
SCoRPiO: Significance based Computing
for Reliability and Power Optimization

http://www.scorpio-project.eu/

This poster has been prepared by the CERTH research group with input from RWTH-Aachen, EPFL and QUB research groups.

1. Vision
Just like parallelism, we want to elevate compu-
tational significance as a first class concern in the
design of algorithms and systems.
Exploit computational significance to build energy
efficient hardware and software platforms that
scale gracefully in case of errors induced by scaled
voltages and/or parametric variations.

2. Motivation
• Power/Energy dissipation remains #1 constraint

of future systems.

• Several application domains offer the opportunity
to trade-off quality of service for significant im-
provements in energy comsumption (e.g. JPEG).

• Preliminary fault injection trials on GEM5 simu-
lator suggest that tolerance to injected faults was
highly dependent on the spatial location of the
faults as well as the specific portion of the affected
code.

- PC and IFetch modules are very vulnerable even
to single errors.

- Arithmetic operations are often error tolerant, es-
pecially if they are not used for address calcula-
tions

3. Objectives
• Introduce computational significance as an algo-

rithmic property and expose it to the level of the
programmer.

• Devise techniques that facilitate automatic char-
acterization of code and data significance using
compile-time or runtime analysis.

• Lay the necessary foundations at all levels of sys-
tem stack allowing controlled quality execution
on unreliable hardware substrates.

• Enable drastic power dissipation reduction by op-
portunistically and aggressively powering parts
of the platform below nominal values in a tar-
geted way.

• Produce a vertically integrated system prototype
to prove the efficacy of significance-based com-
puting.

4. Semi-Automatic significance analysis
• Introduce a rigorous mathematical definition of

computational significance.

• Apply a set of criteria to (semi)automatically char-
acterize significance.

• Partition source code to slices of varying signifi-
cance.

• Example of interval arithmetic and algorithmic
differentiation:

- Original code:
v1 = log(x1);
v2 = v1 + x2;
y = v2;

- Input range for x1 : [1, 2]

- Input range for x2 : [1, 20]

- Significance criterion : w([v] · ∇[v][y]) > ε

- Significance bound : ε = 1

[v] ∇[v][y] [v] · ∇[v][y]
[x1] [1, 2] [0.5, 1] [0.5, 2]
[x2] [1, 20] [1, 1] [1, 20]
[v1] [0, 0.693] [1, 1] [0, 0.693]
[y] [1, 20.7] [1, 1] [1, 20.7]

Interpretation: Intermediate v1 turns out to be in-
significant over the complete input ranges of x1 and
x2, since w([v1] · ∇[v1][y]) < ε. Using the midpoint
m[v1] = 0.3465 of v1 as constant initializer for v1, the
code can be simplified for the complete input range
of x1 and x2 to:

v1 = 0.3465;
y = v1 + x2;

Interval evaluation of the modified code for ranges
[x1] = [1, 2], [x2] = [1, 20] gives [y] = [1.35, 20.3],
which is a sub-interval of the output range of the
original code.

6. Hardware modeling and design
• Develop instruction level power and behavior

models under various degrees of voltage scaling
and variations.

• Exploit the dynamic timing profile and modify
the circuits in conjunction with the core micro-
architecture to enable graceful performance degra-
dation.

• Cores are enhanced with low cost error detec-
tion/correction mechanisms to help in adjusting
their reliability and energy efficiency.

• Extended ISA to support both approximate and
accurate instructions.

• A simulator that supports the overall significance
driven vertical stack and allows its evaluation at
various operating modes will be developed.

This work has been supported by the EC within the 7th Framework Programme under the FET-Open
grant agreement SCoRPiO, grant number 323872.

5. Task-based programming model and
runtime system
Programming Model:
• Code is tagged with significance information at

task or even subtask level.

• Significance determines the (un)reliability of the
core used for task execution.

• Offer recovery mechanisms coupled with sanity
checking functions.

• Develop and deploy smart fault-handling mecha-
nisms for graceful performance degradation such
as statistical error correction.

• Pragmas for instantiation and synchronization
of tasks (ompss extensions).

Runtime System:
• Component-level control of power, performance

and reliability
• Significance-aware scheduling and memory man-

agement
• Dynamic optimization under reliability con-

straints
• Significance-aware runtime system monitors the

dynamic behavior of the cores:
- Did the core crash due to a fault?
- If not, how many faults could the hardware de-

tect?
• Based on the information conveyed by the hard-

ware, the runtime system calls the sanity function
and takes corrective actions.

