
Massively Parallel Programming Models Used as

Hardware Description Languages: The OpenCL Case

Muhsen Owaida, Nikolaos Bellas, Christos D. Antonopoulos, Konstantis Daloukas, and Charalambos Antoniadis
Department of Computer and Communication Engineering,

University of Thessaly, Volos, Greece

Email: {mowaida, nbellas, cda, kodalouk, haadonia}@inf.uth.gr

Abstract— The problem of automatically generating hardware

modules from high level application representations has been at

the forefront of EDA research during the last few years. In this

paper, we introduce a methodology to automatically synthesize

hardware accelerators from OpenCL applications. OpenCL is a

recent industry supported standard for writing programs that

execute on multicore platforms and accelerators such as GPUs.

Our methodology maps OpenCL kernels into hardware

accelerators, based on architectural templates that explicitly

decouple computation from memory communication whenever

this is possible. The templates can be tuned to provide a wide

repertoire of accelerators that meet user performance

requirements and FPGA device characteristics. Furthermore, a

set of high- and low-level compiler optimizations is applied to

generate optimized accelerators. Our experimental evaluation

shows that the generated accelerators are tuned efficiently to

match the applications memory access pattern and computational

complexity, and to achieve user performance requirements. An

important objective of our tool is to expand the FPGA

development user base to software engineers, thereby expanding

the scope of FPGAs beyond the realm of hardware design.

Keywords–OpenCL, FPGA, Electronic Design Automation,

Reconfigurable Computing, Embedded Systems

I. INTRODUCTION

The level of integration of modern field-programmable gate
arrays (FPGAs) has advanced to a point where a complex System on
Chip (SoC) can be mapped onto a single device. FPGA
manufacturers and IP vendors now offer a plethora of peripherals,
processor cores (both hard and soft), and fixed IP solutions. These
improvements in capacities, as well as performance and cost, have
made FPGAs an attractive solution for many embedded systems. At
the same time, FPGAs are increasingly used as accelerators in the
context of high performance computing.

Apart from the improvements in hardware technology, tools
facilitating the exploitation of FPGAs have also evolved. The current
state of the art includes numerous industrial CAD tools [11], [7], [14]
that provide automatic hardware generation from high level
programming languages such as C/C++.

The hardware / software partitioning on a heterogeneous platform
with general purpose or embedded processors and FPGAs is not an
easy undertaking. Ideally, systems should be fluid; the computational
problem should be expressed using a high-level programming model,
letting the compiler and run-time infrastructure to determine which
functionality should be assigned to gates and which will be executed
on the processors. This decision would consider computational
requirements, data transfers and data caching capabilities of the

complex memory hierarchies of heterogeneous systems, as well as
performance, power and area-limitations. At the same time, in order
to make the best use of existing code-base and programmer expertise,
developers of the underlying compiler and run-time infrastructures
should resist the temptation of introducing new, non-standard
programming models or significant extensions to existing ones.
Moreover, programmers should be allowed and encouraged to
express their problems in an as platform-agnostic way as possible.

In this paper we introduce a hardware-architecture accelerator
template and algorithms to generate hardware accelerators from
unmodified OpenCL kernels [5]. OpenCL is an industry supported
programming standard for both homogeneous and heterogeneous
parallel systems. It aims to be platform-independent, yet expressive
enough to facilitate the efficient exploitation of parallelism at any
granularity, and outline, in a general manner, data movement. An
OpenCL kernel expresses parallelism at its finest granularity. The full
computation is performed by mapping the kernel on a hierarchical
geometry of logical threads. These features facilitate the use of
OpenCL as a hardware-description language.

Apart from the computational data path, our tool-chain generates
dedicated hardware, called streaming units, to be used for data
movement, so that communication is decoupled from computation.
The streaming units assemble the input data and present them to the
computation kernels as ordered packets. Similarly, results produced
by the computation kernels are combined to chunks whenever
possible and sent to the main memory. A cache may be instantiated if
the memory access pattern analysis reveals reuse opportunities and
temporal or spatial locality. Additionally, tunnel buffers are generated
to exploit read-after-write reuse across loop iterations.

Much like vector processing, stream programs hide latency,
amortize instruction overhead and expose data parallelism by
operating on large sets of data. This decoupling becomes possible
through code slicing, a technique that automatically extracts the
portions of the nested loop code responsible for address generation
and data fetching/write back. Code slices are optimized and
scheduled separately and are used to configure the streaming unit and
the data path, respectively. This allows fully asynchronous operation
and overlap across loop and iteration boundaries.

Our infrastructure supports arbitrary loop nests and shapes.
Different loops at the same level of a loop nest are implemented as
distinct accelerators, which communicate and synchronize through
local memory buffers. Similarly, we support barrier synchronization
constructs within a computational kernel. The computational data
path supports both standard and complex data types and all standard
arithmetic operations, including integer and IEEE-compliant single-
and double-precision floating point.

We implement the developed algorithms as a backend in the
LLVM based compiler infrastructure. We add preliminary passes

before the hardware generation, such as predication, code-slicing and
modulo scheduling. The proposed architecture-template exposes
tunable parameters that can be manipulated to achieve the
performance-cost requirements. The second phase includes functional
units (FUs) allocation, tasks scheduling, memory mapping and
control circuitry generation.

The major contribution of this paper is a template-based hardware
accelerator generation methodology which produces designs with
explicitly decoupled memory access and computational units, starting
from totally unmodified OpenCL code. We use code slicing
techniques to generate and optimize these two units separately and
exploit available bandwidth to the memory. The supported kernels
may consist of arbitrary loop nests and shapes. They may contain
synchronization and any kind of standard arithmetic operations.
Finally, the operation of the streaming units and the computational
data paths is fully asynchronous, even across the boundaries of
different loops and loop nests.

The rest of the paper is organized as follows: Section II
introduces the OpenCL programming model and describes the
compiler front-end that transforms OpenCL to equivalent,
appropriately coarsened C code. Section 0 discusses in detail the
architectural template used as a base for the auto-generated hardware.

In Section IV we introduce the hardware generation compiler
backend and several optimizations applied at this level. Section V
evaluates our proposed methodology and the toolchain
implementation. Finally, Sections VI and VII outline related work
and conclude the paper, respectively.

II. OPENCL FRONT END

A. OpenCL Programming Model

OpenCL [5] provides a parallel programming framework for a
variety of devices, ranging from conventional Chip Multiprocessors
(CMPs) to combinations of heterogeneous cores such as CMPs and
GPUs. It is based on a platform model that comprises a host
processor and a number of compute devices. Each device consists of a
number of compute units, which is subsequently divided into a
number of processing elements. An OpenCL application is organized
as a host program and a number of kernel functions. The host part
executes on the host processor and submits commands that refer to
either the execution of a kernel function, or the manipulation of
memory objects. Kernel functions contain the computational part of
an application and are executed on the compute devices.

The work corresponding to a single invocation of a kernel is
called a work-item. Multiple work-items are organized in a work-
group. OpenCL allows for geometrical partitioning of the grid of
computations to an N-dimensional space of work-groups, with each
work-group being subsequently partitioned to an N-dimensional
space of work-items, where 1 ≤ N ≤ 3. Once a command that refers to
the execution of a kernel function is submitted, the host part of the
application defines an abstract index space, with a maximum of six
dimensions. A work-item is identified by a tuple of IDs, defining its
position within the work group, as well as the position of the
workgroup within the computation grid. Based on these IDs, a work-
item is able to access different data (SIMD style) or follow a different
path of execution.

The only synchronization that is provided by OpenCL is barrier-
type synchronization among the work-items inside the same work-
group. Every work-item inside a work-group must execute the barrier
instruction before any work-item is allowed to continue execution
beyond the barrier command. On the other hand, there is no
synchronization mechanism among work-groups, which means that
different work-groups can always be executed in parallel.

We use an OpenCL kernel which implements LU Decomposition
as a running example to explain the sequence of steps to generate the
hardware accelerator (Figure 1). This kernel is part of the Rodinia
benchmark suite [3]. The get_group_id(0) run-time function call
returns the x-coordinate of the work-group in which the work-item
calling the function belongs to in the computational grid.
get_global_id(0) returns the unique global x-coordinate of the work-
item, whereas get_local_id(0) returns the x-coordinate of the work-
item within the work-group. LU Decomposition kernel consists of
three code parts, separated by barrier instructions. All work-items that
execute the first part of the code, pre-fetch a segment of the input
array m to three local buffers and have to rendevouz to the first
barrier before they proceed. The second part of the code performs the
main LU Decomposition operation, and, likewise, forces all work-
items to synchronize to the second barrier, before proceeding to the
final write-back to array m.

B. Compiler transformations for OpenCL front end

In order to enable efficient mapping of OpenCL kernel functions
to the underlying platform, while at the same time taking into account
hardware constraints, we apply a series of source-to-source
transformations that collectively aim at coarsening the granularity of
a kernel function. After this process, a kernel function represents the

lud_perimeter(__global float *m, int m_d, int offset){
__local float dia[16][16];
__local float peri_row[16][16];
 __local float peri_col[16][16];
int loc_x = get_local_id(0);
int b_x = get_group_id(0);

 if (loc_x < 16) {
 idx = loc_x ; i0 = 0; i1 = 8;
 arroff = arroff0 = offset * m_d + offset;
 arroff1 = arroff + (b_x + 1)<<4 + idx;
 }
 else{
 // similar settings
 }
 arr_offset = arroff0;
 for (i = i0; i < i1; i++) {
 dia[i][idx] = m[array_offset + idx];
 array_offset += m_d;
 }
 array_offset = arroff1;
 for (i = 0; i < 16; i++) {
 if (loc_x < 16) peri_row[i][idx] = m[array_offset+idx];
 else peri_col[i][idx] = m[array_offset+idx];
 array_offset += m_d;
 }

barrier(CLK_LOCAL_MEM_FENCE);

 for (i = 1; i < 16; i++) {
 for (j = 0; j < i; j++) {
 if (loc_x < 16)
 peri_row[i][idx] -= dia[i][j] * peri_row[j][idx];
 else
 peri_col[idx][i] -= dia[j][i] * peri_col[idx][j] ;
 }
 if(loc_x >= 16)
 peri_col[idx][i] /= dia[i][i];
 }

barrier(CLK_LOCAL_MEM_FENCE);

 if (loc_x < 16) {
 array_offset = (offset + 1) * m_d + offset;
 for (i = 1; i < 16; i++) {
 m[array_offset + (b_x + 1) * 16 + idx] = peri_row[i][idx];
 array_offset +=m_d;
 }
 }
 else {
 array_offset = (offset + (b_x + 1) <<4) * m_d + offset;
 for (i = 0; i < 16; i++) {
 m[array_offset + idx] = peri_col[i][idx];
 array_offset += m_d;
 }
 }

B0_0

B0_1

L0_2

L0_3

L1_0

L2_0

L2_1

B2_0

B2_1

Figure 1. OpenCL kernel for LU Decomposition with marked loops (Li_j) and
basic blocks out of loops (Bi_j). In this kernel, a work-item (or thread)
performs LU Decomposition for a 32x32 sub-matrix. Some parts of the code
have been omitted for brevity.

amount of computations that must be executed by each work-group in
the abstract index space of the application. The main step in this
series of transformations is logical thread serialization. Work-items
inside a work-group can be executed in any sequence, provided that
no synchronization operation is present inside a kernel function.
Based on this observation, we serialize the execution of work-items
by enclosing the instructions in the body of a kernel function into a
triple nested loop, given that the maximum number of dimensions in
the abstract index space within a workgroup is three. Each loop nest
enumerates the work-items in the corresponding dimension, thus
serializing their execution.

The aforementioned transformation can lead to invalid execution
of a kernel function if its body contains a synchronization operation.
In presence of a barrier instruction, every work-item must execute
that instruction before any work-item is allowed to continue its
execution. However, in the modified kernel function, every work-
item finishes its execution before the next work-item is able to start.
In order to ensure correct execution of the coarsened kernel function,
the compiler applies two additional transformations, namely loop
fission and variable privatization that facilitate logical thread
serialization.

Loop fission is applied in order to enforce the execution ordering

that is required by a synchronization instruction. A triple-nested loop

enforces synchronization among work-items before its first and after

its last iteration. Based on this observation, we partition the

instructions of a kernel function into blocks such that no barrier

instruction is present inside a block. Afterwards, we enclose each

block into a triple-nested loop. We follow the same approach for

kernel functions with multiple exit points, i.e. when break, continue

or return statements are present. We treat each of the aforementioned

instructions as an additional synchronization point and apply loop

fission around it. Figure 2a depicts the block structure of the modified

kernel function for our running example. The kernel code separated

by barrier instructions is enclosed in triple nested loops (T i), and the

whole kernel code is enclosed into a doubly nested loop which spans

the dimensions of the 2D array.

The last step in this series of transformations is variable

privatization [1]. Loop fission presents a complication for variables

that are defined in one triple-nested loop construct and used in

another. A work-item that defines the value of a variable in the first

loop cannot use it in a subsequent loop, as its contents will be

polluted by the execution of subsequent work-items, thus violating

semantics. We conduct a live-variable analysis in order to identify

such variables and we subsequently apply the variable privatization

technique for each variable. After this transformation, each work-

item is provided with a private copy of such variables. Further details

on the OpenCL compiler transformations are presented in [15].

III. ARCHITECTURAL TEMPLATE

The hardware generation tool-chain transforms the C code to
synthesizable HDL, based on an architectural template that can be
instantiated to match the performance requirements of the application
and the available FPGA resources. Figure 3 outlines the architectural
template of a PE which consists of the data path and the streaming

unit, and is detailed in the following sections. Figure 2b shows the
block diagram of the complete hardware accelerator that may consist
of multiple PE modules. Consumer-producer communication of
Figure 2a translates into FPGA BRAMs, which allow pipelined
operation. Inner loops Li,j are mapped into Processing Elements of
Figure 3 and outer loop computation and control are mapped into
Control Elements CE. Arbitration mechanisms are used to regulate
access to the shared interconnect network (a bus in our case). There is
a very close correspondence among the OpenCL code in Figure 1, the
program structure in Figure 2a and the generated hardware in Figure
2b. The main code structures have been annotated using the same
tags in all 3 figures.

A. Data Path

The data path implements the computations of the innermost
loops (loops Li_j in Figure 1). It consists of a network of functional
units (FUs) that produce and consume data elements using explicit
input and output FIFO channels to the streaming units. Each FU is
preceded by multiplexers, which – at each time-slot – direct data
elements into the correct input-port. The multiplexers are driven by a
periodic-count of the initiation interval (II). The control logic is
distributed and spatially near the corresponding functional units,
multiplexers, and buffers. The data path also includes static data-
registers that hold loop invariant data generated by outer loops.
Tunnels are storage elements used to bypass the streaming unit and
channel data-tokens stored (pushed) in earlier iterations to be used by
loads (pops) in later iterations. Tunnels are generated wherever a load
instruction has a read-after-write dependency with another store
instruction with constant cross-iteration distance larger than or equal
to one. Dependences with distance equal to zero are optimized away
during the optimization passes. For example, tunnels would be
generated to implement the cross-iteration distance of 1 in the
following loop:

 for (i = 0; i < N; i++)

 a[i] = a[i-1] + b[i];
The reconfigurable parameters of the data path are the type and

bitwidth of functional units (ALUs for arithmetic and logical
instructions, multipliers, shifters, etc.), the custom operation
performed within a generic functional unit (e.g. only addition or
subtraction for an ALU), the number and size of registers in the
queues between functional units, and the bandwidth to and from the
streaming unit. Both integer and IEEE compliant single/double
precision floating point operations are supported by the tool flow.
Multiple versions of each floating point operation are implemented in
the context of an add-on library. Each implementation is tagged with
its precision, its latency, as well as the number of its pipeline stages.

L0_2

L0_3

L1_0

L2_0 L2_1

B0_0 B0_1

B2_0 B2_1

T0

T1

T2

m[]

..
peri_row[][],
peri_col[][],
dia[][]

.. ..

.. ..
peri_row[],
peri_col[]

..

.. m[]

D0

CLUSTER0

PE (L0_3)PE (L0_2)
CE0

(B0_0,

B0_1)

Arbiter

Arbiter

CLUSTER1

PE (L1_0)
CE1

CLUSTER2

PE (L2_1)PE (L2_0)

CE2
(B2_0,

B2_1)
Arbiter

CE_g

(D0)

System Bus

 (a) (b)

Figure 2. (a) Program structure of LU Decomposition kernel after coarsening

the granularity to the equivalent of a work-group. (b) The block diagram of
the automatically generated hardware accelerator for LU decomposition.

At compile time, the system selects and integrates the appropriate
implementation according to precision requirements and the target
initiation interval. Section IV describes algorithmic aspects of the
automatic generation of the hardware accelerator.

B. Streaming Unit

The streaming unit handles all issues regarding data transfers
between the main memory and the data path. These include address
calculation, data alignment, data ordering, and bus arbitration and
interfacing. The streaming unit consists of one or more input and
output stream modules. It is generated to match the memory access
pattern of the specific application, the characteristics of the
interconnect to main memory, and the bandwidth requirements of the
data path.

An Address Generation Unit (AGU) aggressively generates
addresses for data prefetching (and write back), and feeds them to the
Address Request Module. The tool flow guides the generation of the
AGUs by first identifying the code slice responsible for data I/O, and
then performing modulo scheduling on that code. The output of the
code slice – and, therefore, the output of the generated AGU
hardware – is an address sequence for all elements of the input
stream. The architecture of the AGU is very similar to that of the data
path, thus the same methodology is used to generate both.

The Requests Generator module coalesces requests generated by
Sin-AGU (the input data AGU) to the word width of the underlying
memory interconnect (a PLB bus for Xilinx FPGAs), or to burst size
if bursting is enabled. Moreover, it competes for bus accesses with
the other stream units. The Requests Generator Module aims to
eliminate redundant transactions on the memory interconnect. Before
issuing a transaction request to the Arbiter, it checks if the addresses
alias with previously requested ones, or if the requested data is
available in the cache unit.

The cache unit exploits temporal and spatial locality and reduces
latency of memory accesses by saving recently loaded data for future
reuse. The cache unit is implemented using dual-ported Block RAMs,
so that accesses from the Arbiter and the Input Streams Alignment
Unit Sin-Align can be served simultaneously. A cache line is equal to
the bus-width. The cache unit is not instantiated if the compile-time
analysis dictates that the input memory access pattern has limited
reuse. The input stream Alignment Unit retrieves data from the cache

unit, or the data_in incoming data in case there is no cache, and
presents them in-order to the data path. The output stream Alignment
Unit aligns the output data tokens coming from the data path in a
FIFO of data-lines of bus-width bytes. As soon as the FIFO is full or
the incoming data token is out of lines, the Alignment Unit issues the
write request to the Arbiter.

Finally, the Arbiter module manages the issue of Read/Write
transaction requests from the input/output streams towards the
memory interconnect. The priority and ratio of serving read vs. write
requests is determined at compile-time, driven by the memory access
pattern analysis of the application. However an interrupt mechanism
is also present to intervene whenever input or output queues are full,
thus stalling the data path.

C. Control Elements

Control Elements are used to control and execute code of outer
loops in a multilevel loop nest. For example, blocks CEi_j in Figure
2b show the Control Elements (CEi) for the LU Decomposition
benchmark. Control Elements have a simpler, less optimized
architecture, since outer loop code does not execute as frequently as
inner loop code.

A critical architectural optimization is interleaving the execution
of multiple outer loop iterations. Figure 4a shows the conventional
execution model, according to which the next iteration of an outer
loop can be initiated only after the last iteration of the inner loop. The
conventional model creates execution bubbles at the prologue and
epilogue of each outer loop iteration (T0 and T2, respectively), during
which computing resources remain idle, thus causing unnecessary
execution delays.

To ameliorate this inefficiency, we decouple initiations of
innermost loops from outer loops and treat them as separated entities
(Figure 4b). We should note that, in most cases, outer loops
correspond to the abstract index space of a work group (triple nested
loops Ti of Figure 2a). Since all work-items of a work-group in
OpenCL are allowed to be executed concurrently, there is no data
dependence among iterations of such outer loops. All local variables
are implemented as FIFOs, thus the correct data are presented to each
loop iteration. Updates to local variables from future iterations do not
pollute the data presented to previous, concurrently executing
iterations. Therefore, the execution of multiple loops and multiple
iterations within each outer loop can be overlapped without violating
data dependences.

Bus Bridge

Arbiter

Sin Align Unit
Sout Align

Unit

Sin

Requests

Generator

Cache

Unit

Sout

AGU

Sin

AGU

Request

Status

Data_lineData_line

Sin
Addresses

Sin
Addresses AddressAddress

Data_inData_in

Data_outData_out

AddressAddress

AddressAddress

Data
out

Data
outAck_OAck_O

AddressAddressAck_AAck_A

Ack_IAck_I
Data_inData_in

Sin0Sin0 Sin1Sin1 Sin2Sin2 Sin3Sin3 Sout0Sout0

Streaming
Unit

Streaming
Unit

System InterconnectSystem Interconnect

Local requestLocal request

FU

V Data

TerminateTerminate Sin0Sin0 Sin1Sin1 Sin2Sin2 Sin3Sin3 Sout0Sout0

Data
Path

Data
Path

Named
Register

Named
Register

Memory
Mapped
Registers

Memory
Mapped
Registers

Multiplexer

Tunnel

Tunnel

V Data

V Data

FU

Multiplexer

V Data

FU

Multiplexer

V Data

V Data

text

Figure 3. Architectural template of a Processing Element (PE) module.

1

2

T0

T1

T2

Tin

T0

T1

T2

Tin

Tin

T1

T1

(a) (b)

Figure 4. Nested loop execution model (a) when there is no overlap between
successive outer loop iterations (synchronous model) and (b) when

successive outer loops overlap (asynchronous model). We show inner loops

that correspond to Input Stream Units, Computational Kernels, and Output
Stream Units.

D. Pipeline Memory

Pipelined communication between outer loops using arrays in the
generated C code (Figure 2a) is translated into pipeline memory in
the hardware accelerator (Figure 2b). Pipeline memory is
implemented using FPGA BRAMs, which are typically large enough
to accommodate data channels in which the producer loop generates
data using a different memory access pattern than the consumer loop.
Processing Elements that exchange data with pipeline memory do not
need a cache memory (e.g. PE for L1_0 in Figure 2b).

Pipeline memory also enables exploitation of pipeline-level
parallelism available in most OpenCL kernels. In fact, the LU
Decomposition OpenCL kernel uses the first and third pipeline stage
to pre-fetch and write-back data from/to the main memory,
respectively. This is an optimization step typically used by OpenCL
and CUDA software developers to place data in a local memory
before operating on them.

IV. COMPILER OPTIMIZATIONS AND HARDWARE

GENERATION

After the front-end OpenCL to C transformation (Section II), the
hardware generation flow generates the synthesizable HDL of the
accelerator. We extend the functionality of the LLVM compiler
infrastructure [6] to implement predication, code slicing and modulo
scheduling. Then, the compiler backend generates the final hardware
modules of the application-specific architecture, targeting the
templates of Figure 2b and Figure 3.

A. Compiler Optimizations

As a first pass, we apply predication to the body of each
innermost loop. Predication converts control dependences to data
dependences in the loop, transforming its body to a single basic
block. This is a prerequisite in order to apply modulo scheduling in
subsequent steps. The predicated code encapsulates both data transfer
operations and computations of the inner loop body. A code slicing
step partitions the code to three distinct kernels:

Input Streaming Kernel: This kernel consists of all the load
instructions and any instruction participating to the calculation of
load addresses. The kernel drives the hardware generation of the
Input Stream AGU (Sin-AGU module).

Output Streaming Kernel: Similar to the Input Streaming Kernel,
however for store instructions. It drives the hardware generation of
the Output Stream AGU (Sout-AGU module).

Computational Kernel: This is the core of the accelerator, and
comprises all instructions that receive input data from the Input
Stream Units and produce output data to the Output Stream Units.
Since data are streamed in and out of the data path in-order, a
pop/push instruction consumes/produces the next element without the
need to specify a memory address. The computational kernel drives
the hardware generation of the data path module.

The aim of code-slicing is to disassociate computation from data
management instructions and facilitate their overlap. Table I depicts
the pseudocode of code slicing for Input Streaming kernel and
Computational kernel. All loads and store instructions of the
Computational kernel and all their predecessors, i.e. instructions used
to compute memory addresses are allocated to the Input and Output
Streaming Units, respectively. In the Computational unit, these
instructions are substituted by pop and push instructions used to
stream data from the Input Streaming Unit to the Data Path and from
the Data Path to the Output Streaming Unit, respectively.

This asynchronous data flow model allows data to be fetched
ahead of computation, provided there are no inter-kernel data

dependencies besides pipeline dependencies. Most streaming and
data-parallel applications, which are the target of our methodology,
follow this pipelined model. However, some applications include
data-dependent memory accesses, as shown in the following code.

 for (i = 0; i <Ν; i++)

 c[i] = a[ptr[i]+1] +ptr[i]+1;

This results in a dependency of the Input Stream AGU from the
Computational kernel. To deal with such problems, we duplicate the
parts of the code used to compute data-dependent addresses as
necessary, when we perform code slicing. Referring to the example
code above, both the Input Stream AGU and the Computational
kernel perform the addition (ptr[i]+1) on the incoming data stream
ptr[i].

Finally, we use Swing Modulo Scheduling (SMS) [9] to generate a
schedule for each of the three kernels. The scheduler identifies an
iterative pattern of instructions and their assignment to functional
units (FUs), so that each iteration can be initiated before the previous
ones terminate. SMS creates software pipelines under the criterion of
minimizing the Initiation Interval (II). The latter is the main factor
affecting computational throughput. At the same time, SMS reduces
the lifetime of intermediate variables, thus alleviating register
pressure. Long variable lives result to larger ALU queues and may
lead to unnecessarily large data paths.

The inputs to the SMS scheduler are the instructions
corresponding to each kernel, as well as an XML-based hardware
model description of the target FPGA, denoting FPGA device
characteristics. The main parameters affecting the instantiation of
each FU are the supported instructions, the total bitwidth, its latency
and the number of pipeline stages.

Table I. Code slicing algorithm. Output streaming kernel generation is similar

to the input streaming kernel, with stores being the instructions of interest.

Input: Kernel code in LLVM assembly code
Output: Three distinct modified kernels in LLVM assembly code

// Input Streaming Kernel generation

get_sin_kernel(inner_loop, InstructionList *sin_list){

 sin_list = NULL;

 foreach (instruction It in inner_loop)

 if (It is a load instruction)

 add(It, sin_list);

 It = select any instruction from sin_list;

 while (It!= NULL) {

 foreach (predecessor(It) != NULL)

 add(predecessor(It), sin_list);

 It = select any (predecessor(It)!= NULL);

 }

 It = select any instruction from sin_list;

 while (It!= NULL) {

 pred = predicate(It);

 if (pred != NULL){

 foreach (predecessor(pred) != NULL)

 if (sin_list(predecessor(pred)) == NULL){

 pred = NULL; break; }

 if(pred != NULL)

 add(pred, sin_list);

 }}}

//Computational Kernel generation

get_comp_kernel(inner_loop, InstructionList *sin_list ,

 InstructionList *sout_list

 InstructionList *comp_list){

 comp_list = NULL;

 foreach (instruction It in inner_loop)

 if ((It not in sin_list) && (It not in sout_list))

 add(It, comp_list);

 if (predicate(It)!=NULL)

 add(predicate(It), comp_list);

}

B. Hardware Generation

Hardware generation is guided by the modulo-scheduled kernels
of the innermost loops and by inter-loop dependence analysis. A
synthesizable HDL module, similar to the module of Figure 2b is
generated. The remainder of this section discusses hardware
generation a) for a Processing Element (PE) and b) for a larger
accelerator that may consist of multiple PEs.

PE Hardware Generation. Given the modulo-scheduled
innermost loop kernels, the compiler backend generates modular
Verilog for the steady state body of the Computational kernel and the
Address Generation Units (AGU) kernels according to the template
of Figure 3. AGUs are also modulo-scheduled kernels, translated to
hardware in a similar way to data path (computational kernel)
generation, however they are typically simpler and have no tunnels.
The modules of the streaming unit communicate with each other
through FIFO channels. Each module absorbs tokens from its input
FIFOs and writes tokens to its output FIFOs, with a rate depending on
the amount of parallel logical paths provided to process its input
tokens, and the memory access pattern. When cache creation is
bypassed in streaming applications, the cache input channels are
directly connected to the “Sin-Align” module.

Note that no Verilog code is produced for the prologue and epilogue
of the modulo-schedule [9]. The generated hardware utilizes a valid
bits mechanism to facilitate the correct execution of the prologue and
epilogue. Each data token is tagged with a valid bit. An operation
produces valid output data only if both input data are valid. A pop
operation produces data with valid bits when data are available, and a
push operation accepts data only when they are valid. Since the only
source of valid data are pop operations, the rest of the data path
produces valid data at the correct loop iteration of the modulo-
schedule, thus implicitly implementing the prologue and epilogue of
the schedule.

Full Accelerator Hardware Generation. Multiple PEs can be
instantiated to execute in parallel (to exploit task-level parallelism),
or interconnected as producer-consumer (to exploit pipeline
parallelism). This capability also allows our toolchain to support
hardware generation for arbitrary loop nests and shapes, forming
arbitrary data- and control-flow DAGs. The compiler backend detects
data and control dependencies between the basic blocks allocated to
each PE. It performs memory access analysis to determine the
dependency edges between individual load/store instructions in each
basic block and guides the interconnection of PEs based on this
analysis.

For example, loops L0_2 and L0_3 of Figure 1 have no data
dependence and do not modify the same memory locations, because
L0_2 generates local buffer dia, whereas L0_3 generates local buffers
peri_row and peri_col. Therefore, PE(L0_2) and PE(L0_3) can execute
in parallel as shown in Figure 2b. On the other hand, loop L1_0 has to
wait for the termination of both loops L0_2 and L0_3 since it has a
triple data dependency on their outputs. The synchronization between
PE clusters is maintained through a set of finish- and ready-flag
signals (asynchronous mode only). This facilitates independent
execution rates for different PEs, and alleviates the need for lock step
execution between pipeline stages.

V. EXPERIMENTAL EVALUATION

A. Methodology

We tested the proposed methodology and architectural template
on the six OpenCL and C benchmarks outlined in Table II. The
OpenCL benchmarks come from the NVIDIA OpenCL SDK (2D-
DCT, MatMul), from the Rodinia [3] benchmark suite (LUD-P) or

were developed internally (CMC, Jacobi). All benchmarks were
automatically converted to structured C before hardware generation
as explained in Section II.B. Finally, LMC was extracted from the
AVS video decoder C reference code [13]. All but the two video
benchmarks contain FP operations. We used the LLVM compiler
infrastructure to implement the hardware generation passes. The tool
generates synthesizable Verilog, as well as a testbench for functional
simulation.

To evaluate the efficiency of the methodology and the potential
of the proposed architectural template, we used three different
hardware configurations (CA, CB and CC) to guide the module
scheduling of the Computational and I/O streaming kernels. These
configurations represent three levels of resource availability; CA is an
extreme configuration, which allocates just a single FU of each
required type (e.g. one adder, one multiplier, etc.) and one word I/O
bandwidth. On the contrary, CC allocates as many FUs as required to
achieve the minimum possible II for each loop. Barring any cyclic
dependences, this corresponds to II=1. The CB configuration is
selected differently for each application to achieve the average II
between the two extremes. For applications with little computation in
each loop (LUD-P and MatMul) the CB configuration proved similar
to CC. We executed the three configurations for the two execution
modes, synchronous and asynchronous, as described in Section III.C.
Moreover, we created both synchronous and asynchronous
configurations of each benchmark. Asynchronous configurations
allow the overlap of successive loop iterations, whereas synchronous
ones do not. It should be noted, however, that the data path and
streaming units are always, even in the synchronous configurations,
separate entities. Streaming units prefetch data, implementing the
load / store code slices and executing them at a certain distance from
the corresponding iterations of the computational slice. For the
evaluation of our design we used Xilinx Virtex-6 LX760 FPGA and
Xilinx ISE 12.4 toolset for synthesis, placement and routing.

B. Results

Table III summarizes the area results after the synthesis
performed for the six benchmarks of Table II. The general trend is
that area requirements increase from configuration A to configuration
C when the loop body encompasses enough computations to exploit
the additional resources. Asynchronous mode configurations tend to
consume more slices than synchronous ones. The additional hardware
implements the synchronization FIFOs of the PE modules and
synchronization flags for Local Buffers. The results show that this
hardware overhead is nearly the same in all configurations (CA, CB,
and CC). Dual-Port Block RAMs are used for both local buffers and
caches. LMC and CMC are the only benchmarks that utilize their
Block RAMs as cache, while the rest of the benchmarks use their
Block RAMs to implement local buffers for local arrays. In LUD-P,
each of the local arrays dia, peri-row, and peri-col (Figure 2a) is
allocated a Block RAM of 36Kbit. In all applications, the Block
RAMs are configured as 512 lines long, each being 64-bits wide. The
caches and Local Buffers work in simple-dual-port mode (one port
allocated for write-only and the second port allocated for read-only)
to allow pipelining the writes and reads.

Table II. Applications used for experimental evaluation. The table

summarizes the working set of each app., whether it uses caches or local
buffers (LB) and whether it performs integer (Int) or floating point (FP)

arithmetic.

App. Description Work. Set Caching FP/Int

LMC Luma Motion Compensation (Video) 16×16 Cache Int

CMC Chroma Motion Compensation 16×16 Cache Int

Jacobi Jacobian 1024×1024 LB FP

2D-DCT 2-dimensional DCT 640×480 LB FP

MatMul. Matrix Multiplication 128×128 LB FP

LUD-P LU Decomposition-Perimeter 128×128 LB FP

Figure 5 depicts the execution time (in ms) and clock rate for
each benchmark under different configurations. As expected, the
asynchronous mode implementations in all benchmarks achieve
higher computational rate and reduced execution time compared to
synchronous mode ones. Synchronous operation (without data
prefetching) frequently throttles the throughput of PE modules.
Asynchronous operation tends to become performance critical when
II is small. This is typically the case in the CC configuration. Faster
data paths and AGUs make better use of the control element (CE)
module executing the outer loops and preparing data used by the PE
modules in subsequent operations.

Our infrastructure exploits asynchrony, alleviating at the same
time the programmer burden of managing it. Compiler-time analysis
proved enough to identify dependences determine the necessary
synchronization flags and signals and produce an architecture that
executes independent parts of the algorithm in parallel and pipelines
dependent blocks to overlap the execution of subsequent iterations.
The performance of asynchronous operation may be limited by the
existence of data dependences between loops at different level of the
loop nest, i.e. when computations in the outer-loops (executed by CE
modules) are dependent on results produced from the innermost loops
(executed by PE modules). This is the case in LUD-P, where an outer
loop computation waits data to be written to a local buffer, performs
multiplication and division operations and only then initiates the next
iteration. Even in this case, the experimental results indicate that
asynchronous execution outperforms synchronous one.

VI. RELATED WORK

There is a large body of literature that deals with conversion of an
application written in a high level language to hardware. The PICO-
NPA system translates C functions written as perfectly nested loops
into a systolic array of accelerators [11]. An accelerator data path
consists of a network of FUs, static-registers that hold constant
values, and a set of inputs/outputs FIFOs. The list of FUs is allocated
initially according to cost-functions considering the instructions types
within the loop. A modulo scheduler schedules the loop instructions
on the allocated FUs. Trident [12] targets hardware which consists of
a list of separate blocks, each with its own state-machine and data
path. A global controller is built to transfer control between the
blocks.

The LegUp synthesis tool generates a hybrid architecture
comprising a MIPS processor and hardware accelerators to speed up
performance critical C code [2]. The hardware accelerator generation
utilizes conventional HLS techniques for resources allocation,
scheduling, and binding. A similar tool from Altera, C2H, selects C
functions to be mapped into hardware [7]. OpenRCL platform utilizes
OpenCL to schedule fine-grain parallel threads to a large number of
MIPS-like cores [8]. OpenRCL does not generate customized
hardware accelerators, although each MIPS core can be configured to
match application characteristics.

Jääskeläinen et al. introduce a compilation infrastructure based on
LLVM to generate transport-triggered architectures from OpenCL
codes in an approach seemingly similar to our work [4]. The

Table III. Area results for the six benchmarks as synthesized, placed and routed on Xilinx Virtex-6 LX760 device. The Virtex-6 LX760 device

 includes 118560 slices, 720 RAMB36 Block-RAMs, and 864 DSP48 modules.

DCT Exe.Time

0

5

10

15

20

25

30

35

40

45

50

Ca Cb Cc

ms

104

106

108

110

112

114

116

118

120

122

MHz
Asynch Synch

Asynch Synch
MatMul Exe.Time

0

30

60

90

120

150

180

210

240

Ca Cb Cc

ms

88

92

96

100

104

108

112

116

120

MHz
Asynch Synch
Asynch Synch Jacobi Exe.Time

0

20

40

60

80

100

120

140

Ca Cb Cc

ms

120

130

140

150

160

170

180

190

MHz
Asynch Synch

Asynch Synch

LUD-P Exe. Time

0

10

20

30

40

50

60

Ca Cb Cc

ms

96

98

100

102

104

106

108

MHz

Asynch Synch

Asynch Synch
CMC Exe. Time

0

0.005

0.01

0.015

0.02

0.025

Ca Cb Cc

ms

140

144

148

152

156

160

MHz

Asynch Synch

Asynch Synch
LMC Exe. Time

0

0.02

0.04

0.06

0.08

0.1

0.12

Ca Cb Cc

ms

96

99

102

105

108

111

114

MHz
Asynch Synch

Asynch Synch

(a)(a) (b)(b) (c)(c)

(f)(f)(e)(e)(d)(d)

Figure 5. Execution time and Clock Frequency achieved for the six benchmarks.

processors generated with their design flow are statically scheduled
VLIW-style architectures with up to hundreds of programmer visible
general-purpose registers. Parallelism at the granularity of work-
items is exploited in order to overlap memory access latency with
computations. They also introduce and use OpenCL extensions in
order to code performance-critical parts of the kernels. Our approach
is inherently different. We do not favor OpenCL extensions, but
perform extensive compile-time analysis instead, and granularity
coarsening in order to avoid putting additional burden to the
programmers. Our architectural template disassociates memory
transfers from computation, thus effectively overlapping them,
without necessitating support (and the associated overheads) for in-
flight operations from multiple work-items, in arbitrary points of their
execution, competing for the same FUs.

Our work is closer to FCUDA, a CAD tool that converts CUDA
kernels to synthesizable hardware [10]. A CUDA kernel implicitly
describes multiple CUDA threads that are organized in groups called
thread-blocks. The inner loop body comprises of function calls to
load data, perform computations and write data back. The generated
C code is annotated with AUTOPILOT directives indicating parallel
code regions as directives for the compiler.

The AutoPilot Compiler [14] generates RTL descriptions for each
function in a C program. Each function is translated into an FPGA
core. AutoPilot provides code directives to indicate parallel-code
regions, and further unroll inner-loops to run concurrently when no-
across iterations dependencies are detected. AutoPilot allocates all
arrays onto local BRAMs.

In LAURA [16] tool a Kahn Process Network (KPN)
specification of an application is converted into a network of
concurrent accelerators that communicate through FIFO buffers.
LAURA flow uses a library of predefined IP Cores to generate a
synthesizable VHLD description of the final architecture. An
accelerator is an one-to-one mapping of Kahn Virtual Process and
consists of an Execute Unit, Read Unit, Write Unit and Controller.
Chip Generator approach [17] proposes a tiled architecture comprised
of a network of Quads, where each Quad is comprised of four dual-
processor tiles with configurable memory blocks and programmable
controller.

Our work targets massively parallel programs written in OpenCL
and is based on the premise that the target platform is a pre-defined
template that can be configured according to the needs of the
application and the user requirements. Moreover, in our work, there is
a decoupling of data communication and computation explicitly
enforced by the code slicing technique used in the tool flow.

VII. CONCLUSION

In this paper we described a methodology to generate hardware

accelerators for complex, unmodified OpenCL kernels and C

functions. Our template based design methodology and automatic

hardware-generation infrastructure allows the hardware

implementation of arbitrary, imperfect loop nests and data- and

control-flow DAGs. The architectural template allows the

disassociation of computational operations and data-transfers,

effectively facilitating the overlap of computation and

communication. Moreover, it allows concurrent execution of multiple

loop iterations and exploits task- and pipeline parallelism. All the

aforementioned capabilities are based on compiler analysis of

memory access patterns, control- and data-dependencies and require

no programmer intervention. Equally importantly, the hardware-

generator can be tuned to match the available FPGA resources and

respect target performance requirement.

The experimental evaluation proved the potential of our

infrastructure to generate efficient hardware. Moreover, it quantified

the tradeoffs of different hardware configurations, as well as of

optimizations like the asynchronous execution of loop iterations.

REFERENCES

[1] Randy Allen and Ken Kennedy. “Optimizing Compilers for Modern
Architectures: A Dependence-Based Approach”. Morgan Kaufmann,
2002

[2] Andrew Canis et al. “LegUp: High-Level Synthesis for FPGA-Based
Processor/Accelerator Systems”. In Proc. of the IEEE International
Symposium on Field Programmable Gate Arrays (FPGA), pp. 33-36,
February 2011, Monterey, CA, U.S.A.

[3] Shuai Che, et al. “A Characterization of the Rodinia Benchmark Suite
with Comparison to Contemporary CMP Workloads”. In Proc. of the
IEEE International Symposium on Workload Characterization (IISWC),
pp. 44-54, October 2009, Austin, TX, U.S.A..

[4] Ekka Jääskeläinen, Carlos S. de La Lama, Pablo Huerta, Jarmo Takala.
“OpenCL-based Design Methodology for Application-Specific
Processors”. In Proc. of SAMOS X: Embedded Computer Systems:
Architectures, MOdeling, and Simulation, pp. 223-230, July 2010,
Samos, Greece.

[5] Khronos OpenCL Working Group. Editor: A. Munshi, “The OpenCL
Specification”, Version: 1.1 Document Revision: June 11, 2010.

[6] Lattner Chris and Adve Vikram. “LLVM: A Compilation Framework for
Lifelong Program Analysis Transformation”. In Proc. of the 2004
International Symposium on Code Generation and Optimization
(CGO'04), pp. 75-86, March 2004, Palo Alto, CA, U.S.A.

[7] David Lau, Orion Pritchard, Philippe Molson. “Automated Generation
of Hardware Accelerators with Direct Memory Access from ANSI/ISO
Standard C Functions”. In Proc. of the 2006 IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM), April 2006,
Napa Valley, CA, U.S.A.

[8] Mingjie Lin, Ilia Lebedev, and John Wawrzynek. “OpenRCL: Low-
Power High Performance Computing with Reconfigurable Devices”. In
Proc. of the 2010 International Conference on Field Programmable
Logic (FPL), pp. 458-463, September, 2010, Milano, Italy.

[9] Llosa Josep, Gonzalez Antonio, Ayguade Eduard, Valero Mateo. “Swing
Modulo Scheduling: A Lifetime-Sensitive Approach”. In Proc. of the
1996 Conference on Parallel Architectures and Compilation Techniques
(PACT ’96), pp. 80-90, 1996, Washington, DC, U.S.A.

[10] Alexandros Papakonstantinou et al. “FCUDA: Enabling efficient
compilation of CUDA kernels onto FPGAs”, In Proc. of the 7th
Symposium on Application Specific Processors, pp.35-42, July, 2009,
Boston, MA, U.S.A..

[11] Robert Schreiber et al. “PICO-NPA: High-Level Synthesis of
Nonprogrammable Hardware Accelerators”. Journal of VLSI Signal
Processing, Vol.31, pp.127-142, June 2002.

[12] Justin L. Tripp, Maya B. Gokhale, Kristopher D. Peterson. “Trident:
From High-Level Language to Hardware Circuitry”. IEEE Computer
Vol.40(3), pp.28-37, March 2007.

[13] Lu Yu, Feng Yi, Ding Jie, and Cixun Zhang. “Overview of AVS-video:
tools, performance and complexity”. In Proc. Visual Communications
and Image Processing (VCIP), pp.679-690, July 2005, Beijing, China.

[14] Z. Zhang et al. “AutoPilot: A Platform-Based ESL Synthesis System”.
In “High-Level Synthesis: From Algorithm to Digital Circuit”, Springer
Netherlands, 2008, www.autoesl.com.

[15] Konstantis Daloukas, Christos D. Antonopoulos, Nikolaos Bellas.
GLOpenCL: “OpenCL Support on Hardware- and Software-Managed
Cache Multicores”. In Proc. of 6th International Conference on High
Performance Embedded Architectures & Compilers (HiPEAC), pp. 24-
26, January, 2011, Heraklion, Greece.

[16] Claudiu Zissulescu, Todor Stefanov, Bart Kienhuis, and Ed Deprettere.
“LAURA: Leiden Architecture Research and Exploration Tool”. On
Proc. of the 13th Int. conference on Field Programmable Logic and
Applications (FPL’ 03), pp. 911-920, September 2003, Lisbon,
Portugal.

[17] Alex Solomatnikov et al. “Chip Multi-Processor Generator”, in Proc. of
the 44th Annual Design Automation Conference (DAC ’07), 2007, New
York, NY, U.S.A

http://spiedl.aip.org/vsearch/servlet/VerityServlet?KEY=SPIEDL&possible1=Yu%2C+Lu&possible1zone=author&maxdisp=25&smode=strresults&aqs=true
http://spiedl.aip.org/vsearch/servlet/VerityServlet?KEY=SPIEDL&possible1=Dong%2C+Jie&possible1zone=author&maxdisp=25&smode=strresults&aqs=true
http://www.autoesl.com/
http://inf-server.inf.uth.gr/~nbellas/publications/hipeac2011.pdf
http://inf-server.inf.uth.gr/~nbellas/publications/hipeac2011.pdf

