> 7 7
13 -> &5 2 2 &8

Fig. 1. Sample loop ofx backsubstitute in NAS BT and compression grammar for the
cache misses incurred by elements oflhs , during execution with the Class A problem size.

predominantly equal to 8 iterations, and sporadically equal to 5 iterations. The grammar
given in this example describes a total of 6 million cache misses on elementlhs (spread
over 200 iterations executed by BT, with approximately 30 thousand misses each) with
only 13 rules and a couple of hundreds bytes of storage. A backof the envelope calcu-
lation will show that the entire cache miss sequence of the specific data access is repre-
sented uniquely with the string:28

7
A

3072
A

512
A

128
A

64
A

8
A

4
58

2, whereA = 58
7. The

grammar is easily translated into tight loops for prefetching the cache-missing elements
of lhs using a recursive algorithm which visits each rule of the grammar in order.

The precomputation code generation phase ofSPRINTSuses the loop iterations
as natural units for controlling the distance between the precomputation and sibling
computation threads. Furthermore, it uses loop iterationsto throttle the precomputa-
tion thread, so that the data fetched in a stream do not overflow the L2 cache. Both
techniques (runahead distance control and throttling) derive from our earlier work [15].
Another optimization applied bySPRINTS is the release of processor resources held
by a precomputation thread when the latter is idling and not fetching streams.

3 Experimental Evaluation

We present experiments obtained with the OpenMP, C versionsof BT and FT, two real-
istic application codes from the NAS benchmarks suite [6], both using the class A prob-
lem size. BT is a simulated CFD application which uses an implicit finite-difference
algorithm based on the alternate direction implicit method, to solve 3-dimensional com-
pressible Navier-Stokes equations. FT implements a solverfor a class of PDEs using
a 3-dimensional bidirectional (forward and inverse) complex FFT. BT and in are good
candidates for speculative precomputation techniques, because their parallelized ver-
sions exhibit performance degradation (in the case of BT), or very modest performance
gains (in the case of FT), when executed on SMTs with two execution contexts. The per-
formance bottlenecks of parallelization stems from contention for execution units and
cache space. A speculative precomputation thread can alleviate these problems and pro-
vide speedup by reducing memory latency. The applications have been compiled with
the Intel C/C++ OpenMP compiler, using the highest level of optimization. Our hard-
ware platform is a four-way SMP with Intel’s Hyperthreaded Xeon processors, clocked
at 1.4 GHz. Each processor offers two execution contexts andis equipped with 8KB L1
data cache, 12KB L1 instruction trace cache and 256 KB unifiedL2 cache.



The Hyperthreaded processors include a hardwired hardwareprefetching engine.
It is possible that the hardware prefetching engine interferes with software prefetc-
ing engines, such asSPRINTS, by detecting and prefetching some of the references
prefetched also by the software prefetching engine. This effect can not be quantified
with the tools available on the specific processor. It must benoted that the automatic
software prefetching engine of the Intel compiler was activated in the baseline sequen-
tial execution of the benchmarks, as well as in parallel executions of the benchmarks
with two execution contexts per processor. However, the Intel’s prefetching engine was
deactivated while generating code withSPRINTS. We have also experimented with
manual, non-speculative software prefetching via directives to the Intel compiler in both
single-threaded and multithreaded versions of the codes, but we have not seen appre-
ciable performance improvements. In the experiments withSPRINTS, we have used a
runahead distance of one iteration for each loop targeted bythe software precomputa-
tion engine. The runahead distance was controlled without synchronization, by having
the precomputation thread prefetch references from the second iteration onwards.

BT L2 Data Cache Misses Distribution

0

2

4

6

8

10

12

lhsy/njac
lhsz/njac

lhsx/njac
lhsy/u

lhsx/u
lhsz/fjac

lhsz/u
compute_rhs/rhs

lhsx/jac
lhsy/fjac

Delinquent data (function/data object)

Co
ntr

ibu
tio

n (
%)

 to
 th

e 
tot

al 
nu

mb
er 

of 
mi

ss
es

FT L2 Data Cache Misses Distribution

0
5

10
15
20
25
30
35

evolve/u0

cffts3/x
cffts2/x

cffts1/x
cfft2/y0

fftz2/u
fftz2/x

fftz2/u
cffts/y

cffts/y0
Delinquent data (function/data object)

Co
ntr

ibu
tio

n (
%)

 to
 th

e 
tot

al 
nu

mb
er 

of 
mi

ss
es

Fig. 2.The top delinquent data objects and their contribution to the total number of L2 data cache
misses for BT (left diagram) and FT (right diagram).

Figure 2 depicts the contribution of the top 10 delinquent data accesses of BT and
FT, to the total number of L2 data cache misses for the two applications. Those objects
are responsible for 85% and 91% of the total cache misses in BTand FT respectively.
In fact in FT, 4 objects generate 85.5% of the cache misses. Itis thus reasonable to
generate precomputation code targeting just the top few delinquent objects.

Following, we evaluate the impact of 4 different execution strategies to the num-
ber of L2 data cache misses suffered by the applications. Theresults are depicted in
figure 3.STstands for the single-threaded execution with one execution context in the
processor. InTLP (ThreadLevel Parallelism) mode, applications are executed in par-
allel by two threads, each one on a different execution context of the processor. The
SPR (SpeculativePRecomputation) scheme exploits one of the contexts to execute a
precomputation thread, which indiscriminately preexecutes all the memory references
of the computation thread in each loop nest whereSPR is applied. Finally,SPRINTS
stands for the execution of the application using our precomputation framework. The
precomputation thread ofSPRexecutes exactly the same loops asSPRINTS.



BT L2 Data Cache Misses

1500
2000
2500
3000
3500
4000
4500
5000
5500

ST TLP SPR SPRINTS

Ca
ch

e M
iss

es
 (m

illi
on

s)

FT L2 Data Cache Misses

60
65
70
75
80
85
90
95

100

ST TLP SPR SPRINTS

Ca
ch

e M
iss

es
 (m

illi
on

s)

Fig. 3. L2 data cache misses under the four different execution strategies for BT and FT.

As expected, bothSPRandSPRINTSsignificantly reduce the number of L2 data
cache misses.SPRresults to 31.6% and 25.3% less misses for BT and FT respectively.
The corresponding percentages forSPRINTSare 42.7% and 25.6%. Although the data
accesses targeted by the precomputation strategies are responsible for 85% and 91%
of the misses triggered by BT and FT respectively, none of thestrategies is successful
in eliminating all the misses. Moreover, despite the fact that they both target the same
loops andSPR touches more data thanSPRINTS, SPRINTSoutperformsSPR in all
cases. This difference can be explained by a closer look at the characteristics of the
benchmarks. Both BT and FT have tight, memory intensive loops. As a result, the ex-
ecution time of the precomputation and computation loop bodies is comparable, since
the precomputation thread suffers the latency of cache misses and is as much memory-
bound as the computation thread. This means that computation may run side-to-side or
even overrun precomputation, reducing the effectiveness of the latter. SinceSPRINTS
produces more compact precomputation code thanSPR, this adverse behavior occurs
less often and the miss coverage is better.

The effect ofTLP on cache performance is also highly dependent on the charac-
teristics of applications. The two threads of BT contend forL2 cache space, since their
working sets do not fit in the cache. This results to a dramaticincrease of 63% in cache
misses. Contrary to BT, the threads of FT have smaller working sets that fit in the L2
cache. Moreover, they share data and each thread benefits from data prefetched to the
cache by the other thread. As a consequence, the multithreaded execution suffers less
L2 data cache misses than the sequential execution.

Table 1.Speedups over the single threaded execution using the alternative execution strategies.

Optimized
TLP SPRSPRINTS

BT 0.761.02 1.08
FT 1.031.03 1.05

Table 1 shows the speedups achieved by the three execution strategies which exploit
both execution contexts of the processor over the single-threaded execution. The per-



formance of theTLP version of BT is poor because of severe cache thrashing, as shown
in figure 3. The outcome is a slowdown of 1.32 over the single-threaded execution. In
the case of FT, multithreading is beneficial for cache performance, however it yields
a marginal speedup of 1.03. The extensive resource sharing in Intel Hyperthreaded
processors clearly does not allow effective exploitation of loop-level parallelism. For
both benchmarks, the latency overlap achieved with multithreaded execution and the
additional instruction-level parallelism do not measure up to the memory latency re-
duction achieved by precomputation. The overall performance ofSPRis slightly better.
SPRINTS, outperforms bothTLP andSPR. Beyond the higher impact ofSPRINTSon
cache performance, the generation of efficient source code for precomputation results to
smaller instruction streams and instruction working sets for the precomputation thread.
This reduces the pressure on shared execution units, to the benefit of the computation
thread. It must be noted that the magnitude of these speedupsshould be placed in the
context of the capabilities of Intel’s Hyperthreaded processors. The speedups attained
with SPRINTSare comparable or higher than the speedups reported so far from physi-
cal experimentation with these processors [8].

4 Related Work

Research on SPR can be broadly classified into two classes: hardware-based SPR and
software-based SPR. Hardware schemes identify accesses toprecompute dynamically,
by recording loads and their latencies at either the instruction fetch or the instruction
retirement stage. Hardware schemes compose SPR code from the recorded delinquent
loads and issue this code dynamically to hardware-triggered threads [3, 13]. The most
aggressive hardware designs provide also a register communication mechanism to trig-
ger SPR threads efficiently [12] without involving the operating system, and use manual
or semi-automated construction of SPR instruction sequences.SPRINTSshares simi-
larities with p-slices of Roth and Sohi [12] in that conceptually, both techniques try to
derive highly optimized sequences of precomputation instructions and they both use re-
sults from simulation to drive the hadware/software precomputation engine. However,
SPRINTSis a software technique which requires no hardware or compiler support.

Software SPR schemes can be based on programmer hints [10], compiler techniques
[8] or binary modification techniques at load time [9]. Compiler and programmer-
assisted techniques are more portable than binary modification techniques. Compiler
techniques are preferable to programmer-assisted techniques because they are easy to
use.SPRINTSshares this advantage with compiler techniques, but at the same time
it differs in some important aspects:SPRINTS does not apply program analysis or
runtime code profiling to detect delinquent loads, or perform any other SPR-specific
optimization. It uses off-line cache simulation to identify all memory accesses that
incur L2 misses and a compression grammar coupled with simple heuristics to pick
those accesses that are responsible for dominant streams ofL2 misses. The speculative
streaming code is generated in the same high-level languageas the sequential code, and
can be optimized and executed efficiently from an unmodified compiler back-end and
a standard multithreading runtime system.SPRINTSdoes not require program slicing,
array access analysis, or other advanced compiler support to identify potential cache



misses. Finally,SPRINTS targets specifically memory-bound scientific applications,
which have not been targeted earlier compiler-based SPR schemes.

SPRINTSborrows the algorithm and the Sequitur grammar for compressing streams
of delinquent memory references from earlier work on dynamic hot data stream prefetch-
ing [2]. SPRINTSdifferentiates from dynamic hot data stream prefetching inthe fol-
lowing aspects: First,SPRINTSuses offline analysis of traces of memory references
that miss in the L2 cache, rather than online analysis of complete traces of memory ref-
erences as they appear in the program. In other words,SPRINTScompresses traces of
misses rather than traces of accesses. This decision is mandated by the tight time con-
straints of prefetching in scientific applications, which in turn calls for high prefetching
accuracy and timeliness. Second,SPRINTSuses offline, rather than online analysis of
traces. This is dictated by the use of simulation, which is aninherently slow technique
for detecting streams of misses, but detects accurately such streams. An online appli-
cation ofSPRINTSwould be possible with additional hardware support for buffering
streams of cache misses and the associated target memory addresses. Intel Itanium pro-
cessors provide such functionality [5]. Third,SPRINTSexploits simultaneous multi-
threading, while dynamic hot data stream prefetching uses asingle-threaded prefetching
mechanism. Finally, in contrast to dynamic hot data stream prefetching which targets se-
quential codes dominated by pointer-chasing,SPRINTStargets memory-intensive sci-
entific codes, which are dominated by streams of memory references with predictable
patterns.

5 Conclusions

This paper presentedSPRINTS, a source-level streaming precomputation technique de-
signed to improve the performance of memory-bound scientific applications on SMT
processors with limited resources. Resource sharing oftenrenders the execution engine
incapable of achieving high-performance from regular, thread-level parallelization on
these processors.SPRINTSrequires no compiler or hardware support. It uses a com-
pact representation of traces of cache misses and exploits this representation to associate
delinquent memory accesses to data elements in the source code and produce highly ef-
ficient, source-level precomputation code. Experiments with realistic scientific applica-
tions show thatSPRINTSclearly outperforms both TLP and indiscriminate speculative
precomputation on Intel’s Hyperthreaded processors. In the near future we plan to ad-
dress a number of design and implementation issues ofSPRINTS, including the use
of lossy compression to improve the quality of streams by filtering out noisy irregular
references, the use of mechanisms that can project the miss streams for multiple data
inputs from one cache simulation with a single representative input, and the deployment
of SPRINTSin multi-SMT systems.

Acknowledgements

This work is supported by an NSF CAREER Award (NSF CCF–0346867), an NSF ITR
grant (NSF ACI–0312980) and the College of William and Mary.



References

1. T. Chilimbi. Efficient Representations and Abstractionsfor Quantifying and Exploitiing
Data Reference Locality. InProc. of the 2001 ACM SIGPLAN Conference on Programming
Languages Design and Implementation (PLDI), pages 191–202, Snowbird, UT, June 2001.

2. T. Chilimbi and M. Hirzel. Dynamic Hot Data Stream Prefetching for General Purpose
Programs. InProc. of the 2002 ACM SIGPLAN Conference on Programming Languages
Design and Implementation (PLDI’2002), pages 199–209, Berlin, Germany, June 2002.

3. J. Collins, D. Tullsen, H. Wang, and J. Shen. Dynamic Speculative Precomputation. InProc.
of the 34th Annual ACM/IEEE International Symposium on Microarchitecture (MICRO-34),
pages 306–317, Austin, TX, December 2001.

4. J. Collins, H. Wang, D. Tullsen, C. Hughes, Y. Lee, D. Lavery, and J. Shen. Speculative Pre-
computation: Long-Range Prefetching of Delinquent Loads.In Proc. of the 28th Annual In-
ternational Symposium on Computer Architecture (ISCA–28), pages 14–25, Göteborg, Swe-
den, July 2001.

5. S. Eranian. The Perfmon2 Interface Specification. Technical Report HPL-2004-200R1, HP
Labs, February 2005.

6. H. Jin, M. Frumkin, and J. Yan. The OpenMP Implementation of the NAS Parallel Bench-
marks and its Performance. Technical Report NAS-99-011, NASA Ames Research Center,
October 1999.

7. Ron Kalla, Balaram Sinharoy, and Joel M. Tendler. IBM Power5 Chip: A Dual-Core Multi-
threaded Processor.IEEE Micro, 24(2):40–47, March/April 2004.

8. D. Kim and D. Yeung. A Study of Source-Level Compiler Algorithms for Automatic Con-
struction of Pre-Execution Code.ACM Transactions on Computer Systems, 22(2):326–379,
2004.

9. S. Liao, P. Wang, H. Wang, G. Hoflehner, D. Lavery, and J. Shen. Post-Bass Binary Adapta-
tion for Software-Based Speculative Precomputation. InProc. of the 2002 ACM SIGPLAN
Conference on Programming Languages Design and Implementation (PLDI’2002), Berlin,
Germany, June 2002.

10. C. Luk. Tolerating Memory Latency through Software Controlled Preexecution on Simulta-
neous Multithreading Processors. InProc. of the 28th Annual International Symposium on
Computer Architecture (ISCA’01), pages 40–51, Göteborg, Sweden, July 2001.

11. Deborah T. Marr, Frank Binns, David L. Hill, Glenn Hinton, David A. Koufaty, J. Alan
Miller, and Michael Upton. Hyper-Threading Technology Architecture and Microarchitec-
ture. Intel Technology Journal, 6(1), February 2002.

12. A. Roth and G. Sohi. A Quantitative Framework for Quantitative Pre-Execution Thread
Selection. InProc. of the 35th IEEE/ACM Annual International Symposium on Microarchi-
tecture (MICRO–35), Istanbul, Turkey, November 2002.

13. K. Sundaramoorthy, Z. Purser, and E. Rotenberg. Slipstream Processors: Improving both
Performance and Fault Tolerance. InProc. of the 9th International Conference on Archi-
tectural Support for Programming Languages and Operating Systems (ASPLOS-IX), pages
191–202, Cambridge, MA, November 2000.

14. UltraSPARCc©IV Processor Architecture Overview. Technical report, SunMicrosystems,
February 2004.

15. T. Wang, F. Blagojevic, and D. Nikolopoulos. Runtime Support for Integrating Precompu-
tation and Thread–Level Parallelism on Simultaneous Multithreaded Processors. InProc.
of the 7th ACM SIGPLAN Workshop on Languages, Compilers and Runtime Support for
Scalable Systems (LCR’2004), Houston, TX, October 2004.


