
GemFI: A Fault Injection Tool for Studying the
Behavior of Applications on Unreliable Substrates

KONSTANTINOS PARASYRIS, GEORGE TZIANTZOULIS,
CHRISTOS D. ANTONOPOULOS, NIKOLAOS BELLAS

koparasy@inf.uth.gr, georgiostziantzioulis2011@u.northwestern.edu, cda@inf.uth.gr, nbellas@inf.uth.gr

1. Motivation
• Power consumption remains #1 constraint of fu-

ture systems.

• Reducing supply voltage below nominal values
results to significantly lower power consump-
tion at the expense of potential errors.

• Several application domains offer the opportu-
nity to trade-off quality of service for significant
improvements in power/energy consumption.

• Reliable computing under unreliable circum-
stances is the next challenge the computing com-
munity must solve.

• There is a need to perform a thorough analysis of
the way hardware faults manifest errors to archi-
tectural components and how errors affect the
applications’ behavior.

2. Objectives
• Create a full system fault injection and analysis

tool.

• Easily extensible to cover various ISAs and CPU
configurations.

• Support multiple fault models.

• Mitigate the simulation time overhead.

3. Our Tool

• GemFI is based on the Gem5 simulator.
• Allows fault injection in both functional and

cycle-accurate simulations.

Red components demonstrate possible fault locations, red
ovals represent fault injected applications.

• Faults are described in an input file provided by
the user.

• The time of a fault specifies the timing of fault
manifestation.

• Provides function calls to permit fault injection to
specific applications/threads.

• Values in a location can be corrupted in a variety
of ways.

5. Results

• Running simulations in parallel in 27 worksta-
tions with 4 cores per workstation we obtained
speedups of 103x.

• The checkpointing methodology results to addi-
tional speedups varying from 2.36x up to 41.84x.

• We executed 2500 fault injection campaigns per
application.

• Results are categorized as:
– Strictly correct: bit-wise identical results in com-

parison with an error-less execution.
– Correct: results not strictly correct, however still

within acceptable quality margins.
– SDCs: experiments terminate normally, yet the

output quality is not acceptable.
– Crashed: experiments fail to terminate.
– Non propagated: faults did not manifest as er-

rors.

• Tolerance to injected faults proved highly depen-
dent on the targeted hardware module.
- PC and IFetch modules are very vulnerable

even to single errors.
- Arithmetic operations are often error tolerant,

if they are not used for address calculations.

Different categories of results for the DCT benchmark.
a) A strict correct result b) Relaxed correct result c) SDC
d) The difference between (a),(b) (loss of quality)
• In some cases we observed a correlation between

application behavior and the timing of the faults

• Tolerance to injected faults is dependent on the
inherent characteristics of each application.
– Applications with intensive memory address

calculations often result to segmentation faults
(for example Canneal) whereas computation-
ally heavy applications (like Monte carlo esti-
mation of PI) are characterized by lower crash
rates.

4. Optimization Techniques
• Entire simulation can be executed in parallel.

• Each workstation may execute more than one
experiment simultaneously, depending on the
number of cores and RAM configuration.

• Checkpointing is necessary to avoid loss of sim-
ulations.

• “Clever" checkpointing can also speed-up sim-
ulations.

• Execute once up to the point of boot up & appli-
cation initialization and checkpoint. Start multi-
ple simulations starting from the checkpoint

• Inject a fault and wait until the fault manifests
or is masked, then switch to a faster simulation
mode.

This work has been partially supported by the EC within the 7th Framework Program under the FET-Open
grant agreement SCoRPiO, grant number 323872.


