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Abstract. In this paper we reformulate the thread scheduling problem
on multiprogrammed SMPs. Scheduling algorithms usually attempt to
maximize performance of memory intensive applications by optimally
exploiting the cache hierarchy. We present experimental results indicat-
ing that - contrary to the common belief - the extent of performance loss
of memory-intensive, multiprogrammed workloads is disproportionate to
the deterioration of cache performance caused by interference between
threads. In previous work [1] we found that memory bandwidth satura-
tion is often the actual bottleneck that determines the performance of
multiprogrammed workloads. Therefore, we present and evaluate two re-
alistic scheduling policies which treat memory bandwidth as a first-class
resource. Their design methodology is general enough and can be applied
to introduce bus bandwidth-awareness to conventional scheduling poli-
cies. Experimental results substantiate the advantages of our approach.

1 Introduction

Conventional schedulers for shared-memory multiprocessors are practically or-
ganized around the well-known UNIX multilevel priority queue mechanism, with
limited extensions for support of multiprocessor execution. These schedulers try
to achieve a balanced allocation of threads to processors. They also favor cache
affinity, by preserving a long-term association between threads and the proces-
sors they are executed on.

This paper argues that for memory-intensive multiprogrammed workloads,
it is often the consumed memory bandwidth and not necessarily the cache affin-
ity that should be considered as a first-class citizen in the development of an
effective multiprocessor kernel scheduler. Our recent work [1] indicated that bus
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saturation can be harmful enough to nullify the benefits of parallelism. This
paper shows that in certain memory-intensive workloads, memory bandwidth
saturation is more harmful for performance that the loss of cache affinity.

We introduce two realistic workload schedulers, Bus Bandwidth-Aware Round
Robin (B2ARR) and Bus Bandwidth-Aware Dynamic Space Sharing (B2ADSS),
that effectively control bandwidth consumption. The methodologies used for
their design are general and can be applied to introduce bus bandwidth con-
sciousness to conventional, bandwidth-oblivious policies. The effectiveness of the
new scheduling policies is evaluated using multiprogrammed workloads which
consist of instances of NAS benchmarks [2].

Cache affinity scheduling is well studied in previous work [3–5]. Depend-
ing on the workload, it may provide substantial impact over a naive scheduling
algorithm. This paper shows that for memory-intensive workloads, bandwidth
consumption generally has a more significant impact than cache affinity, there-
fore it should be integrated as a criterion in multiprocessor schedulers. However,
our policies do not prevent the use of cache affinity heuristics, since they are
in general orthogonal to the criteria used for cache affinity preservation. Cache
affinity heuristics usually control the association between processor and threads,
whereas our policies focus on the optimal selection of coscheduled threads.

Symbiotic job scheduling [6, 7] proposes the use of event monitoring hardware
to infer the interference between threads on shared execution resources and make
informed online scheduling decisions based on this interference. It targets simul-
taneous multithreaded processors. Out policies target more conventional SMPs,
however they could benefit multithreaded processors as well. They use a single
additional metric (bus bandwidth consumption) as opposed to a complete array
of microarchitectural events, in the case of symbiotic job scheduling. They are
implemented with the efficiency of on-line monitoring as a principle, as opposed
to symbiotic co-scheduling, which is a simulation-driven study.

Scheduling with runtime metrics such as the runtime speedup of parallel
applications in multiprogrammed workloads has been investigated in related
work [8, 9]. Our algorithms also use runtime metrics to improve scheduling deci-
sions, however they focus on memory bandwidth consumption, a specific aspect
of system performance, with a farther goal of maximizing system throughput.

This paper is organized as follows: Section 2 outlines the software and hard-
ware configuration of our experimental platform. In Section 3 we present ex-
perimental results which indicate that cache affinity is not as important as bus
bandwidth consumption for the performance of multiprogrammed SMPs. Sec-
tion 4 introduces B2ARR and B2ADSS, two bus bandwidth-aware scheduling
algorithms. In Section 5 we provide experimental evidence on the efficiency of
the new algorithms. Finally, Section 6 concludes the paper.

2 Experimental Platform Configuration

For the purposes of our work we have used the NANOS compilation and execu-
tion environment on a system running Linux 2.4.25. The environment consists



of an OpenMP compiler, a run-time threads package and a CPU manager. The
front-end of the environment is NanosCompiler [10], an OpenMP Fortran77 com-
piler which creates executables that can dynamically adapt the degree of their
parallelism to the available processors.

We have developed a customized user-level CPU manager for testing kernel
scheduling policies, without actual kernel hacking. Our CPU manager borrows
several ideas from the NANOS CPU manager which we co-developed for cache-
coherent NUMA multiprocessors [11], but uses a simplified internal structure
and interface. The CPU manager communicates its scheduling decisions to the
applications to allow them adapt to their execution environment. Moreover,
it allows them to recover from inopportune thread preemptions by resuming
preempted threads at the expense of executing threads of the same application.

The policies we introduce exploit performance related information available
by all modern processors through performance monitoring counters. We have ex-
perimented on a dedicated, bus-based SMP system. The system is equipped with
4 hyperthreaded Intel Xeon MP processors, running at 1.4 GHz, with 256KB L2
cache each. We had to disable hyperthreading due to limitations in the con-
current performance monitoring of threads executing on the same processor.
The system is also equipped with 1GB main memory. The practically attain-
able bandwidth of the bus which connects processors to main memory has been
experimentally evaluated to be 1797 MB/sec.

Throughout our experiments we have used class W, OpenMP versions of
benchmarks from the NAS 2.3 suite [2]. We did not use a higher class of NAS,
such as class A or B, because the memory footprints of most benchmarks are
large with respect to the physical memory of our system. In any case, the com-
putational weight of applications is not as important as their computation /
memory transfers ratio. We have also used three synthetic microbenchmarks:
FLUSH, BBMA and nBBMA. Each time FLUSH is executed on a processor, it
completely flushes the cache and then reuses data from it until getting suspended
by the scheduler. BBMA is similar to FLUSH. The sole difference is that, beyond
flushing the cache, BBMA continuously performs back-to-back accesses to the
main memory. A single instance of BBMA can bring the system bus close to the
limit of saturation. nBBMA, in turn, causes practically negligible interference to
both the cache of the processors that execute it and the system bus.

3 Sensitivity of Workload Performance to Cache Affinity
and Bus Saturation

In this section, we present experiments that quantify the impact of cache affin-
ity and memory bandwidth-saturation on the performance of multiprogrammed
workloads. The experiments have been executed using the CPU manager with a
round-robin scheduling policy. The use of the CPU manager allows applications
to adapt to the available processors and to minimize the adverse effects due to
the non-coscheduled execution of their threads.



We executed 2 sets of experiments in order to evaluate the effect of mul-
tiprogramming on cache performance and the effect of cache affinity on work-
load performance. In the first set, each application is executed alone, using 4
threads. In the second set, we execute each application, which again requests 4
threads, together with 1, 2, 4 and 8 instances of the FLUSH microbenchmark.
The slowdowns and the normalized L2 cache miss rates (CMR) with respect to
the standalone execution are depicted in Figure 1.
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Fig. 1. Slowdowns (left) and normalized cache miss rates (right) from the multipro-
grammed execution of NAS applications with instances of FLUSH.

Despite the close cooperation between applications and the CPU manager,
applications suffer a performance penalty higher than expected, i.e. equal to the
multiprogramming degree. Following the common belief, one would attribute
the excessive performance penalty to the cache pollution introduced by FLUSH.
However, the normalized CMR diagram reveals that, in most cases, the cache
performance of this class of applications does not degrade severely due to FLUSH
interference. Some workloads even experience a cache performance improvement
in the presence of multiprogramming. As the CPU manager reduces the number
of processors allocated to each application, applications react by reducing the
number of threads they create and use. As a consequence, the effects of true- and
false-data sharing are minimized. Moreover, in case two or more threads which
share data happen to time-share the same processor, each one may benefit from
the data fetched to the L2 cache by the others.

As a next step, we repeated the same experiments using nBBMA instead
of FLUSH. nBBMA does not interfere with processor caches. If cache affinity
was a determinative factor for workload performance, the slowdowns suffered by
applications should this time be lower. The results are summarized in Figure 2.
The comparison with Figure 1 reveals similar performance deterioration in both
cases. The cache performance of applications is also similar (the diagram is not
reported due to space limitations).

We then used BBMA in the workloads and repeated the experiments. BBMA
continues causing traffic on the bus even after the cache has been flushed. Fig-
ure 3 depicts the slowdowns which are, this time, remarkably higher. The cache
performance of applications is more diverse compared with the two previous
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Fig. 2. Slowdown of the multipro-
grammed execution of NAS applications
with instances of nBBMA.
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Fig. 3. Slowdown of the multipro-
grammed execution of NAS applications
with instances of BBMA.

experiments. However, there is again no clear cache performance deterioration
trend which would justify the excessive performance loss.

These results are a strong indication that bus bandwidth is a valuable re-
source on bus-based SMP systems.The diverse effects of bus saturation prove to
be more harmful for performance than the loss of locality on multiprogrammed,
multiprocessor systems.

4 Bus Bandwidth Conscious Scheduling Policies

We introduce B2ARR and B2ADSS, two realistic scheduling policies which target
bus bandwidth as a scheduling resource of primary importance. The policies are
based on typical round-robin (RR) and on a variant of dynamic space sharing
(DSS) presented in [12]. The scheduling quantum is fixed to 100 msec, equal
to the scheduling quantum of the standard Linux scheduler. Ready to execute
threads are conceptually organized as a linked list.

At the end of each scheduling quantum B2ARR deallocates all executing
threads are enqueues them to the tail of threads queue. It also updates the
performance related statistics for all threads that executed during the latest
quantum and calculates the Bus Transactions Rate (BTR) of each thread. BTR,
measured as transactions/µsec, is a metric of the bandwidth consumption of
the thread during its last execution and is used as an estimation of its future
requirements. The Available Bus Transactions Rate (ABTR) is then initialized
to be equal to the Systems Bus Transactions Rate (SBTR), a constant value
which characterizes the system bus throughput. ABTR represents the available
bus transactions rate for allocation to the remaining processors. It is calculated
by subtracting the requirements of already allocated threads from SBTR.

Scheduling is divided in 2 phases. During the first phase, a portion of the sys-
tem processors are allocated in a round robin way to the threads that reside at
the head of the threads queue. Each time a processor is allocated to a thread, the
BTR of that thread is subtracted from ABTR and the thread is dequeued from
the threads queue. The remaining system processors are allocated to threads
during the second scheduling phase, following bus bandwidth consumption cri-



teria. The processors are allocated in rounds, one processor at a time. At the
beginning of each round the policy calculates the Average Bus Transactions
Rate per Unallocated Processor (ABTRproc). ABTRproc corresponds to the bus
transactions requirements of the ideal candidate for scheduling in this round. All
threads in the queue are then scanned in order to locate the fittest thread for
allocation in that round. Formula 1 estimates thread fitness:

Fitness =
1000

1 + |ABTRproc −BTR| (1)

The fitness value quantifies the distance between the estimated (BTR) and
the ideal (ABTRproc) bus bandwidth consumption. At the end of each round a
processor is allocated to the fittest thread. Formula 1 favors an optimal bus band-
width exploitation. If, for example, threads with high bandwidth requirements
have already been allocated, ABTRproc is low and threads with low requirements
are preferred for allocation. The formula works well even in cases bus saturation
can not be avoided. If the bus gets overcommitted, ABTRproc turns negative. As
a result, the thread with the lowest bus bandwidth requirements is the fittest.

Bookkeeping and statistics collection are organized in B2ADSS similarly to
B2ARR, however the scheduler also calculates the Average System Bus Transac-
tions Rate (SBTRavg), i.e. the average bus transactions rate of all active threads
in the system. During the first phase of B2ADSS , the typical DSS algorithm is
applied to allocate processors to applications. However, it allocates a multiple
mult of system processors (mult∗System Processors). At the second phase, the
scheduler forms mult chunks of threads to execute during the next mult quanta
using bus bandwidth optimization criteria. Only threads that belong to applica-
tions which have been allocated processors during the first phase are candidates
for selection. Formula 1 is used again for the fitness characterization of threads,
however the target this time is to achieve a bus bandwidth utilization from each
chunk of threads as close as possible to SBTRavg.

The design of the new scheduling policies implicitly provides two general
methodologies which can be applied to introduce bus bandwidth-consciousness
to conventional, bandwidth-oblivious policies. The first method is to allocate a
subset of system processors with the conventional policy. The remaining proces-
sors are allocated to threads with the goal of optimizing bus bandwidth con-
sumption. The decision on the percentage of processors that are allocated by
the conventional policy introduces an interesting tradeoff. If that percentage is
low, threads with bus bandwidth requirements ‘incompatible’ with those of the
other threads in the workload may experience large delays between two consec-
utive activations by the scheduler. On the other hand, allowing the conventional
policy to allocate too many threads minimizes the opportunities for optimally
co-scheduling threads that optimize bus bandwidth usage. In B2ARR we have
heuristically chosen to allocate 50% of the system processors using RR.

The second method applies the conventional policy to allocate processors to
applications for a scheduling epoch, namely a number of scheduling quanta. The
chunks of specific threads that execute during each quantum are then formed



with the objective of equilibrating bus bandwidth consumption among quanta.
A similar tradeoff applies to this methodology as well. Using an epoch of few
quanta may not allow an optimal exploitation of bus bandwidth. On the other
hand, a wide epoch would introduce a significant delay between the first phase of
scheduling and the actual execution of the threads in the last quanta of the epoch,
increasing the risk of applying outdated scheduling decisions. For B2ADSS the
epoch has been heuristically chosen to be 2 quanta long.

The heuristic choice of the values of 50% and 2 for the percentage of proces-
sors allocated by the conventional policy and the epoch length respectively, has
been experimentally driven. However, we intend to evaluate other heuristics as
well. For example, it might be beneficial to allocate a percentage of the available
bus bandwidth using the conventional policy, instead of a percentage of system
processors.

In previous work [1] we have presented two variants of a scheduling policy
which also schedules applications taking into account their bus bandwidth re-
quirements. The two variants, namely Latest Quantum Gang (LQG) and Quanta
Window Gang (QWG) are gang-like and target each application as a single en-
tity. The fitness metric used to select and schedule applications is quite similar to
Equation 1. LQG uses performance data collected only during the latest execu-
tion of each application, whereas QWG uses the average over a moving window
which spans several previous quanta.

LQG and QWG, as typical gang-like policies, have the disadvantage of often
resulting to suboptimal utilization of system processors. The rigid requirement of
co-executing all application threads may leave processors idle during one or more
scheduling quanta. B2ARR and B2ADSS alleviate this disadvantage by allowing
an arbitrary number of threads of each application to execute simultaneously.
On the other hand, the concurrent execution of all application threads minimizes
synchronization and unbalancing problems which may appear due to inoppor-
tune preemptions of threads by the OS scheduler. However, the adaptability of
applications created by the NanosCompiler, combined with the information and
mechanisms offered by the CPU manager, allow threads scheduled with B2ARR
and B2ADSS to minimize the adverse effects of such situations.

The new policies do not require any a-priori knowledge on the requirements
of threads and their interaction with the hardware. Instead, they exploit perfor-
mance data monitored in the past to predict thread behavior in the near future.
This property, combined with the aforementioned characteristics make the new
policies flexible and realistic. As a result, they are good candidates for adoption
in a real-world system.

5 Experimental Evaluation

In order to evaluate the effectiveness of the new policies we have executed a set
of workloads using the CPU manager with the new scheduling policies, the cor-
responding bandwidth-oblivious policies and LQG. Moreover, we have scheduled
the same workloads using the native Linux scheduler, without the intervention



of the CPU manager. We did not experiment with QWG, since NAS applica-
tions have regular, smooth transaction patterns and are generally insensitive to
external noise. For such applications, LQG performs better than QWG [1].

Table 1. Workload composition

Max. Max.
Multipr. Multipr.

ID Description Degree ID Description Degree
A.1 2BT(3)+2CG(1) 2 B.3 2BT(4)+2SP(4) 4
A.2 4BT(1)+4CG(1) 2 C.1 (FT(1);FT(3))+(MG(3);MG(1))+ 3
A.3 2BT(4)+2CG(4) 4 +(FT(3);FT(1))+(MG(1);MG(3))
B.1 2BT(1)+2SP(3) 2 C.2 4FT(1)+4MG(1) 2
B.2 4BT(1)+4SP(1) 2 C.3 2FT(4)+2MG(4) 4

Table 1 describes the workloads we have used. A(n) means that application A
is executed with n threads. A+B represents the concurrent execution of applica-
tions A and B. Similarly, mA represents the concurrent execution of m instances
of application A. Finally, A;B means that application B starts right after the
termination of application A. The rightmost column of Table 1 reports the max-
imum multiprogramming degree exposed by each workload. However, the actual
multiprogramming degree may vary during execution.
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Figure 4 depicts the performance improvement attained by the new policies,
executed in the context of the CPU manager, over the native Linux scheduler.
A first important observation is that our CPU manager, even with bandwidth-
oblivious policies such as RR or DSS, outperforms the native Linux scheduler by
11% and 14% respectively. This performance improvement can be attributed to
the information and mechanisms provided to applications by the CPU manager,
in order to assist them adapt to the available processors and make progress on



the critical path of their computation. Only in few cases (workloads A.1, B.2
and C.3) RR and DSS perform slightly worse (up to 3.2%) than the native
scheduler. The average performance improvements attained by bus bandwidth-
conscious policies, namely LQG, B2ARR and B2ADSS, are 9%, 23% and 18%
respectively. In 2 workloads (A.1 and C.1) LQG performs worse than Linux
scheduler. The reason is explained in detail in the next paragraph.

We then compare the performance of bandwidth-conscious policies with that
of RR. The comparison isolates the performance gains due to application adapt-
ability to the available processors and focuses on the impact of the policies them-
selves. LQG is in average 1% worse than RR. Although LQG performs in most
cases better than RR, 3 workloads experience severe performance degradation.
These workloads reveal the fundamental weakness of gang-like policies: the rigid
rule of scheduling all threads of each application together results to low utiliza-
tion of system processors. If the three problematic workloads are excluded, LQG
is 4% more efficient than RR. In workload C.3 LQG also performs 4% worse than
RR. In this case, RR forces the application to reduce the degree of parallelism
in the presence of multiprogramming instead of time-sharing applications on the
same processors. This choice proves to be beneficial for performance. B2ARR
and B2ADSS, on the other hand, do not suffer from the same problems as LQG.
They perform, in average, 28% and 17% better than RR.

As a next step, we quantify the performance improvement attained by B2ARR
and B2ADSS over LQG. Although not co-scheduling application threads may in-
troduce overheads, B2ARR and B2ADSS perform in average 13% and 9% better
than LQG. Workloads A.2, B.2 and C.2 are the only exceptions. In these cases
B2ADSS performs up to 3% worse than LQG. Since all applications that par-
ticipate in these workloads are single-threaded, they contribute equally to the
total workload and the DSS phase of B2ADSS has practically no effect.

Figure 5 summarizes the performance gains of bus bandwidth-aware schedul-
ing policies over the corresponding bus bandwidth-oblivious ones. This compar-
ison quantifies the performance improvement due to the optimal exploitation of
bus bandwidth. It is important to notice that in all cases the new scheduling
policies perform better than conventional policies. B2ARR is in average 13%
faster than RR. B2ADSS also outperforms DSS, this time by 5%.

We expect our policies to perform even better on a system where more than
4 processors share a bus, since the bus saturation problem our policies cope
with will be more acute on such a machine. However, commercial, bus-based
SMPs are usually limited to 8 processors due to bus scalability issues. Multiple
buses are used to integrate even 8 processors on a bus-based system. In such
architectures, a slightly modified version of our policies would have additional
choices for optimal bandwidth exploitation. It would be possible to even move
threads among buses in order to optimize the bus bandwidth usage on each bus.

Significant effort has been paid to enhance the scalability of the Linux sched-
uler on large-scale multiprocessors. A new O(1) scheduler, present in 2.6.x ker-
nels, allows constant overhead scheduling, independently of the number of tasks
(N) and processors (P) in the system. The overhead related to the preservation of



load-balancing between processors grows linearly with the number of processors.
The current implementation of our scheduling policies has an O(N2) overhead,
which can be reduced to O(NlogN) if tasks are organized in priority queues,
according to their BTR. The overhead is in any case higher than that of the
standard Linux scheduler. However, as aforementioned, the policies target bus-
based SMPs, which are limited to small- or medium-scales. For such systems the
overhead of our policies has practically proven to be negligible.

6 Conclusions

In this paper we first presented experimental results which indicate that, for
the class of memory-intensive, numerical applications, executed on multipro-
grammed SMP systems, it is often bus bandwidth consumption and not cache
affinity that determines application performance. Driven by this observation, we
introduced B2ARR and B2ADSS, two realistic scheduling policies that target
bus bandwidth as a top-importance scheduling resource. The new policies mea-
sure the bus-bandwidth requirements of threads during their execution and use
the collected performance data to estimate thread behavior in the close future.
They select threads to be co-scheduled during each quantum with the goal of
neither wasting bus bandwidth, nor saturating the bus. The scheduling policies
have been implemented in the context of a CPU manager, a user-level process
that applies scheduling policies and precisely controls thread execution. The
CPU manager is part of a compilation and execution environment which allows
multithreaded applications to minimize the adverse effects of multiprogramming.

We evaluated the effectiveness of B2ARR and B2ADSS using workloads con-
sisting of instances of applications from the NAS benchmarks suite. Our algo-
rithms have been compared with the native Linux scheduler, the correspond-
ing bus bandwidth-oblivious policies RR and DSS, and LQG, a gang-like, bus
bandwidth-aware scheduling policy presented in our earlier work. B2ARR and
B2ADSS attained significant performance gains over the Linux scheduler. More-
over, they turned out to be an important improvement over RR, DSS and LQG.

We plan to investigate the impact of sharing resources other than bus band-
width on job scheduling. Such an investigation would be of particular interest
for emerging architectures such as SMTs or HyperThreaded (HT) processors,
where various execution units and levels of the on-chip memory hierarchy are
shared among threads. We also intend to apply the idea of optimally using the
available memory bandwidth to other levels of the memory hierarchy, beyond
the front-side bus. Possible targets are the bandwidth of cache ports in SMTs,
HT, and multi-core processors, or the bandwidth of network links in clusters of
SMPs.
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