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Abstract

We present novel algorithms for efficient scheduling of
synchronizing threads on multiprogrammed SMPs. The al-
gorithms are based on intra-application priority control of
synchronizing threads. We refer to such algorithms with
the term ”informing algorithms”. Prerequisite for inform-
ing algorithms is the use of an efficient communication
medium between the user- and kernel-level and the exis-
tence of in-kernel mechanisms that allow the applications
to cooperate with the OS scheduler. The applications are
given the opportunity to influence, in a non-intrusive man-
ner, the scheduling decisions concerning their threads. We
compare the performance of our informing algorithms with
the performance of corresponding scheduler-oblivious al-
gorithms under multiprogramming. We experimented on
a small-scale, Intel x86-based SMP, running Linux, using
both microbenchmarks and applications from the Splash-2
benchmark suite. The results substantiate the superiority of
our approach and indicate that the philosophy of informing
algorithms may be applicable in a wide range of algorithms
and architectures.

1 Introduction

A typical class of applications suffering severe perfor-
mance degradation in the presence of multiprogramming
are multithreaded applications with frequently synchro-
nizing threads [6]. It has been shown that the problem
of poor performance under multiprogramming originates
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mainly from the poor scheduling of synchronizing threads
on physical processors [4], [6]. Idling time at synchroniza-
tion points may constitute a significant fraction of execu-
tion time if one or more of the following conditions hold:
a) a thread is preempted while holding a lock, b) a pre-
empted lock-waiter thread remains preempted after it has
been granted the lock by the previous holder, or c) a thread
actively waits for other threads to reach a specific point (i.e.
a barrier), while some of these threads are preempted.

The performance degradation is worse for synchroniza-
tion algorithms designed to provide performance scalability
on a large number of processors or fair arbitration between
contending processors [6]. These algorithms introduce - ei-
ther implicitly or explicitly - a strict ordering of synchro-
nization operations performed by different threads. How-
ever, this ordering generally differs from the order threads
are scheduled on physical processors by the OS scheduler.

The problem of scheduling synchronizing threads in a
multiprogramming environment has not been adequately
addressed, if at all, in contemporary commercial SMP
schedulers for small- and medium-scale systems. In this
paper, we introduce a kernel-level infrastructure of general
applicability. This infrastructure arms multithreaded appli-
cations with mechanisms that allow them to control, in a
non-intrusive manner, the execution of their own threads.
In particular, each application assigns user-level priorities to
its threads. These priorities reflect the importance of each
thread for the progress of the application. The OS sched-
uler, on its turn, assigns physical processors to applications
based on the scheduling policy imposed by the operating
system designers. The priorities provided by the applica-
tions are taken into account during the allocation of physical
processors to specific threads. The efficient communication
between applications and the OS scheduler is facilitated by
the use of memory pages, shared between user- and kernel-
level [11], [12]. The user-level provided priorities have ap-



plication wide scope, thus they do not interfere with OS
scheduling decisions concerning other applications. This
guarantees that the fairness imposed by the OS scheduler
is not affected. Moreover, this approach makes kernel-level
mechanisms independent of and oblivious to the algorithm
using them. The mechanisms can thus be used by diverse
applications, provided that the latter are capable of quan-
tifying the importance of each thread for the progress of
the application. Taking advantage of this property, we have
implemented six different informing synchronization algo-
rithms using a common set of kernel mechanisms. Our al-
gorithms can be used for intra-application synchronization
only. Extending them to support inter-application synchro-
nization would harm the non-intrusiveness property, given
the fact that applications would be allowed to alter the user-
level priorities of threads belonging to other applications.

The character of the informing synchronization algo-
rithms presented in this paper is proactive. They guarantee
that no lock-waiters or barrier-waiters will be granted a pro-
cessor while there exist, in the same application, preempted
lock-holders or threads that have not reached the barrier yet.

The target operating system in this study is Linux. We
have modified the Linux kernel (version 2.2.15) in order to
provide the general mechanisms needed by informing al-
gorithms. Both informing synchronization algorithms and
the corresponding scheduler-oblivious versions are imple-
mented and provided as a run-time synchronization library.

The rest of this paper is organized as follows. Section 2
discusses related work. In section 3 we present details on
the kernel-level design and implementation. In section 4 we
describe the novel informing algorithms and their character-
istics. In section 5 we present an experimental evaluation of
both the novel algorithms and the corresponding scheduler-
oblivious counterparts on an Intel x86-based SMP and sec-
tion 6 concludes the paper.

2 Related Work

The performance degradation suffered by parallel pro-
grams with frequent synchronization among their threads,
especially in the presence of multiprogramming, has been
identified by several researchers in the past. In this section,
we outline some of the proposed solutions.

The decision on whether a thread that waits at a synchro-
nization point should actively spin, competitively spin (spin
for a certain time-window and the block) or immediately
block has been a hot-spot in research. In [5], A. Karlin et al.
reach the conclusion that adaptive competitive spinning al-
gorithms generally outperform static competitive spinning
ones. The latter are considered, in their turn, better than
actively spinning and immediate blocking algorithms. The
evaluation has been carried out on the Firefly Multiproces-
sor. However, in [7] B. Lim and A. Agarwal reach a differ-

ent conclusion. Their experiments on the Alewife multipro-
cessor show that immediately blocking always sustains per-
formance close to the best among all strategies compared.
The contradiction of results is attributed to the fact that the
context switch on Alewife is significantly faster than on
Firefly, which benefits immediate blocking algorithms.

Another approach is the use of non-blocking synchro-
nization algorithms. Such algorithms have by definition no
critical sections, during which a thread preemption might
cause performance problems. They are easily applicable
to simple data structures and have proven to be quite ef-
ficient under multiprogramming [10]. Unfortunately, they
are based on universal atomic primitives which can atomi-
cally change the contents of short (typically up to 64 bits),
continuous memory areas. If the data structure is not that
short, more complex algorithms must be used. These algo-
rithms involve copying of the contents of the data structure
and are generally inefficient.

There has been work in the past to provide synchroniza-
tion algorithms that cooperate with the OS scheduler. In
[6] L. Kontothanassis et al. present scheduler-conscious ver-
sions for a variety of algorithms. They assume that a thread
can influence the scheduler enough to prevent itself from
being preempted in a short critical section. It is the applica-
tion’s responsibility to cope with the decisions of the sched-
uler over longer periods of time. However, the application
is given - even for short time periods - the opportunity to in-
fluence scheduling decisions, possibly at the expense of the
other applications. Moreover, the scheduler-conscious al-
gorithms alter basic properties of their scheduler-oblivious
counterparts. For example, they do not preserve the FCFS
property of several mutual exclusion algorithms.

In [3] D. Black proposes a priority scheme with user-
level provided priorities for threads that contend for mutual
exclusive access to atomic regions. These priorities have
global scope, among all threads in the system and their role
is to a posteriori confront with inopportune preemptions of
lock-holder processes. The global scope of user-level pro-
vided priorities is unacceptable in a real, multiuser operat-
ing system, because it provides a means of overriding the
standard scheduling policy thus harming fairness. Another
similar a posteriori approach is presented by T. Anderson
et al. in [1]. If a thread executing in a critical section is
found preempted, it is resumed - via a user-level context
switch - and executed until exiting the critical section. Fi-
nally, in [8] B. Marsh et al. introduce a ”two minute” warn-
ing mechanism, used to avoid inopportune preemptions of
threads executing code in a critical section. The threads
are informed that they are going to be preempted and are
granted a ”grace” time period to exit the critical section.
Barrier synchronization is not dealt with in any of the three
previous approaches.

The Sun Solaris operating system supports a mechanism



which allows a thread to provide hints to the OS sched-
uler that it should, if possible, not be preempted [14]. This
mechanism can be used for the implementation of weak
preemption-safe locks. The Cellular IRIX [13] and Linux
operating systems, on the other hand, provide competitive
spinning synchronization primitives.

3 Kernel-Level Design and Implementation

The kernel-level implementation has been carried out in
the 2.2.15 Linux kernel and originates from our previous
work on the same operating system [11]. The applications
declare that they are going to use the mechanisms we intro-
duce via a specific system call at the beginning of their ex-
ecution life. Kernel mechanisms are based on the existence
and use of an efficient user- / kernel-level bidirectional com-
munication interface (Shared Arena). The Shared Arena is
implemented as a shared memory page between each appli-
cation in the system that uses our mechanisms and the OS
kernel. This implementation has the advantage of minimal
communication overhead, equal to that of simple memory
reads and writes. The applications use the Shared Arena in
order to assign priorities to their threads. The kernel, on
its turn, uses it to inform the applications on the number of
processors allocated to them at any given time and on the
exact state of their threads (running, preempted).

At the end of each time quantum or when a processor
is idling, the operating system scheduler selects the most
appropriate thread to be executed on that processor. This
step of the selection process enforces the OS scheduling
rules. If the selected thread belongs to an application which
uses our mechanisms, a second level scheduler is invoked.
That scheduler selects the thread with the highest priority,
as specified from user-level, among the threads of the same
application and allocates the processor to it. This policy
guarantees that each application will be granted exactly the
execution time it would be granted without our kernel ex-
tensions thus preserving fairness among applications. At
the same time, it allows applications to use their cpu-time
in a more effective way.

Every decrease of the user-level priority of a thread may
result in a situation where higher priority threads are pre-
empted. If this is the case, the thread hands off its proces-
sor in favor of the higher priority thread. This is achieved
by executing a system call which practically initiates a new
second level scheduling for the specific application.

The results of all scheduling decisions that affect appli-
cations using our mechanisms are communicated immedi-
ately to the user-level via updates of the values of the ap-
propriate fields in the Shared Arena.

The user-level priority control is clearly non-intrusive, in
the sense that an application can not affect the scheduling of
other applications in the system. Furthermore, the mecha-

nisms are absolutely independent of the algorithms used at
user-level. The OS kernel is not provided with any infor-
mation and does not make any assumptions on the nature of
the algorithm. This, makes our kernel mechanisms usable
by a multitude of informing algorithms.

4 The Implementation of Informing Syn-
chronization Algorithms

The novel synchronization algorithms we present take
advantage of the kernel mechanisms described in section 3.
They provide hints to the OS scheduler, via priorities as-
signed to threads from user-level, in order to improve the
scheduling of synchronizing threads. The algorithms are
representative of two of the most frequently used synchro-
nization schemes in shared memory systems: mutual exclu-
sion and barrier synchronization. We have implemented a
simple test and set lock with local spinning (TTAS Lock),
an array based queueing lock (Queue Lock), a variant of
the list based queueing lock proposed by Mellor-Crummey
and Scott (MCS Lock) [9], a ticket lock (Ticket Lock), a
centralized incremental barrier (Incremental Barrier) and
a tree barrier based on the algorithm proposed by Mellor-
Crummey and Scott (MCS Barrier) [9].

The organization of the priority classes is based on the
following rules: a) A thread that holds a lock can not be
preempted in favor of any other thread. b) A thread that
waits for a lock which is currently owned by another thread
is not executed at the expense of a thread not participating in
synchronization operations. The thread that waits for a lock
will not execute any useful computation, while a thread that
is not synchronizing with others probably will. The only
exception are lock-waiters which will be granted the lock
next, in algorithms that pose an ordering of lock acquires.
In such cases, processor utilization can be sacrificed during
short periods, in order to ensure that the thread will pro-
ceed to the execution inside the critical region as soon as it
is handed the lock. c) A thread that has reached a barrier
and waits for its peer threads to reach the barrier as well, is
assigned lower priority than threads that do not participate
in synchronization operations. A run-time system can not
assume whether threads that currently execute computation
without synchronizing will, at the end of the computation
phase, participate in a barrier or not. This means that the
priority of the latter can not be increased. The only possi-
ble alternative is to decrease the priority of threads that have
already reached the barrier.

In our implementation we define and use five priority
classes. The basic priority (RUNNING PRIORITY) is the
priority of threads that do not currently participate in any
synchronization operation. The highest priority is assigned
to threads that hold a lock (LOCK HOLDER PRIORITY).
Threads that wait for a lock constitute the priority class



below basic priority (LOCK WAITER PRIORITY). If a
mutual exclusion synchronization algorithm hands the
lock to waiter threads in deterministic order, the pri-
ority of the thread to be granted the lock next is set
to LOCK IMMEDIATE WAITER PRIORITY. This priority
class is lower than LOCK HOLDER PRIORITY and equal
to, or higher than RUNNING PRIORITY. Finally, threads
that have reached a barrier and wait for their peers to reach
the barrier too, constitute the weakest priority class (BAR-
RIER WAITER PRIORITY).

Right before participating in a synchronization operation
each thread saves the value of its user-level provided prior-
ity. The saved value is used to restore the priority right after
the synchronization operation is over. This technique allows
threads to participate in nested levels of synchronization.

The assignment of user-level provided priorities to
threads is achieved, in most cases, with simple write in-
structions. However, a goal of our design is to eliminate
the possibility of allowing, at any time snapshot, the prior-
ity assignment to be inconsistent with the actual status of the
threads, in the context of synchronization operations. This
might happen due to races, if two or more threads attempt,
at the same time, to change a user-level priority. Such an in-
opportune priority assignment could result in performance
inferior than the performance sustained by non-informing
synchronization algorithms. In order to eliminate this pos-
sibility, we have identified the cases in which a race might
occur and used atomic instructions for the priority update.
In all cases, if there are contending threads they are exactly
two and the atomic instruction is executed only once. One
of the contenders will succeed and the other will fail and
abort the operation. This means that the additional over-
head on the memory subsystem is negligible.

Beyond informing algorithms, we have implemented two
versions of scheduler-oblivious algorithms: an active spin-
ning and an immediate blocking one. As mentioned in sec-
tion 2, the decision whether a thread waiting at a synchro-
nization point should actively spin, competitively spin or
block is crucial for performance. Our algorithms make an
optimal spin vs. block decision: a thread will block only
if the application is granted less processors than its threads
and there is a preempted thread of higher user-level priority.
Competitive spinning strategies have not been evaluated.
The context switch overhead for the system we have exper-
imented on ranges from 3 to 22 �sec, so we expect the per-
formance differentiation among competitive spinning and
immediate blocking algorithms to be marginal [7].

It must be noted that informing algorithms preserve - in
contradiction with the scheduler-conscious algorithms of L.
Kontothanassis et al. [6] - the main characteristics of their
simple counterparts (time complexity, memory and network
overhead, FCFS service of requests etc.). Their memory re-
quirements are generally higher that those of simple algo-

rithms. However, they are - with the exceptions of Ticket
Lock and Incremental Barrier - of the same complexity in
respect to the number of synchronizing threads.

In the following subsection we describe the character-
istics and implementation of the informing MCS Lock al-
gorithm. The presentation of the remaining five informing
synchronization algorithms, which has been omitted due to
space limitations, can be found in [2].

4.1 MCS Lock

The MCS lock is a list based queueing lock, proposed by
J. Mellor-Crummey and M. Scott [9]. It guarantees FIFO
ordering of lock acquisitions. All spins are executed on
locally-accessible flag variables only. It works equally well
- in terms of network overhead - on machines with and with-
out coherent caches. Each lock requires memory space pro-
portional to the number of contending threads.

Each thread that attempts to acquire the lock inserts a
node, which represents the thread, to the tail of a queue
of waiting threads. The next field of the node, which
is a pointer to the next node in the queue must be initial-
ized to NULL prior to the insertion. The node insertion is
achieved with an atomic fetch and store instruction.
If the queue was previously empty, the thread is the lock-
holder and proceeds to the critical section. If this was not
the case, the thread sets the locked field of its node to true,
to indicate that it is a lock-waiter and makes the next field
of its predecessor node point to its node. The predecessor
is the node returned by the atomic fetch and store in-
struction. Then, the thread waits (either spinning, or block-
ing) for its next field to become false.

In order to release the lock, the lock-holder initially
checks if its node’s next field points to a successor node.
If there in no successor set, the lock-holder tries to atom-
ically (compare and swap) set the tail of the queue to
NULL. A success completes the lock release. A failure im-
plies the existence of a thread which has inserted its node
at the tail of the queue, but has not updated the next field
of its predecessor yet. In this case, the lock-holder thread
waits for the update to complete and then sets the locked
field of the successor to false. If the initial examination of
the next field indicates the existence of a successor, its
locked field is simply set to false.

The pseudocode of an informing MCS lock is depicted
in figure 1. The node of each thread is augmented with
two additional fields: the thread identifier (id) and the
field used for saving the initial user-level priority (pre-
vious priority). A thread that attempts to acquire
the lock initially saves its id and user-level priority to the
corresponding fields of its node (line 5). It then sets the
pointer to the next node equal to NULL (line 6) and in-
serts the node to the tail of the queue executing an atomic



1 mcs_lock_init(lock_queue) {
2 Initialize the head of lock_queue to NULL;
3 }

4 mcs_lock(lock_queue, my_node, my_id) {
5 Save both the previous user-level priority of my_id thread and

my_id to my_node.previous_priority and my_node.id;
6 Set my_node.next = NULL
7 Execute a fetch_and_store atomic instruction to insert my_node

to the tail of the lock_queue and get the previous value of the
tail (predecessor);

8 If the predecessor is not NULL {
9 Set my_node.locked = true to indicate that this thread is

not the lock owner;
10 If the predecessor is the lock owner {
11 Set the user-level priority of this thread to

LOCK_IMMEDIATE_WAITER_PRIORITY;
12 Put my_node in the queue after predecessor

(predecessor.next=my_node);
13 }
14 else {
15 Put my_node in the queue after predecessor;
16 If the thread did not in the meantime become the lock

owner, try to atomically (compare_and_swap) set its
user-level priority to LOCK_WAITER_PRIORITY;

17 }
18 While this thread is not the lock owner

(my_node.locked = true){
19 If the processors granted by the scheduler are less than

the threads of the application and if there is a
preempted thread with higher user-level priority than
this thread, hand off the processor to the higher
user-level priority thread;

20 }
21 }
22 This thread is now the lock owner: Set its user-level priority

to LOCK_HOLDER_PRIORITY;
23 If there is a successor of this thread’s node in the lock_queue

(my_node->next <> NULL) {
24 Set its user-level priority to LOCK_IMMEDIATE_WAITER_PRIORITY;
25 }
26 }

27 mcs_unlock(lock_queue, my_id) {
28 If there is no successor node in the lock_queue

(my_node.next = NULL) {
29 If we are successful at atomically (compare_and_swap) changing

the lock_queue tail from pointing to my_node to NULL {
30 Restore the user-level priority of this thread using the

value previously saved in my_node;
31 If the processors granted by the scheduler are less than

the threads of the application and if there is a preempted
thread with higher user-level priority than this thread,
hand off the processor to the higher user-level priority
thread;

32 Return;
33 }
34 else {
35 Some node is trying to enter the queue as our successor.

Wait for it. In the meantime, set the user-level priority
of this thread to LOCK_IMMEDIATE_WAITER_PRIORITY (equal to
that of the thread to be inserted). If the granted
processors are less than the threads of the application
and there are preempted threads with higher user-level
priority, hand off the processor to them;

36 }
37 }
38 Set the priority of this thread to LOCK_HOLDER_PRIORITY again;
39 Set the priority of this thread’s successor (succ_node) in the

lock_queue to LOCK_HOLDER_PRIORITY;
40 Set succ_node.locked to false to indicate that that thread is now

the lock owner;
41 Restore the user-level priority of this thread using the previously

saved value;
42 If the processors granted by the scheduler are less than the threads

of the application and if there is a preempted thread with higher
user-level priority than this thread, hand off the processor to the
higher user-level priority thread;

43 }

Figure 1. Informing MCS Lock pseudocode

fetch and store instruction. If there was a node in the
wait-queue prior to the insertion, it is examined whether
that node is the lock-holder or not. If the predecessor is
the lock-holder, the user-level priority of the current thread
is set equal to LOCK IMMEDIATE WAITER PRIORITY
and the node is inserted in the queue after the predeces-
sor (predecessor.next = my node, lines 10-13). If
this is not the case, the thread places its node in the queue
after the predecessor and tries to atomically set its user-level
priority to LOCK WAITER PRIORITY (lines 14-17). In
any case, after the priority assignment, the thread polls the

value of the locked field until the latter is found false.
In the meantime, the thread may hand off its processor
to other threads, should that be necessary (lines 18-20).
When the thread is eventually granted the lock, it increases
its user-level priority to LOCK HOLDER PRIORITY. If
there is a successor node in the queue, the user-level
priority of the corresponding thread is set equal to
LOCK IMMEDIATE WAITER PRIORITY.

During the lock release, the thread examines whether
there is a successor node in the wait-queue (line 28).
If there is not, the thread tries to atomically (com-
pare and swap) set the tail of the queue, which currently
points to its node, to NULL (line 29). If the atomic in-
struction is successful, the user-level priority of the thread is
restored using the value saved in previous priority.
The thread then checks whether there are preempted threads
of higher user-level priority and if this is the case it hands
off the processor to one of them (lines 30-33). A failure
of the atomic instruction (line 29) indicates the existence
of a thread which has inserted its node at the tail of the
wait-queue, but has not yet updated the next field of its
predecessor. The lock-holder decreases its user-level prior-
ity to LOCK IMMEDIATE WAITER PRIORITY and hands
off its processor, in order to give the thread trying to enter
the queue the opportunity to execute and update the next
field of the lock-holder node (lines 34-36). If (or when)
the lock-holder has a successor node, it restores its user-
level priority to LOCK HOLDER PRIORITY and sets the
priority of the successor to the same value (lines 38-39).
Consequently, the locked field of the successor node is
set to false, in order to grant the lock to the correspond-
ing thread (line 40). Finally, the previous lock-holder re-
stores its user-level priority using the value saved in pre-
vious priority and hands off its processor in favor of
another thread, should that be necessary (lines 41-42).

The use of an atomic instruction in line 16 helps
eliminate a potential race hazard which would occur if
the predecessor thread was granted the lock after the
check. Should that happen, the predecessor would
attempt to set the user-level priority of this thread
to LOCK IMMEDIATE WAITER PRIORITY. The next
field of the predecessor must be updated prior to decreas-
ing the priority (line 15). Doing the opposite could re-
sult to implications if the thread is preempted before up-
dating the next field of the predecessor. If the prede-
cessor thread is the lock-holder, its next field can be
updated after the priority assignment, as its new priority
(LOCK IMMEDIATE WAITER PRIORITY) will be high
enough to avoid deadlock. This raises the need of an atomic
instruction for the priority assignment.

Failing to increase the priority of the lock-holder in the
lock-release phase (line 38) could result to undesirable im-
plications (even deadlock, if only one physical processor



has been granted to the application), if the lock-holder is
preempted after the increase of the user-level priority of its
successor. In such a case, the current lock-holder would not
be given the opportunity to set the locked field of its suc-
cessor to false, in order to allow the latter to enter the critical
section.

5 Experimental Evaluation

In this section, we present an evaluation of the perfor-
mance of informing synchronization algorithms. We are
particularly concerned with their behaviour under multipro-
gramming. The comparison involves informing algorithms
and their simple counterparts.

We have carried out our evaluation on a Compaq Proliant
5500 system. It is equipped with 4 Pentium Pro proces-
sors clocked at 200 MHz with 512 KBytes L2 cache each.
The main memory is 512 MBytes. For the purposes of our
evaluation we have used both synthetic microbenchmarks
and real computational kernels and applications from the
Splash-2 benchmark suite [15]. The workloads consist of
one or more identical instances of a microbenchmark or an
application. Each instance requires 4 processors and the
number of concurrently executing instances is equal to the
desired degree of multiprogramming. The range of mul-
tiprogramming degrees we have experimented with spans
from 1 to 8.

The lock microbenchmarks consist of a main loop with
alternating synchronizing and working phases. Only one
thread can be in the synchronizing phase at any time snap-
shot. The synchronizing and working phases consist of
1000 and 1500�10% locally cached memory updates re-
spectively. The length of the main loop is 4096 iterations,
which are evenly distributed among the processors. The mi-
crobenchmark is executed 32 times and the reported time is
the mean value of all executions. The barrier microbench-
marks are identical to the lock microbenchmarks, with the
difference that the main loop constitutes of the working
phase, described earlier, followed by a barrier. The barrier
is implemented using the algorithm under evaluation.

In order to demonstrate that the performance gains
achieved by our informing synchronization algorithms can
be considerable in real applications as well, we have used
two computational kernels (LU, Cholesky) and one appli-
cation (Radiosity) from the Splash-2 benchmark suite.

The LU kernel factors a dense matrix into the product
of a lower and an upper triangular matrix. Blocking tech-
niques have been used in order to exploit temporal locality
and reduce communication. Approximately 20 to 50 per-
cent of the execution time is spent on barrier synchroniza-
tion operations [15]. We have decomposed a 1024x1024
matrix, using 16x16 blocks. The Cholesky kernel imple-
ments blocked, sparse Cholesky factorization. It factors
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Figure 2. Execution times of Splash-2 appli-
cations using lock (Cholesky, Radiosity) and
barrier (LU) algorithms

a sparse matrix to the product of a lower triangular ma-
trix and its transpose. It is not globally synchronized be-
tween steps. The synchronization is achieved using locks
and its overhead ranges between approximately 10 and 70
percent of the total execution time [15]. We have used
the standard tk29.O input file, distributed with Cholesky.
The Radiosity application computes the equilibrium distri-
bution of light in a scene, using the iterative hierarchical
diffuse radiosity method. The structure of the computation
is highly irregular. The synchronization operations (locks)
contribute approximately 15 to 30 percent to the execution
time [15]. We have executed Radiosity in batch mode for
the standard room scene. The results attained from the mul-
tiprogrammed execution of Splash-2 computational kernels
and applications using informing (Kernel), active spinning
(Spin) and immediate blocking (Block) synchronization al-
gorithms are depicted in figure 2.

The microbenchmark results (not shown) indicate that,



for the target architecture, simple algorithms (TTAS lock
and Incremental Barrier) significantly outperform more
complex ones in the presence of multiprogramming. For
non-informing synchronization algorithms this can be
mainly attributed to the fact that simple algorithms do not
impose a strict ordering in the synchronization operations
executed by different threads, thus they are more insensitive
to inopportune scheduling decisions. In the case of inform-
ing algorithms the execution time of the longer instruction
sequences required by more complex algorithms contributes
a dominant fraction of the total execution time, thus result-
ing to inferior performance in comparison to simple algo-
rithms. The performance of complex and simple algorithms
in a dedicated machine is almost indistinguishable. How-
ever, given the fact that complex algorithms are designed for
scalability on many processors, we expect them to perform
better than their simple counterparts in a larger, dedicated
machine. In all cases but TTAS lock with multiprogram-
ming degree 2, informing algorithms outperform scheduler-
oblivious ones under multiprogramming. Our informing al-
gorithms for locks execute up to 348.4 times faster (average
177.6 times faster) in comparison to spinning algorithms
and up to 8 times faster (average 5.2 times faster) in com-
parison to immediate blocking ones. The speedup attained
for informing barrier algorithms when compared to spin-
ning ones is up to 1356.4 (average 512.4). The comparison
with immediate blocking algorithms leads to speedups up
to 10.5 (average 4.8). These performance gains are indica-
tive of the correctness of our approach. We believe that,
in the presence of multiprogramming degree 2, the always
spinning version of the TTAS lock performs better (0.35
sec/16.7%) than the informing TTAS lock because the con-
tention is not high enough for the benefits of our mecha-
nisms to outweigh the extra cost of additional instructions,
context switches and cache misses due to thread migrations.
Moreover the informing TTAS lock can not fully benefit
from our mechanisms, due to its non deterministic nature.

In a dedicated machine, the microbenchmarks that use
informing algorithms may need up to 0.07 seconds (6.89%)
more to execute than those implemented with simple always
spinning algorithms. In an unloaded machine, informing
synchronization algorithms degenerate to always spinning
algorithms with the cost of some additional instructions in
the critical path. These additional instructions might be con-
sidered responsible for the - even minimal - slowdown.

It is also worth pointing out that for low or no multipro-
gramming, the execution times of microbenchmarks using
immediate blocking algorithms are worse than those of mi-
crobenchmarks using always spinning and informing syn-
chronization algorithms. In the presence of low, or no con-
tention the unnecessary reschedulings and context switches
caused by immediate blocking algorithms have a negative
effect on performance. The problem is practically elim-

inated with informing algorithms because of the optimal
spin vs. block decision these algorithms reach. However,
as the multiprogramming degree raises, the highest possi-
ble processor utilization is of vital importance and imme-
diate blocking algorithms outperform always spinning (but
not informing) ones.

The results from the Splash-2 experiments indicate that
the performance benefits attained by informing synchro-
nization algorithms are quite sound in real applications as
well. In the absence of multiprogramming, informing syn-
chronization algorithms have practically indistinguishable
performance from scheduler-oblivious ones. However, in
the presence of even minimal multiprogramming, inform-
ing algorithms perform much better. The performance of
Cholesky (lock-based synchronization) is up to 36.8% (av-
erage 16.7%) higher when informing lock algorithms are
used instead of always spinning ones. The comparison with
immediate blocking lock algorithms yields maximum and
average improvement of 20% and 11% respectively. Ra-
diosity, which also uses lock-based synchronization, exe-
cutes up to 26.8% faster (average 10.7%) if informing lock
algorithms are used instead of always spinning ones and up
to 4.7 times faster (average 2.5 times faster) in compari-
son with immediate blocking algorithms. In LU, threads
synchronize using barriers. If informing barriers are used
instead of always spinning ones, LU needs up to 6.5 times
less execution time (average 4.2 times less). An immedi-
ate blocking implementation results to performance up to
58.8% (average 31.9%) worse than that of an informing im-
plementation.

Due to differences in our platform and implementation
framework, a direct one-to-one comparison of informing
synchronization algorithms with the scheduler-conscious
algorithms presented in [6] has not been possible. However,
an indirect qualitative comparison of the results shows that
informing synchronization algorithms provide improve-
ments of similar or wider margin than those provided by
scheduler-conscious synchronization. This can be attributed
to the fact that informing algorithms control thread schedul-
ing more effectively. The scheduler-conscious algorithms
of Kontothanassis et al. try to avoid preemption of the lock-
holder at the expense of all threads in the system. In order
to eliminate the chance of malicious exploitation of this fea-
ture the preemption is avoided within short time-windows
only. This makes scheduler-conscious algorithms prone to
inefficiencies if the critical regions are not short-enough. In-
forming algorithms favor the lock holder at the expense of
other threads of the same application only. This technique
averts the danger of malicious exploitation, so the need for
a time-window is raised. Moreover, informing algorithms
preserve, as opposed to scheduler-conscious ones, the fair-
ness characteristics of synchronization algorithms, reduc-
ing thus the possibility of starvation. Finally, the optimality



of the spin vs. block decision provided by informing al-
gorithms can have significant impact on the performance,
especially for barrier algorithms.

6 Conclusions

In this paper we have presented a generally applicable
kernel-level infrastructure, which can be used to improve
significantly the performance of applications in the pres-
ence of multiprogramming. Our mechanisms allow appli-
cations to use the processor time they are granted by the
OS scheduler more effectively. This is achieved by giving
applications the opportunity to inform the scheduler on the
relative importance of their threads, by assigning them pri-
orities from user-level. These priorities are taken into ac-
count by the OS scheduler in order to decide which specific
thread of an application will execute on a processor. The
priority control mechanisms are non-intrusive, in the sense
that they do not allow applications to improve their perfor-
mance at the expense of other applications in the system.
The kernel infrastructure is general and does not depend on
the nature of the application, thus it can be used by many
different algorithms. As a proof of concept, we have imple-
mented six different informing synchronization algorithms,
i.e. algorithms that use the common kernel mechanisms. We
have presented in detail one of them.

In order to evaluate the performance of informing syn-
chronization algorithms under multiprogramming we have
experimented with synthetic microbenchmarks and compu-
tational kernels and applications from the Splash-2 suite.
Informing synchronization algorithms perform significantly
better than non-informing ones in multiprogrammed envi-
ronments and have practically negligible overhead in the
absence of multiprogramming. Moreover, the comparative
evaluation of non-informing algorithms has driven us to the
conclusion that simple, immediate blocking synchroniza-
tion algorithms, like the TTAS lock or the Incremental Bar-
rier, perform quite well on small-scale machines, even in
the presence of multiprogramming. However, even these
simple algorithms can benefit from our kernel mechanisms.

We believe that the usage of an infrastructure which al-
lows non-intrusive user-level priority control is not neces-
sarily limited to small-scale SMPs. In any case, the applica-
bility of such mechanisms in larger-scale systems requires
thorough investigation, given the fact that such systems gen-
erally have different architectural characteristics and may
pose significantly higher thread migration and remote mem-
ory access costs.
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