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Abstract— The problem of automatically generating hardware 

modules from high level application representations has been at 

the forefront of EDA research during the last few years. In this 

paper, we introduce a methodology to automatically synthesize 

hardware accelerators from OpenCL applications. OpenCL is a 

recent industry supported standard for writing programs that 

execute on multicore platforms and accelerators such as GPUs.  

Our methodology maps OpenCL kernels into hardware 

accelerators, based on architectural templates that explicitly 

decouple computation from memory communication whenever 

this is possible. The templates can be tuned to provide a wide 

repertoire of accelerators that meet user performance 

requirements and FPGA device characteristics. Furthermore, a 

set of high- and low-level compiler optimizations is applied to 

generate optimized accelerators. Our experimental evaluation 

shows that the generated accelerators are tuned efficiently to 

match the applications memory access pattern and computational 

complexity, and to achieve user performance requirements. An 

important objective of our tool is to expand the FPGA 

development user base to software engineers, thereby expanding 

the scope of FPGAs beyond the realm of hardware design.  

Keywords–OpenCL, FPGA, Electronic Design Automation, 

Reconfigurable Computing, Embedded Systems 

I.  INTRODUCTION  

The level of integration of modern field-programmable gate 
arrays (FPGAs) has advanced to a point where a complex System on 
Chip (SoC) can be mapped onto a single device. FPGA 
manufacturers and IP vendors now offer a plethora of peripherals, 
processor cores (both hard and soft), and fixed IP solutions. These 
improvements in capacities, as well as performance and cost, have 
made FPGAs an attractive solution for many embedded systems. At 
the same time, FPGAs are increasingly used as accelerators in the 
context of high performance computing. 

Apart from the improvements in hardware technology, tools 
facilitating the exploitation of FPGAs have also evolved. The current 
state of the art includes numerous industrial CAD tools [11], [7], [14] 
that provide automatic hardware generation from high level 
programming languages such as C/C++. 

The hardware / software partitioning on a heterogeneous platform 
with general purpose or embedded processors and FPGAs is not an 
easy undertaking. Ideally, systems should be fluid; the computational 
problem should be expressed using a high-level programming model, 
letting the compiler and run-time infrastructure to determine which 
functionality should be assigned to gates and which will be executed 
on the processors. This decision would consider computational 
requirements, data transfers and data caching capabilities of the 

complex memory hierarchies of heterogeneous systems, as well as 
performance, power and area-limitations. At the same time, in order 
to make the best use of existing code-base and programmer expertise, 
developers of the underlying compiler and run-time infrastructures 
should resist the temptation of introducing new, non-standard 
programming models or significant extensions to existing ones. 
Moreover, programmers should be allowed and encouraged to 
express their problems in an as platform-agnostic way as possible. 

In this paper we introduce a hardware-architecture accelerator 
template and algorithms to generate hardware accelerators from 
unmodified OpenCL kernels [5]. OpenCL is an industry supported 
programming standard for both homogeneous and heterogeneous 
parallel systems. It aims to be platform-independent, yet expressive 
enough to facilitate the efficient exploitation of parallelism at any 
granularity, and outline, in a general manner, data movement. An 
OpenCL kernel expresses parallelism at its finest granularity. The full 
computation is performed by mapping the kernel on a hierarchical 
geometry of logical threads. These features facilitate the use of 
OpenCL as a hardware-description language. 

Apart from the computational data path, our tool-chain generates 
dedicated hardware, called streaming units, to be used for data 
movement, so that communication is decoupled from computation. 
The streaming units assemble the input data and present them to the 
computation kernels as ordered packets. Similarly, results produced 
by the computation kernels are combined to chunks whenever 
possible and sent to the main memory. A cache may be instantiated if 
the memory access pattern analysis reveals reuse opportunities and 
temporal or spatial locality. Additionally, tunnel buffers are generated 
to exploit read-after-write reuse across loop iterations. 

Much like vector processing, stream programs hide latency, 
amortize instruction overhead and expose data parallelism by 
operating on large sets of data. This decoupling becomes possible 
through code slicing, a technique that automatically extracts the 
portions of the nested loop code responsible for address generation 
and data fetching/write back. Code slices are optimized and 
scheduled separately and are used to configure the streaming unit and 
the data path, respectively. This allows fully asynchronous operation 
and overlap across loop and iteration boundaries.  

Our infrastructure supports arbitrary loop nests and shapes. 
Different loops at the same level of a loop nest are implemented as 
distinct accelerators, which communicate and synchronize through 
local memory buffers. Similarly, we support barrier synchronization 
constructs within a computational kernel. The computational data 
path supports both standard and complex data types and all standard 
arithmetic operations, including integer and IEEE-compliant single- 
and double-precision floating point. 

We implement the developed algorithms as a backend in the 
LLVM based compiler infrastructure. We add preliminary passes 



before the hardware generation, such as predication, code-slicing and 
modulo scheduling. The proposed architecture-template exposes 
tunable parameters that can be manipulated to achieve the 
performance-cost requirements. The second phase includes functional 
units (FUs) allocation, tasks scheduling, memory mapping and 
control circuitry generation.  

The major contribution of this paper is a template-based hardware 
accelerator generation methodology which produces designs with 
explicitly decoupled memory access and computational units, starting 
from totally unmodified OpenCL code. We use code slicing 
techniques to generate and optimize these two units separately and 
exploit available bandwidth to the memory. The supported kernels 
may consist of arbitrary loop nests and shapes. They may contain 
synchronization and any kind of standard arithmetic operations. 
Finally, the operation of the streaming units and the computational 
data paths is fully asynchronous, even across the boundaries of 
different loops and loop nests. 

The rest of the paper is organized as follows: Section II 
introduces the OpenCL programming model and describes the 
compiler front-end that transforms OpenCL to equivalent, 
appropriately coarsened C code. Section 0 discusses in detail the 
architectural template used as a base for the auto-generated hardware. 

In Section IV we introduce the hardware generation compiler 
backend and several optimizations applied at this level. Section V 
evaluates our proposed methodology and the toolchain 
implementation. Finally, Sections VI and VII outline related work 
and conclude the paper, respectively. 

II. OPENCL FRONT END 

A. OpenCL Programming Model  

OpenCL [5] provides a parallel programming framework for a 
variety of devices, ranging from conventional Chip Multiprocessors 
(CMPs) to combinations of heterogeneous cores such as CMPs and 
GPUs. It is based on a platform model that comprises a host 
processor and a number of compute devices. Each device consists of a 
number of compute units, which is subsequently divided into a 
number of processing elements. An OpenCL application is organized 
as a host program and a number of kernel functions. The host part 
executes on the host processor and submits commands that refer to 
either the execution of a kernel function, or the manipulation of 
memory objects. Kernel functions contain the computational part of 
an application and are executed on the compute devices. 

The work corresponding to a single invocation of a kernel is 
called a work-item. Multiple work-items are organized in a work-
group. OpenCL allows for geometrical partitioning of the grid of 
computations to an N-dimensional space of work-groups, with each 
work-group being subsequently partitioned to an N-dimensional 
space of work-items, where 1 ≤ N ≤ 3. Once a command that refers to 
the execution of a kernel function is submitted, the host part of the 
application defines an abstract index space, with a maximum of six 
dimensions. A work-item is identified by a tuple of IDs, defining its 
position within the work group, as well as the position of the 
workgroup within the computation grid. Based on these IDs, a work-
item is able to access different data (SIMD style) or follow a different 
path of execution.  

The only synchronization that is provided by OpenCL is barrier-
type synchronization among the work-items inside the same work-
group. Every work-item inside a work-group must execute the barrier 
instruction before any work-item is allowed to continue execution 
beyond the barrier command. On the other hand, there is no 
synchronization mechanism among work-groups, which means that 
different work-groups can always be executed in parallel. 

We use an OpenCL kernel which implements LU Decomposition 
as a running example to explain the sequence of steps to generate the 
hardware accelerator (Figure 1). This kernel is part of the Rodinia 
benchmark suite [3]. The get_group_id(0) run-time function call 
returns the x-coordinate of the work-group in which the work-item 
calling the function belongs to in the computational grid. 
get_global_id(0) returns the unique global x-coordinate of the work-
item, whereas get_local_id(0) returns the x-coordinate of the work-
item within the work-group. LU Decomposition kernel consists of 
three code parts, separated by barrier instructions. All work-items that 
execute the first part of the code, pre-fetch a segment of the input 
array m to three local buffers and have to rendevouz to the first 
barrier before they proceed. The second part of the code performs the 
main LU Decomposition operation, and, likewise, forces all work-
items to synchronize to the second barrier, before proceeding to the 
final write-back to array m.  

B. Compiler transformations for OpenCL front end 

In order to enable efficient mapping of OpenCL kernel functions 
to the underlying platform, while at the same time taking into account 
hardware constraints, we apply a series of source-to-source 
transformations that collectively aim at coarsening the granularity of 
a kernel function. After this process, a kernel function represents the 

lud_perimeter( __global float *m, int m_d, int offset){
__local float dia[16][16];
__local float peri_row[16][16];
 __local float peri_col[16][16];   
int loc_x = get_local_id(0); 
int b_x    = get_group_id(0);
 
        if (loc_x < 16) {
           idx       =  loc_x ;   i0  = 0; i1 = 8;
           arroff  = arroff0 = offset * m_d + offset;
           arroff1 = arroff + (b_x + 1)<<4 + idx;
        }
        else{
           // similar settings
       }
       arr_offset = arroff0;
       for (i = i0; i < i1; i++) {
          dia[i][idx] = m[ array_offset + idx];
          array_offset += m_d;
       }
       array_offset = arroff1;
       for (i = 0; i < 16; i++) {
          if ( loc_x < 16)  peri_row[i][idx] = m[ array_offset+idx ];
          else  peri_col[i][idx] = m[ array_offset+idx ]; 
         array_offset += m_d;
      }

barrier(CLK_LOCAL_MEM_FENCE);

      for (i = 1; i < 16; i++) {
          for (j = 0; j < i; j++) {
            if ( loc_x < 16)                          
                peri_row[i][idx] -= dia[i][j] * peri_row[j][idx];        
            else
                  peri_col[idx][i] -= dia[j][i] * peri_col[idx][j] ;        
          }
          if( loc_x >= 16)
                 peri_col[idx][i] /= dia[i][i];
       }

barrier(CLK_LOCAL_MEM_FENCE);

       if ( loc_x < 16) {
           array_offset  = (offset + 1) * m_d + offset;
           for (i = 1; i < 16; i++) {
                m[array_offset + (b_x + 1) * 16 + idx] =  peri_row[i][idx];  
                array_offset  +=m_d;
           }
        } 
       else {
            array_offset  = (offset + (b_x + 1) <<4) *  m_d + offset;
           for (i = 0; i < 16; i++) {
               m[ array_offset + idx] = peri_col[i][idx];  
               array_offset  += m_d;
          }
        }
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Figure 1. OpenCL kernel for LU Decomposition with marked loops (Li_j) and 
basic blocks out of loops (Bi_j). In this kernel, a work-item (or thread) 
performs LU Decomposition for a 32x32 sub-matrix. Some parts of the code 
have been omitted for brevity. 



amount of computations that must be executed by each work-group in 
the abstract index space of the application. The main step in this 
series of transformations is logical thread serialization. Work-items 
inside a work-group can be executed in any sequence, provided that 
no synchronization operation is present inside a kernel function. 
Based on this observation, we serialize the execution of work-items 
by enclosing the instructions in the body of a kernel function into a 
triple nested loop, given that the maximum number of dimensions in 
the abstract index space within a workgroup is three. Each loop nest 
enumerates the work-items in the corresponding dimension, thus 
serializing their execution. 

The aforementioned transformation can lead to invalid execution 
of a kernel function if its body contains a synchronization operation. 
In presence of a barrier instruction, every work-item must execute 
that instruction before any work-item is allowed to continue its 
execution. However, in the modified kernel function, every work-
item finishes its execution before the next work-item is able to start. 
In order to ensure correct execution of the coarsened kernel function, 
the compiler applies two additional transformations, namely loop 
fission and variable privatization that facilitate logical thread 
serialization. 

Loop fission is applied in order to enforce the execution ordering 

that is required by a synchronization instruction. A triple-nested loop 

enforces synchronization among work-items before its first and after 

its last iteration. Based on this observation, we partition the 

instructions of a kernel function into blocks such that no barrier 

instruction is present inside a block. Afterwards, we enclose each 

block into a triple-nested loop. We follow the same approach for 

kernel functions with multiple exit points, i.e. when break, continue 

or return statements are present. We treat each of the aforementioned 

instructions as an additional synchronization point and apply loop 

fission around it. Figure 2a depicts the block structure of the modified 

kernel function for our running example. The kernel code separated 

by barrier instructions is enclosed in triple nested loops (T i), and the 

whole kernel code is enclosed into a doubly nested loop which spans 

the dimensions of the 2D array.  

The last step in this series of transformations is variable 

privatization [1]. Loop fission presents a complication for variables 

that are defined in one triple-nested loop construct and used in 

another. A work-item that defines the value of a variable in the first 

loop cannot use it in a subsequent loop, as its contents will be 

polluted by the execution of subsequent work-items, thus violating 

semantics. We conduct a live-variable analysis in order to identify 

such variables and we subsequently apply the variable privatization 

technique for each variable. After this transformation, each work-

item is provided with a private copy of such variables. Further details 

on the OpenCL compiler transformations are presented in [15].  

III. ARCHITECTURAL TEMPLATE 

The hardware generation tool-chain transforms the C code to 
synthesizable HDL, based on an architectural template that can be 
instantiated to match the performance requirements of the application 
and the available FPGA resources. Figure 3 outlines the architectural 
template of a PE which consists of the data path and the streaming 

unit, and is detailed in the following sections. Figure 2b shows the 
block diagram of the complete hardware accelerator that may consist 
of multiple PE modules. Consumer-producer communication of 
Figure 2a translates into FPGA BRAMs, which allow pipelined 
operation. Inner loops Li,j are mapped into Processing Elements of 
Figure 3 and outer loop computation and control are mapped into 
Control Elements CE. Arbitration mechanisms are used to regulate 
access to the shared interconnect network (a bus in our case). There is 
a very close correspondence among the OpenCL code in Figure 1, the 
program structure in Figure 2a and the generated hardware in Figure 
2b. The main code structures have been annotated using the same 
tags in all 3 figures.  

A. Data Path 

The data path implements the computations of the innermost 
loops (loops Li_j in Figure 1). It consists of a network of functional 
units (FUs) that produce and consume data elements using explicit 
input and output FIFO channels to the streaming units. Each FU is 
preceded by multiplexers, which – at each time-slot – direct data 
elements into the correct input-port. The multiplexers are driven by a 
periodic-count of the initiation interval (II). The control logic is 
distributed and spatially near the corresponding functional units, 
multiplexers, and buffers. The data path also includes static data-
registers that hold loop invariant data generated by outer loops. 
Tunnels are storage elements used to bypass the streaming unit and 
channel data-tokens stored (pushed) in earlier iterations to be used by 
loads (pops) in later iterations. Tunnels are generated wherever a load 
instruction has a read-after-write dependency with another store 
instruction with constant cross-iteration distance larger than or equal 
to one. Dependences with distance equal to zero are optimized away 
during the optimization passes. For example, tunnels would be 
generated to implement the cross-iteration distance of 1 in the 
following loop: 

                                     for (i = 0; i < N; i++)  

                                            a[i] = a[i-1] + b[i];  
The reconfigurable parameters of the data path are the type and 

bitwidth of functional units (ALUs for arithmetic and logical 
instructions, multipliers, shifters, etc.), the custom operation 
performed within a generic functional unit (e.g. only addition or 
subtraction for an ALU), the number and size of registers in the 
queues between functional units, and the bandwidth to and from the 
streaming unit. Both integer and IEEE compliant single/double 
precision floating point operations are supported by the tool flow. 
Multiple versions of each floating point operation are implemented in 
the context of an add-on library. Each implementation is tagged with 
its precision, its latency, as well as the number of its pipeline stages. 
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Figure 2. (a) Program structure of LU Decomposition kernel after coarsening 

the granularity to the equivalent of a work-group. (b) The block diagram of 
the automatically generated hardware accelerator for LU decomposition. 



At compile time, the system selects and integrates the appropriate 
implementation according to precision requirements and the target 
initiation interval. Section IV describes algorithmic aspects of the 
automatic generation of the hardware accelerator. 

B. Streaming Unit 

The streaming unit handles all issues regarding data transfers 
between the main memory and the data path. These include address 
calculation, data alignment, data ordering, and bus arbitration and 
interfacing. The streaming unit consists of one or more input and 
output stream modules. It is generated to match the memory access 
pattern of the specific application, the characteristics of the 
interconnect to main memory, and the bandwidth requirements of the 
data path.  

An Address Generation Unit (AGU) aggressively generates 
addresses for data prefetching (and write back), and feeds them to the 
Address Request Module. The tool flow guides the generation of the 
AGUs by first identifying the code slice responsible for data I/O, and 
then performing modulo scheduling on that code. The output of the 
code slice – and, therefore, the output of the generated AGU 
hardware – is an address sequence for all elements of the input 
stream. The architecture of the AGU is very similar to that of the data 
path, thus the same methodology is used to generate both.  

The Requests Generator module coalesces requests generated by 
Sin-AGU (the input data AGU) to the word width of the underlying 
memory interconnect (a PLB bus for Xilinx FPGAs), or to burst size 
if bursting is enabled. Moreover, it competes for bus accesses with 
the other stream units. The Requests Generator Module aims to 
eliminate redundant transactions on the memory interconnect. Before 
issuing a transaction request to the Arbiter, it checks if the addresses 
alias with previously requested ones, or if the requested data is 
available in the cache unit.  

The cache unit exploits temporal and spatial locality and reduces 
latency of memory accesses by saving recently loaded data for future 
reuse. The cache unit is implemented using dual-ported Block RAMs, 
so that accesses from the Arbiter and the Input Streams Alignment 
Unit Sin-Align can be served simultaneously. A cache line is equal to 
the bus-width. The cache unit is not instantiated if the compile-time 
analysis dictates that the input memory access pattern has limited 
reuse.  The input stream Alignment Unit retrieves data from the cache 

unit, or the data_in incoming data in case there is no cache, and 
presents them in-order to the data path. The output stream Alignment 
Unit aligns the output data tokens coming from the data path in a 
FIFO of data-lines of bus-width bytes. As soon as the FIFO is full or 
the incoming data token is out of lines, the Alignment Unit issues the 
write request to the Arbiter. 

Finally, the Arbiter module manages the issue of Read/Write 
transaction requests from the input/output streams towards the 
memory interconnect. The priority and ratio of serving read vs. write 
requests is determined at compile-time, driven by the memory access 
pattern analysis of the application. However an interrupt mechanism 
is also present to intervene whenever input or output queues are full, 
thus stalling the data path. 

C. Control Elements  

Control Elements are used to control and execute code of outer 
loops in a multilevel loop nest. For example, blocks CEi_j in   Figure 
2b show the Control Elements (CEi) for the LU Decomposition 
benchmark. Control Elements have a simpler, less optimized 
architecture, since outer loop code does not execute as frequently as 
inner loop code.   

A critical architectural optimization is interleaving the execution 
of multiple outer loop iterations. Figure 4a shows the conventional 
execution model, according to which the next iteration of an outer 
loop can be initiated only after the last iteration of the inner loop. The 
conventional model creates execution bubbles at the prologue and 
epilogue of each outer loop iteration (T0 and T2, respectively), during 
which computing resources remain idle, thus causing unnecessary 
execution delays.  

To ameliorate this inefficiency, we decouple initiations of 
innermost loops from outer loops and treat them as separated entities 
(Figure 4b). We should note that, in most cases, outer loops 
correspond to the abstract index space of a work group (triple nested 
loops Ti of Figure 2a). Since all work-items of a work-group in 
OpenCL are allowed to be executed concurrently, there is no data 
dependence among iterations of such outer loops. All local variables 
are implemented as FIFOs, thus the correct data are presented to each 
loop iteration. Updates to local variables from future iterations do not 
pollute the data presented to previous, concurrently executing 
iterations. Therefore, the execution of multiple loops and multiple 
iterations within each outer loop can be overlapped without violating 
data dependences.  
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Figure 3. Architectural template of a Processing Element (PE) module. 
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Figure 4. Nested loop execution model (a) when there is no overlap between 
successive outer loop iterations (synchronous model) and (b) when 

successive outer loops overlap (asynchronous model). We show inner loops 

that correspond to Input Stream Units, Computational Kernels, and Output 
Stream Units.  



D. Pipeline Memory 

Pipelined communication between outer loops using arrays in the 
generated C code (Figure 2a) is translated into pipeline memory in 
the hardware accelerator (Figure 2b). Pipeline memory is 
implemented using FPGA BRAMs, which are typically large enough 
to accommodate data channels in which the producer loop generates 
data using a different memory access pattern than the consumer loop. 
Processing Elements that exchange data with pipeline memory do not 
need a cache memory (e.g. PE for L1_0 in Figure 2b).  

Pipeline memory also enables exploitation of pipeline-level 
parallelism available in most OpenCL kernels. In fact, the LU 
Decomposition OpenCL kernel uses the first and third pipeline stage 
to pre-fetch and write-back data from/to the main memory, 
respectively. This is an optimization step typically used by OpenCL 
and CUDA software developers to place data in a local memory 
before operating on them.  

IV. COMPILER OPTIMIZATIONS AND HARDWARE 

GENERATION 

After the front-end OpenCL to C transformation (Section II), the 
hardware generation flow generates the synthesizable HDL of the 
accelerator. We extend the functionality of the LLVM compiler 
infrastructure [6] to implement predication, code slicing and modulo 
scheduling. Then, the compiler backend generates the final hardware 
modules of the application-specific architecture, targeting the 
templates of Figure 2b and Figure 3.  

A. Compiler Optimizations 

As a first pass, we apply predication to the body of each 
innermost loop. Predication converts control dependences to data 
dependences in the loop, transforming its body to a single basic 
block. This is a prerequisite in order to apply modulo scheduling in 
subsequent steps. The predicated code encapsulates both data transfer 
operations and computations of the inner loop body. A code slicing 
step partitions the code to three distinct kernels: 

Input Streaming Kernel: This kernel consists of all the load 
instructions and any instruction participating to the calculation of 
load addresses. The kernel drives the hardware generation of the 
Input Stream AGU (Sin-AGU module).  

Output Streaming Kernel: Similar to the Input Streaming Kernel, 
however for store instructions. It drives the hardware generation of 
the Output Stream AGU (Sout-AGU module). 

Computational Kernel: This is the core of the accelerator, and 
comprises all instructions that receive input data from the Input 
Stream Units and produce output data to the Output Stream Units. 
Since data are streamed in and out of the data path in-order, a 
pop/push instruction consumes/produces the next element without the 
need to specify a memory address. The computational kernel drives 
the hardware generation of the data path module. 

The aim of code-slicing is to disassociate computation from data 
management instructions and facilitate their overlap. Table I depicts 
the pseudocode of code slicing for Input Streaming kernel and 
Computational kernel. All loads and store instructions of the 
Computational kernel and all their predecessors, i.e. instructions used 
to compute memory addresses are allocated to the Input and Output 
Streaming Units, respectively. In the Computational unit, these 
instructions are substituted by pop and push instructions used to 
stream data from the Input Streaming Unit to the Data Path and from 
the Data Path to the Output Streaming Unit, respectively.   

This asynchronous data flow model allows data to be fetched 
ahead of computation, provided there are no inter-kernel data 

dependencies besides pipeline dependencies. Most streaming and 
data-parallel applications, which are the target of our methodology, 
follow this pipelined model. However, some applications include 
data-dependent memory accesses, as shown in the following code.  

   for (i = 0; i <Ν; i++) 

      c[i] = a[ptr[i]+1] +ptr[i]+1; 

This results in a dependency of the Input Stream AGU from the 
Computational kernel. To deal with such problems, we duplicate the 
parts of the code used to compute data-dependent addresses as 
necessary, when we perform code slicing. Referring to the example 
code above, both the Input Stream AGU and the Computational 
kernel perform the addition (ptr[i]+1) on the incoming data stream 
ptr[i].  

Finally, we use Swing Modulo Scheduling (SMS) [9] to generate a 
schedule for each of the three kernels. The scheduler identifies an 
iterative pattern of instructions and their assignment to functional 
units (FUs), so that each iteration can be initiated before the previous 
ones terminate. SMS creates software pipelines under the criterion of 
minimizing the Initiation Interval (II). The latter is the main factor 
affecting computational throughput. At the same time, SMS reduces 
the lifetime of intermediate variables, thus alleviating register 
pressure. Long variable lives result to larger ALU queues and may 
lead to unnecessarily large data paths.  

The inputs to the SMS scheduler are the instructions 
corresponding to each kernel, as well as an XML-based hardware 
model description of the target FPGA, denoting FPGA device 
characteristics. The main parameters affecting the instantiation of 
each FU are the supported instructions, the total bitwidth, its latency 
and the number of pipeline stages.  

Table I. Code slicing algorithm. Output streaming kernel generation is similar 

to the input streaming kernel, with stores being the instructions of interest.  

Input: Kernel code in LLVM assembly code 
Output: Three distinct modified kernels in LLVM assembly code 

// Input Streaming Kernel generation 

get_sin_kernel(inner_loop, InstructionList *sin_list){ 

  sin_list = NULL; 

  foreach (instruction It in inner_loop) 

      if (It is a load instruction)  

               add(It, sin_list); 

 

  It = select any instruction from sin_list; 

  while (It!= NULL) { 

      foreach (predecessor(It) != NULL) 

              add(predecessor(It), sin_list); 

      It = select any (predecessor(It)!= NULL); 

  } 

 

  It = select any instruction from sin_list; 

  while (It!= NULL) { 

      pred = predicate(It); 

      if (pred != NULL){ 

          foreach (predecessor(pred) != NULL) 

             if (sin_list(predecessor(pred)) == NULL){ 

                pred = NULL; break; } 

          if(pred != NULL) 

            add(pred, sin_list); 

  }}} 

//Computational Kernel generation 

get_comp_kernel(inner_loop,  InstructionList *sin_list , 

                     InstructionList *sout_list 

                     InstructionList *comp_list){ 

  comp_list = NULL; 

  foreach (instruction It in inner_loop) 

      if ((It not in sin_list) && (It not in sout_list)) 

          add(It, comp_list); 

          if (predicate(It)!=NULL) 

              add( predicate(It), comp_list);  

} 



B. Hardware Generation 

Hardware generation is guided by the modulo-scheduled kernels 
of the innermost loops and by inter-loop dependence analysis. A 
synthesizable HDL module, similar to the module of Figure 2b is 
generated. The remainder of this section discusses hardware 
generation a) for a Processing Element (PE) and b) for a larger 
accelerator that may consist of multiple PEs.  

PE Hardware Generation. Given the modulo-scheduled 
innermost loop kernels, the compiler backend generates modular 
Verilog for the steady state body of the Computational kernel and the 
Address Generation Units (AGU) kernels according to the template 
of Figure 3. AGUs are also modulo-scheduled kernels, translated to 
hardware in a similar way to data path (computational kernel) 
generation, however they are typically simpler and have no tunnels. 
The modules of the streaming unit communicate with each other 
through FIFO channels. Each module absorbs tokens from its input 
FIFOs and writes tokens to its output FIFOs, with a rate depending on 
the amount of parallel logical paths provided to process its input 
tokens, and the memory access pattern. When cache creation is 
bypassed in streaming applications, the cache input channels are 
directly connected to the “Sin-Align” module. 

Note that no Verilog code is produced for the prologue and epilogue 
of the modulo-schedule [9]. The generated hardware utilizes a valid 
bits mechanism to facilitate the correct execution of the prologue and 
epilogue. Each data token is tagged with a valid bit. An operation 
produces valid output data only if both input data are valid. A pop 
operation produces data with valid bits when data are available, and a 
push operation accepts data only when they are valid. Since the only 
source of valid data are pop operations, the rest of the data path 
produces valid data at the correct loop iteration of the modulo-
schedule, thus implicitly implementing the prologue and epilogue of 
the schedule.   

Full Accelerator Hardware Generation. Multiple PEs can be 
instantiated to execute in parallel (to exploit task-level parallelism), 
or interconnected as producer-consumer (to exploit pipeline 
parallelism). This capability also allows our toolchain to support 
hardware generation for arbitrary loop nests and shapes, forming 
arbitrary data- and control-flow DAGs. The compiler backend detects 
data and control dependencies between the basic blocks allocated to 
each PE. It performs memory access analysis to determine the 
dependency edges between individual load/store instructions in each 
basic block and guides the interconnection of PEs based on this 
analysis.  

For example, loops L0_2 and L0_3 of Figure 1 have no data 
dependence and do not modify the same memory locations, because 
L0_2  generates local buffer dia, whereas L0_3  generates local buffers 
peri_row and peri_col. Therefore, PE(L0_2) and PE(L0_3) can execute 
in parallel as shown in Figure 2b. On the other hand, loop L1_0 has to 
wait for the termination of both loops L0_2 and L0_3 since it has a 
triple data dependency on their outputs. The synchronization between 
PE clusters is maintained through a set of finish- and ready-flag 
signals (asynchronous mode only). This facilitates independent 
execution rates for different PEs, and alleviates the need for lock step 
execution between pipeline stages.  

V. EXPERIMENTAL EVALUATION 

A. Methodology 

We tested the proposed methodology and architectural template 
on the six OpenCL and C benchmarks outlined in Table II. The 
OpenCL benchmarks come from the NVIDIA OpenCL SDK (2D-
DCT, MatMul), from the Rodinia [3] benchmark suite (LUD-P) or 

were developed internally (CMC, Jacobi). All benchmarks were 
automatically converted to structured C before hardware generation 
as explained in Section II.B. Finally, LMC was extracted from the 
AVS video decoder C reference code [13]. All but the two video 
benchmarks contain FP operations. We used the LLVM compiler 
infrastructure to implement the hardware generation passes. The tool 
generates synthesizable Verilog, as well as a testbench for functional 
simulation.  

To evaluate the efficiency of the methodology and the potential 
of the proposed architectural template, we used three different 
hardware configurations (CA, CB and CC) to guide the module 
scheduling of the Computational and I/O streaming kernels. These 
configurations represent three levels of resource availability; CA is an 
extreme configuration, which allocates just a single FU of each 
required type (e.g. one adder, one multiplier, etc.) and one word I/O 
bandwidth. On the contrary, CC allocates as many FUs as required to 
achieve the minimum possible II for each loop. Barring any cyclic 
dependences, this corresponds to II=1. The CB configuration is 
selected differently for each application to achieve the average II 
between the two extremes. For applications with little computation in 
each loop (LUD-P and MatMul) the CB configuration proved similar 
to CC. We executed the three configurations for the two execution 
modes, synchronous and asynchronous, as described in Section III.C. 
Moreover, we created both synchronous and asynchronous 
configurations of each benchmark. Asynchronous configurations 
allow the overlap of successive loop iterations, whereas synchronous 
ones do not. It should be noted, however, that the data path and 
streaming units are always, even in the synchronous configurations, 
separate entities. Streaming units prefetch data, implementing the 
load / store code slices and executing them at a certain distance from 
the corresponding iterations of the computational slice. For the 
evaluation of our design we used Xilinx Virtex-6 LX760 FPGA and 
Xilinx ISE 12.4 toolset for synthesis, placement and routing.  

B. Results 

Table III summarizes the area results after the synthesis 
performed for the six benchmarks of Table II. The general trend is 
that area requirements increase from configuration A to configuration 
C when the loop body encompasses enough computations to exploit 
the additional resources. Asynchronous mode configurations tend to 
consume more slices than synchronous ones. The additional hardware 
implements the synchronization FIFOs of the PE modules and 
synchronization flags for Local Buffers. The results show that this 
hardware overhead is nearly the same in all configurations (CA, CB, 
and CC). Dual-Port Block RAMs are used for both local buffers and 
caches. LMC and CMC are the only benchmarks that utilize their 
Block RAMs as cache, while the rest of the benchmarks use their 
Block RAMs to implement local buffers for local arrays. In LUD-P, 
each of the local arrays dia, peri-row, and peri-col (Figure 2a) is 
allocated a Block RAM of 36Kbit. In all applications, the Block 
RAMs are configured as 512 lines long, each being 64-bits wide. The 
caches and Local Buffers work in simple-dual-port mode (one port 
allocated for write-only and the second port allocated for read-only) 
to allow pipelining the writes and reads. 

Table II. Applications used for experimental evaluation. The table 

summarizes the working set of each app., whether it uses caches or local 
buffers (LB) and whether it performs integer (Int) or floating point (FP) 

arithmetic. 

App. Description Work. Set Caching FP/Int 

LMC Luma Motion Compensation (Video) 16×16 Cache Int 

CMC Chroma Motion Compensation  16×16 Cache Int 

Jacobi Jacobian 1024×1024 LB FP 

2D-DCT 2-dimensional DCT 640×480 LB FP 

MatMul. Matrix Multiplication 128×128 LB FP 

LUD-P LU Decomposition-Perimeter 128×128 LB FP 



Figure 5 depicts the execution time (in ms) and clock rate for 
each benchmark under different configurations. As expected, the 
asynchronous mode implementations in all benchmarks achieve 
higher computational rate and reduced execution time compared to 
synchronous mode ones. Synchronous operation (without data 
prefetching) frequently throttles the throughput of PE modules. 
Asynchronous operation tends to become performance critical when 
II is small. This is typically the case in the CC configuration. Faster 
data paths and AGUs make better use of the control element (CE) 
module executing the outer loops and preparing data used by the PE 
modules in subsequent operations.  

Our infrastructure exploits asynchrony, alleviating at the same 
time the programmer burden of managing it. Compiler-time analysis 
proved enough to identify dependences determine the necessary 
synchronization flags and signals and produce an architecture that 
executes independent parts of the algorithm in parallel and pipelines 
dependent blocks to overlap the execution of subsequent iterations. 
The performance of asynchronous operation may be limited by the 
existence of data dependences between loops at different level of the 
loop nest, i.e. when computations in the outer-loops (executed by CE 
modules) are dependent on results produced from the innermost loops 
(executed by PE modules). This is the case in LUD-P, where an outer 
loop computation waits data to be written to a local buffer, performs 
multiplication and division operations and only then initiates the next 
iteration. Even in this case, the experimental results indicate that 
asynchronous execution outperforms synchronous one. 

VI. RELATED WORK 

There is a large body of literature that deals with conversion of an 
application written in a high level language to hardware. The PICO-
NPA system translates C functions written as perfectly nested loops 
into a systolic array of accelerators [11]. An accelerator data path 
consists of a network of FUs, static-registers that hold constant 
values, and a set of inputs/outputs FIFOs. The list of FUs is allocated 
initially according to cost-functions considering the instructions types 
within the loop. A modulo scheduler schedules the loop instructions 
on the allocated FUs. Trident [12] targets hardware which consists of 
a list of separate blocks, each with its own state-machine and data 
path. A global controller is built to transfer control between the 
blocks.  

The LegUp synthesis tool generates a hybrid architecture 
comprising a MIPS processor and hardware accelerators to speed up 
performance critical C code [2]. The hardware accelerator generation 
utilizes conventional HLS techniques for resources allocation, 
scheduling, and binding. A similar tool from Altera, C2H, selects C 
functions to be mapped into hardware [7]. OpenRCL platform utilizes 
OpenCL to schedule fine-grain parallel threads to a large number of 
MIPS-like cores [8]. OpenRCL does not generate customized 
hardware accelerators, although each MIPS core can be configured to 
match application characteristics. 

Jääskeläinen et al. introduce a compilation infrastructure based on 
LLVM to generate transport-triggered architectures from OpenCL 
codes in an approach seemingly similar to our work [4]. The 

Table III.  Area results for the six benchmarks as synthesized, placed and routed on Xilinx Virtex-6 LX760 device. The Virtex-6 LX760 device 

 includes 118560 slices, 720 RAMB36 Block-RAMs, and 864 DSP48 modules. 
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Figure 5. Execution time and Clock Frequency achieved for the six benchmarks. 



processors generated with their design flow are statically scheduled 
VLIW-style architectures with up to hundreds of programmer visible 
general-purpose registers. Parallelism at the granularity of work-
items is exploited in order to overlap memory access latency with 
computations. They also introduce and use OpenCL extensions in 
order to code performance-critical parts of the kernels. Our approach 
is inherently different. We do not favor OpenCL extensions, but 
perform extensive compile-time analysis instead, and granularity 
coarsening in order to avoid putting additional burden to the 
programmers. Our architectural template disassociates memory 
transfers from computation, thus effectively overlapping them, 
without necessitating support (and the associated overheads) for in-
flight operations from multiple work-items, in arbitrary points of their 
execution, competing for the same FUs.  

Our work is closer to FCUDA, a CAD tool that converts CUDA 
kernels to synthesizable hardware [10]. A CUDA kernel implicitly 
describes multiple CUDA threads that are organized in groups called 
thread-blocks. The inner loop body comprises of function calls to 
load data, perform computations and write data back. The generated 
C code is annotated with AUTOPILOT directives indicating parallel 
code regions as directives for the compiler.  

The AutoPilot Compiler [14] generates RTL descriptions for each 
function in a C program. Each function is translated into an FPGA 
core. AutoPilot provides code directives to indicate parallel-code 
regions, and further unroll inner-loops to run concurrently when no-
across iterations dependencies are detected. AutoPilot allocates all 
arrays onto local BRAMs. 

In LAURA [16] tool a Kahn Process Network (KPN) 
specification of an application is converted into a network of 
concurrent accelerators that communicate through FIFO buffers. 
LAURA flow uses a library of predefined IP Cores to generate a 
synthesizable VHLD description of the final architecture. An 
accelerator is an one-to-one mapping of Kahn Virtual Process and  
consists of an Execute Unit, Read Unit, Write Unit and Controller. 
Chip Generator approach [17] proposes a tiled architecture comprised 
of a network of Quads, where each Quad is comprised of four dual-
processor tiles with configurable memory blocks and programmable 
controller. 

Our work targets massively parallel programs written in OpenCL 
and is based on the premise that the target platform is a pre-defined 
template that can be configured according to the needs of the 
application and the user requirements. Moreover, in our work, there is 
a decoupling of data communication and computation explicitly 
enforced by the code slicing technique used in the tool flow. 

VII. CONCLUSION  

In this paper we described a methodology to generate hardware 

accelerators for complex, unmodified OpenCL kernels and C 

functions. Our template based design methodology and automatic 

hardware-generation infrastructure allows the hardware 

implementation of arbitrary, imperfect loop nests and data- and 

control-flow DAGs. The architectural template allows the 

disassociation of computational operations and data-transfers, 

effectively facilitating the overlap of computation and 

communication. Moreover, it allows concurrent execution of multiple 

loop iterations and exploits task- and pipeline parallelism. All the 

aforementioned capabilities are based on compiler analysis of 

memory access patterns, control- and data-dependencies and require 

no programmer intervention. Equally importantly, the hardware-

generator can be tuned to match the available FPGA resources and 

respect target performance requirement. 

The experimental evaluation proved the potential of our 

infrastructure to generate efficient hardware. Moreover, it quantified 

the tradeoffs of different hardware configurations, as well as of 

optimizations like the asynchronous execution of loop iterations.  
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