
Scheduling Algorithms with Bus Bandwidth
Considerations for SMPs

Christos D. Antonopoulos1∗ Dimitrios S. Nikolopoulos2† Theodore S. Papatheodorou1

1High Performance Information Systems Lab
Computer Engineering & Informatics Dept.

University of Patras
26500 Patras, GREECE

cda, tsp@hpclab.ceid.upatras.gr

2Department of Computer Science
The College of William & Mary

118 McGlothlin Street Hall
Williamsburg, VA 23187-8795. U.S.A.

dsn@cs.wm.edu

Abstract

The bus that connects processors to memory is known
to be a major architectural bottleneck in SMPs. However,
both software and scheduling policies for these systems gen-
erally focus on memory hierarchy optimizations and do not
address the bus bandwidth limitations directly. In this pa-
per, we first present experimental results which indicate that
bus saturation can cause an up to almost three-fold slow-
down to applications. Motivated by these results, we intro-
duce two scheduling policies that take into account the bus
bandwidth consumption of applications. The necessary in-
formation is provided by performance monitoring counters
which are present in all modern processors. Our algorithms
organize jobs so that processes with high-bandwidth and
low-bandwidth demands are co-scheduled to improve bus
bandwidth utilization without saturating the bus. We found
that our scheduler is effective with applications of varying
bandwidth requirements, from very low to close to the limit
of saturation. We also tuned our scheduler for robustness in
the presence of bursts of high bus bandwidth consumption
from individual jobs. The new scheduling policies improve
system throughput by up to 68% (26% in average) in com-
parison with the standard Linux scheduler.

1 Introduction

Small symmetric multiprocessors have dominated the
server market and the high-performance computing field,
either as standalone components, or as components for

∗Supported by a grant from ‘Alexander S. Onassis’ public benefit foun-
dation and the European Commission through the ‘POP’ IST project (grant
No.: IST-2001-33071).

†Supported by a startup research grant from the College of William and
Mary.

building scalable clustered systems. Technology has driven
the cost of SMPs down enough to make them affordable
for desktop computing. Future trends indicate that symmet-
ric multiprocessing within chips will be a viable option for
computing in the embedded systems world as well.

This class of machines is praised for cost-effectiveness,
but at the same time it is criticized for limited scalability. A
major architectural bottleneck of SMPs is the internal bus
which connects the processors and the peripherals to mem-
ory. Despite technological advances that drive the design of
system-level interconnects to more scalable, switch-based
solutions such as HyperTransport [4] and InfiniBand [5], the
bandwidth of the internal interconnection network of SMPs
is a dominant barrier for performance, especially when low-
cost / low-performance buses are used.

Although it has been known for long that the internal
bus of an SMP is a major performance bottleneck, software
for SMPs has only taken indirect approaches to address the
problem. The goal has always been to optimize the pro-
grams for the memory hierarchy and improve cache local-
ity. The same philosophy is followed in SMP operating
systems for scheduling multiprogrammed workloads with
time-sharing. All SMP schedulers use cache affinity links
for each thread. The affinity links bias the scheduler, so
that each thread keeps running on the same processor. This
helps threads build state in the caches without interference
from other threads. Program optimizations for cache local-
ity and cache affinity scheduling reduce the bus bandwidth
consumed by programs. Therefore, they may improve the
‘capacity’ of the SMP in terms of the number of threads the
SMP can run simultaneously without slowing them down.
Unfortunately, if the bus of the SMP is saturated due to con-
tention between threads, memory hierarchy optimizations
and affinity scheduling do not remedy the problem.

In this paper, we present a direct approach for coping
with the bus bandwidth bottleneck of SMPs in the operat-

ing system. We motivate this approach with experiments
that show the impact of bus saturation on the performance
of multiprogrammed SMPs. In our experiments we use ap-
plications with very diverse bus bandwidth requirements,
which have already been extensively optimized for the tar-
get memory hierarchy. The experiments show clearly that
this impact can be severe. The slowdown of jobs suffered
due to bus bandwidth limitations can be significantly higher
than the slowdown suffered due to interference between
jobs on processor caches. In some cases, it is even higher
than the slowdown the programs would experience if they
were simply time-shared on the processor.

To address the problem directly, we propose scheduling
algorithms which select the applications to run and assign
processors driven by the bandwidth requirements of their
threads. Bus utilization information is collected from the
performance monitoring counters which are present in all
modern processors. The algorithms measure the bandwidth
consumption of each job at run-time. The goal is to find
candidate threads for co-scheduling on multiple processors,
so that the average bus bandwidth requirements per thread
are as close as possible to the available bus bandwidth per
unallocated processor. In other words, our policies try to
achieve optimal utilization of the bus during each quantum
with neither overcommiting nor wasting bus bandwidth.

In order to evaluate the performance of our policies
we experiment with heterogeneous workloads on multipro-
grammed SMPs. The workloads consist of the applications
of interest combined with two microbenchmarks: one that is
bus bandwidth-consuming and another that poses negligible
overhead on the system bus. The new scheduling policies
demonstrate an up to 68% improvement of system through-
put. In average, the throughput rises by 26%. A more de-
tailed analysis of the work presented in this paper can be
found in [3].

The rest of this paper is organized as follows: Section
2 discusses related work. In section 3 we present an ex-
perimental evaluation of the impact of bus bandwidth sat-
uration on system performance. In section 4 we describe
the new, bus bandwidth-aware scheduling policies. Section
5 presents an experimental evaluation of the proposed al-
gorithms in comparison with the standard Linux scheduler.
Finally, section 6 concludes the paper.

2 Related Work

Processor scheduling policies for SMPs have been pri-
marily driven by the processor requirements and the cache
behavior of programs. Most existing SMP schedulers use
time-sharing with dynamic priorities and include an affin-
ity mask or flag which biases the scheduler so that threads
that have had enough time to build their state in the cache of
one processor are consecutively scheduled repeatedly on the

same processor. In these settings, parallel jobs can use all
the processors of the system. Few SMP OSs use space shar-
ing algorithms that partition the processors between pro-
grams so that each program runs on a fixed or variable sub-
set of the system processors.

The effectiveness of cache affinity scheduling depends
on a number of factors [10, 13, 15]. The cache size and
replacement policy have an obvious impact. The smaller
the size of the cache, the more the performance penalty for
programs which are time-sharing the same processor. The
degree of multiprogramming is also important. The higher
the degree of multiprogramming, the less are the chances
that affinity scheduling improves cache performance. The
time quantum of the scheduler also affects significantly the
effectiveness of affinity scheduling. With long time quanta,
threads may not be able to reuse data from the caches. On
the other hand, with short time quanta threads may not have
enough time to build state on the caches.

Dynamic space sharing policies [8, 14] attempt to sur-
pass the cache performance limitations by running parallel
jobs on dedicated sets of processors, the size of which may
vary at run-time. Thus, they tend to improve the cache per-
formance of parallel jobs by achieving better locality. Their
drawback is that they limit the degree of parallelism that the
application can exploit. In most practical cases however, the
locality improvement outweighs the loss of processors.

New scheduling algorithms based on the impact of cache
sharing on the performance of co-scheduled jobs on mul-
tithreaded processors and chip-multiprocessors were pro-
posed in [11, 12]. The common aspect of this work and ours
is that both are using contention on a shared system resource
as the driving factor for making informed scheduling deci-
sions. However, these algorithms are based on analytical
models of program behaviour on malleable caches, while
our algorithms are using information collected from the
program at run-time. Scheduling with on-line information
overcomes the limitations of modelling program behaviour
off-line, and makes the scheduling algorithm portable on
real systems, regardless of workloads.

To the best of our knowledge, none of the previously pro-
posed job scheduling algorithms for SMPs was driven by
the effects of sharing system resources other than caches
and processors. In particular, none of the policies was
driven by the impact of sharing the bus, or in general, the
network that connects processors and memory. Further-
more, among the policies that focus on optimizing memory
performance, none considered the available bandwidth be-
tween different levels of the memory hierarchy as a factor
for guiding the scheduling decisions.

Related work on job scheduling for multithreaded pro-
cessors [1, 9] has shown that performance is improved when
the scheduler takes into account the interference between
applications on shared hardware resources. More specifi-

cally, it is possible to achieve better performance on mul-
tiprogrammed workloads, if the programs co-scheduled on
multiple processors during a quantum meet criteria that in-
dicate good symbiosis on specific system resources. For
example, the scheduler could co-schedule programs that
achieve the least number of stall cycles on a shared exe-
cution unit. These works indicated the importance of shar-
ing resources other than caches and processor time on the
performance of job scheduling algorithms, but did not pro-
pose implementable scheduling algorithms driven by the
observed utilization of specific resources.

Most modern microprocessors are equipped with perfor-
mance monitoring counters. They provide the programmer
with a powerful tool for tracking performance bottlenecks
due to the interactions between the program and the hard-
ware. These counters have been widely used for offline per-
formance analysis of applications either autonomously [17]
or as the basis for building higher-level tools such as Intel
VTune Performance Analyzer. They have also been used as
input to performance prediction functions [2], which can
serve as prediction tools by extrapolating data collected
from small, pilot executions. However, information attained
from performance monitoring counters has never been used
before at run-time to affect scheduling decisions on a real
system, or drive program optimizations.

3 The Implications of Bus Bandwidth on Ap-
plication Performance

In this section we present experimental results that moti-
vate the investigation of new job scheduling policies which
are driven by bus bandwidth consumption. Our results
quantify the impact of sharing the bus of an SMP between
multiple jobs. The experimental investigation is relevant for
all types of shared-memory architectures that share some
level of the memory hierarchy, that being a cache or RAM.
Besides SMPs, the analysis is also relevant for multithread-
ing processors and chip multi-processors.

For the experiments, we used extensively optimized ap-
plications and computational kernels from two suites, the
NAS benchmarks [6] and the Splash-2 benchmarks [16].
The benchmarks have been compiled using the 7.1 version
of Intel Fortran and C/C++ OpenMP compilers. We used
codes which are hand-optimized for spatial and temporal
cache locality in order to dismiss any chances that the ob-
served bandwidth consumption occurs due to poor imple-
mentation of the used codes. We show that even with heav-
ily optimized code, bus bandwidth consumption is a major
limitation for achieving high performance.

Our experimental platform is a dedicated, 4-processor
SMP with Hyperthreaded Intel Xeon processors, clocked
at 1.4 GHz. It is equipped with 1 GB of main memory
and each processor has 256 KB of L2 cache. The front-

side bus of the machine (the bus connecting processors to
memory) runs at 400 MHz. The operating system is Linux
and the kernel version is 2.4.20. The hardware counters are
monitored using Mikael Pettersson’s performance counter
driver for Linux and the associated run-time library. Unfor-
tunately, the driver does not yet support concurrent execu-
tion of two threads on a physical processor if both threads
use performance monitoring counters. As a consequence,
we had to disable hyperthreading on all processors.

The theoretical peak bandwidth of the bus is 3.2 GB/s.
However, the practically sustained bandwidth, as measured
by the STREAM benchmark [7], is 1797 MB/s when re-
quests are issued from all processors. The highest bus
transactions rate sustained by STREAM is 29.5 transac-
tions/usec. These measurements indicate that approxi-
mately 64 bytes are transferred with each bus transaction.

We have conducted 4 sets of experiments. The first
one measures the bandwidth consumed by each application,
when executed alone using 2 processors. The other three
experiment sets simulate multiprogrammed execution. In
the second set, two identical instances of an application are
executed using 2 processors each.

In the third experiment set, one instance of the applica-
tion using two processors runs together with two instances
of a microbenchmark (BBMA). Each instance of the mi-
crobenchmark uses one processor. The microbenchmark
accesses a two-dimensional array the size of which is twice
the size of Xeon’s L2 cache. The size of each line of the
array is equal to the L2 cache line size of Xeon. The mi-
crobenchmark performs column-wise writes on the array.
More specifically, it writes the first element of all lines,
then the second element and so on. The microbenchmark
is programmed in C, so the array is stored in memory row-
wise. Each write causes the processor to fetch a new cache
line from memory. By the time the next element of each
line is to be written, the specific line has been evicted from
the cache. As a consequence, the microbenchmark has al-
most 0% cache hit rate. It constantly performs back-to-back
memory accesses and consumes a significant fraction of the
available bus bandwidth. In average, it performs 23.6 bus
transactions/usec.

The fourth experiment set is identical to the third one,
except from the configuration of the microbenchmark. The
microbenchmark (nBBMA) accesses the array row-wise,
so spatial locality is maximized. Furthermore, the size of
the array is half the size of Xeon’s L2 cache. Therefore,
excluding compulsory misses, the elements are constantly
accessed from the cache and the cache hit rate of the mi-
crobenchmark approaches 100%. Its average bus transac-
tion rate is 0.0037 transactions/usec.

Figure 1A (black bars) depicts the bus bandwidth con-
sumption of each application, measured as the number of
bus transactions per microsecond. The reported bus transac-

(A)

0

5

10

15

20

25

30

35

R
ad

io
si
ty

W
at

er
-n

sq
r

Vol
re

nd

Bar
ne

s

FM
M

LU
 C

B BT
SP

M
G

R
ay

tra
ce C

G

B
u

s
 T

ra
n

s
.
(c

u
m

m
u

la
ti

v
e

)
/
u

s
e

c

1 Appl 2 Apps

1 Appl + 2 BBMA 1 Appl + 2 nBBMA

(B)

0

0,5

1

1,5

2

2,5

3

R
ad

io
si
ty

W
at

er
-n

sq
r

V
ol
re

nd

B
ar

ne
s

FM
M

LU
 C

B B
T

S
P

M
G

R
ay

tra
ce C

G

S
lo
w
d
o
w
n

2 Apps 1 Appl + 2 BBMA
1 Appl + 2 nBBMA

Figure 1. Cumulative bus transactions rate (A)
and slowdown (B) of applications when: i)
applications are executed alone (black bars),
ii) two instances of each application are ex-
ecuted simultaneously (dark gray bars), iii)
one instance of each application is executed
together with two instances of the BBMA mi-
crobenchmark (light gray bars) and iv) one
instance of each application is executed to-
gether with two instances of the nBBMA mi-
crobenchmark (white, striped bars). Each ap-
plication instance uses two processors.

tion rate is the accumulated rate of transactions issued from
two threads running on two different processors. The appli-
cations are sorted in increasing order of issued bus transac-
tion rate. The bandwidth consumption varies from 0.48 to
23.31 bus transactions per microsecond. Considering that
each transaction transfers 64 bytes, the applications con-
sume no more than 1422.73 MB/s, therefore the bus offers
enough bandwidth to run these applications alone.

Figure 1A (dark gray bars) shows the accumulated num-
ber of transactions per microsecond, when two instances
of each application run simultaneously using two proces-
sors each. Note that there is no processor sharing. The
four applications with the highest bandwidth requirements
(SP, MG, Raytrace, CG) push the system bus close to its
capacity. Even in cases the cumulative bandwidth of two

instances of these applications does not exceed the maxi-
mum sustained bus bandwidth, contention and arbitration
contribute to bandwidth consumption and eventually bus
saturation. Diagram 1B shows the corresponding slowdown
applications suffer. The slowdown is calculated as the arith-
metic mean of the slowdown of the two instances. Theoret-
ically, the applications should not be slowed down at all,
however in practice, there is slowdown due to contention
between the applications on the bus. The results show that
the applications with high bandwidth requirements suffer
a 41% to 61% performance degradation. It is worth not-
ing that four Raytrace threads yield a cumulative rate of
34.89 transactions/usec, which is higher than the transac-
tions rate achieved by four concurrently executing threads
of STREAM (29.5 transactions/usec). It has not been pos-
sible to reproduce this behavior with any other application
or synthetic microbenchmark. We are currently investigat-
ing this issue in cooperation with Intel.

Figure 1 (light gray bars) illustrates the results from
the experiments in which one parallel application com-
petes with two copies of the BBMA microbenchmark which
streams continuously data from memory without reusing
them. These experiments isolate the impact of having ap-
plications run on an already saturated bus. Note that the
bus bandwidth consumed from the workload is very close
to the limit of saturation, averaging 28.34 transactions/usec.
Memory-intensive applications suffer 2 to almost 3-fold
slowdowns, despite the absence of any processor sharing.
Even applications with moderate memory bandwidth re-
quirements have slowdowns ranging between 2% and 55%
(18% in average). The slowdown of LU CB is higher than
expected. This can be attributed to the fact that LU CB has
a particularly high cache hit ratio (99.53% when executed
with two threads). As a consequence, as soon as a working
set has been built in the cache, the application tends to be
very sensitive to thread migrations among processors. The
same observation holds true for Water-nsqr as well.

The white, striped bars correspond to the results from
the concurrent execution of parallel applications - using
two threads each - with two instances of the nBBMA mi-
crobenchmark. The latter practically poses no overhead on
the bus. It is clear that both the bus transactions rate and
the execution time of applications are almost identical to
those observed during the uniprogrammed execution. This
confirms that the slowdowns observed in the previously de-
scribed experiments are not caused by lack of computa-
tional resources. These results also indicate that pairing
high-bandwidth with low-bandwidth applications is a good
way for the SMP scheduler to achieve higher throughput.

From the experimental data presented in this section, one
can easily deduce that programs executing on an SMP may
suffer significant performance degradation even if they are
offered enough CPU and memory resources to run without

sharing processors and caches and without causing swap-
ping. These performance problems can be attributed to bus
saturation. In some cases, the slowdowns exceed the slow-
downs that would have been observed if the threads were
simply time-shared on a single processor, instead of exe-
cuting on different processors of a multiprocessor. Given
the magnitude of the slowdowns it is reasonable to search
for scheduling policies that reduce performance penalties
by carefully managing bus bandwidth.

4 Scheduling Policies for Preserving Bus
Bandwidth

We have implemented two new scheduling policies that
schedule jobs on an SMP system taking into account the
bus bandwidth the jobs consume. They aim at optimizing
the use of system bus bandwidth, by co-scheduling jobs that
neither underutilize nor saturate the bus. The policies are re-
ferred to as ‘Latest Quantum’ and ’Quanta Window’. Both
policies are gang-like scheduling. Processors are allocated
to an application only if they are enough for all its threads
to execute. The scheduling quantum has constant duaration.

The applications controlled by our policies are concep-
tually organized as a list. At the end of each schedul-
ing quantum, the ‘Latest Quantum’ policy updates the bus
bandwidth consumption statistics for all running jobs, using
information provided by the applications. The bus band-
width consumed per application thread (BBW/thread) is
calculated by equipartitioning the bandwidth requirements
of each application during the latest quantum among its
threads. The previously running jobs are then transferred
to the end of the applications list.

Following, the policy elects the applications to execute
during the next quantum. The application at the top of the
applications list is allocated by default. This ensures that
all applications will eventually have the chance to run, in-
dependent of their bus-bandwidth consumption characteris-
tics. As a consequence, no job suffers processor starvation.

Every time an application is elected to run, the available
bus bandwidth in the system is calculated by subtracting
the requirements of already allocated applications from the
total bandwidth of the system bus. The available bus band-
width per unallocated processor (ABBW/proc) is then esti-
mated as the remaining bandwidth divided by the number
of unallocated processors.

As long as there are processors available, the scheduler
traverses the list of applications. For each application that
fits in the available processors, a fitness value is calculated.

Fitness =
1000

1 + |ABBW/proc − BBW/thread| (1)

Fitness is a metric of the proximity between the applica-
tion’s BBW/thread and the current ABBW/proc. The closer

BBW/thread is to ABBW/proc the fitter the application is
for scheduling. The selection of this fitness metric fa-
vors an optimal exploitation of bus bandwidth. If proces-
sors have already been allocated to low-bandwidth appli-
cations, high-bandwidth ones become best candidates for
the remaining processors. The reverse scenario holds true
as well. The fitness metric behaves as expected even in
cases when, due to the nature of the workload, bus satu-
ration can not be avoided. As soon as the bus gets over-
loaded, ABBW/proc turns negative and the application with
the lowest BBW/thread becomes the fittest.

At the end of each list traversal the fittest application is
selected to execute during the next quantum. If there are still
unallocated processors a new list traversal is performed.

‘Quanta Window’ policy is quite similar to the ‘Latest
Quantum’ one. The sole difference is that instead of taking
into account the bus bandwidth requirements of each thread
during the latest quantum, we use the average of its require-
ments during a window of previous samples (BTR/thread).
Equation 1 can now be written as:

Fitness =
1000

1 + |ABTR/proc − BTR/thread|
(2)

Using BTR/thread instead of BTR/thread has an effect
of smoothing sudden changes to the bus transactions caused
by an application. This technique filters out bursts with
small duration or bursts that can be attributed to random,
external events (for example when a thread migrates to an-
other processor and rebuilds its state in the cache). How-
ever, at the same time it reduces the responsiveness of the
scheduling policy to true changes in the bus bandwidth con-
sumption. The selection of the window length must take
this tradeoff into account. The window used in our exper-
imental evaluation is 5 samples long. This length has the
property of limiting the average distance between the ob-
served transactions pattern and the moving window average
to 5% for applications with irregular bus bandwidth require-
ments, such as Raytrace or LU. The use of a wider window
would require techniques such as exponential reduction of
the weight of older samples, in order to achieve an accept-
able policy responsiveness.

In order to design and test our scheduling policies with-
out altering the operating system kernel, we implemented
a user-level CPU manager. The user-level CPU manager
runs as a server process on the target system. Each ap-
plication that wishes to use the new scheduling policies
sends a ‘connection’ message to the CPU manager (through
a standard UNIX-socket). The CPU manager responds to
the connection message by creating a shared arena, i.e. a
shared memory page which is used as its primary commu-
nication medium with the application. It also informs the
application how often the bus transaction rate information
on the shared-arena is expected to be updated. In order

to ensure the timeliness of information provided from the
applications, the bus transaction rate is updated twice per
scheduling quantum. At each sampling point the perfor-
mance counters of all application threads are polled, their
values are accumulated and the result is written to the shared
arena. The CPU manager also adds a descriptor for each
new application to a doubly linked circular list.

The applications are blocked / unblocked by the CPU
manager according to the decisions of the active scheduling
policy. Blocking / unblocking of applications is achieved
using standard unix signals. The CPU manager sends a sig-
nal to an application thread which, in turn, is responsible
to forward the signal to the rest of the application threads.
In order to avoid side-effects from possible inversion in the
order block / unblock signals are sent and received, a thread
blocks only if the number of received block signals exceeds
the corresponding number of unblock signals. Such an in-
version is quite probable, especially if the time interval be-
tween consecutive blocks and unblocks is narrow.

A run-time library which accompanies the CPU manager
offers all the necessary functionality for the cooperation be-
tween the CPU manager and applications. The modifica-
tions required to the source code of applications are limited
to the addition of calls for connection and disconnection and
to the interception of thread creation and destruction.

The overhead introduced by the CPU manager to the ex-
ecution time of the applications it controls is usually neg-
ligible. In the worst case scenario, namely when multi-
ple identical copies of applications with low bus bandwidth
requirements are co-executed, it is at most 4.5%. Embed-
ding the policies in the kernel would certainly minimize the
overhead. However, the implementation of a CPU manager
at user-level facilitates broader experimentation without re-
quiring changes to the OS on the target systems.

5 Experimental Results

In order to evaluate the effectiveness of our policies, we
have experimented with three sets of heterogeneous work-
loads. Each set is executed either on top of the standard
Linux scheduler, or with one of the proposed policies. All
workloads have a multiprogramming degree equal to two.
In other words, there are eight concurrently active threads,
twice as many as the available physical processors. The
scheduling quantum of the CPU manager is 200 msec, twice
the quantum of the Linux scheduler. We have experimented
with a CPU manager quantum of 100 msec, which resulted
to an excessive number of context switches. This can be
attributed to the lack of synchronization between the OS
scheduler and the CPU manager, which results to conflict-
ing scheduling decisions at the user- and kernel-level. Using
a larger scheduling quantum eliminates this problem. In any
case, we have verified that the duration of the CPU manager

(A) 2 Apps (2 Threads each) + 4 BBMA

0

10

20

30

40

50

60

70

80

R
ad

io
si
ty

W
at

er
-n

sq
r

Vol
re

nd

Bar
ne

s

FM
M

LU
 C

B BT
SP

M
G

R
ay

tra
ce C

G

A
v

g
.
T

u
rn

a
ro

u
n

d
 T

im
e

Im
p

ro
v

e
m

e
n

t
(%

)

Latest

Window

(B) 2 Apps (2 Threads each) + 4 nBBMA

-20

-10

0

10

20

30

40

50

60

70

R
ad

io
si
ty

W
at

er
-n

sq
r

Vol
re

nd

Bar
ne

s

FM
M

LU
 C

B BT
SP

M
G

R
ay

tra
ce C

G

A
v

g
.
T

u
rn

a
ro

u
n

d
 T

im
e

Im
p

ro
v

e
m

e
n

t
(%

)

Latest

Window

(C) 2 Apps (2 Threads each) + 2 BBMA + 2 nBBMA

-10

0

10

20

30

40

50

60

R
ad

io
si
ty

W
at

er
-n

sq
r

Vol
re

nd

Bar
ne

s

FM
M

LU
 C

B BT
SP

M
G

R
ay

tra
ce C

G

A
v

g
.
T

u
rn

a
ro

u
n

d
 T

im
e

Im
p

ro
v

e
m

e
n

t
(%

)

Latest

Window

Figure 2. Performance improvement (%) of
the workloads when two instances of each
application are executed simultaneously with
i) four instances of the BBMA microbench-
mark (A), ii) four instances of the nBBMA mi-
crobenchmark (B) and iii) two instances of
the BBMA and two instances of the nBBMA
microbenchmark (C). The reported values are
the improvement in the arithmetic mean of
the execution times of both application in-
stances.

quantum does not have any measurable effect on the cache
performance of the controlled applications.

In the first set, two instances of the target application, re-
questing two processors each, are executed together with
four instances of the BBMA microbenchmark. This set
evaluates the effectiveness of our policies on an already

saturated bus. Figure 2A illustrates the improvement each
policy introduces in the average turnaround time of the ap-
plications in comparison with the execution on top of the
standard Linux scheduler. In all diagrams applications are
sorted in increasing order of issued bus transactions rate in
the uniprogrammed execution (as in figure 1A). The ’Latest
Quantum’ policy achieves improvements ranging from 4%
to 68% (41% in average). The improvements introduced
by the ’Quanta Window’ policy vary between 2% and 53%
with an average of 31%.

When executed with the standard Linux scheduler, ap-
plications with high bandwidth requirements may be co-
scheduled with instances of the BBMA microbenchmarks,
resulting to bus bandwidth starvation. Our policies avoid
this scenario. Applications with lower bandwidth require-
ments may be scheduled with instances of the BBMA mi-
crobenchmarks. However, even in this case, our policies en-
sure - due to the gang-like scheduling - that at least two low-
bandwidth threads will run together, in contrast to the Linux
scheduler which may execute one low-bandwidth thread
with three instances of BBMA.

The second set of workloads consists of two instances
of the target application - requesting two processors each -
and four instances of the nBBMA microbenchmark. This
experiment demonstrates the functionality of the proposed
policies when low bandwidth jobs are available in the sys-
tem. Figure 2B depicts the performance gains attained by
the new scheduling policies.

’Latest Quantum’ achieves up to 60% higher perfor-
mance, however three applications slow down. The most
severe case is that of Raytrace (19% slowdown). A detailed
analysis of Raytrace revealed a highly irregular bus trans-
actions pattern. The sensitivity of ’Latest Quantum’ to sud-
den changes of bandwidth consumption has probably led to
this problematic behavior. Moreover, from figure 1A one
can deduce that running two threads of Raytrace together -
which happens due to the gang-like nature of our policies -
may alone drive the bus to saturation. LU CB and Water-
nsqr also suffer minimal slowdowns due to their high sen-
sitivity to thread migrations among processors. In average,
’Latest Quantum’ improved workload turnaround times by
13%. The ’Quanta Window’ policy turned out to be much
more stable. It improved workload turnaround times by up
to 64%. Raytrace slows down once again, this time by only
1%. The average performance improvement is now 21%.

In this experiment set, our scheduling policies tend to
pair bandwidth consuming applications with instances of
the nBBMA microbenchmark. As a consequence, the avail-
able bus bandwidth for demanding applications is higher.
Even low-bandwidth applications seem to benefit from our
algorithms. The new policies avoid executing 2 instances
of the applications together in the presence of nBBMA mi-
crobenchmarks. Despite the fact that running two instances

of low-bandwidth applications together does not saturate
the bus, performance problems may occur due to contention
among application threads for the possession of the bus.

The third experiment set combines two instances of
the target application - requesting two processors each -
with two instances of the BBMA and two instances of the
nBBMA microbenchmark. Such workloads simulate execu-
tion environments where the applications of interest coexist
with more and less bus bandwidth consuming ones. The im-
provements of the new scheduling policies over the Linux
scheduler are depicted in figure 2C.

‘Latest Quantum’ policy improves the average
turnaround time of applications in the workloads by
up to 50%. LU is the only application that experiences a
7% performance deterioration. The average performance
improvement is 26%. The maximum and average improve-
ment achieved by ‘Quanta Window’ are 47% and 25%
respectively. Two applications, namely Water-nsqr and LU
suffer minimal slowdowns of 2% and 5%.

In summary, for the purposes of this experimental evalu-
ation we used applications with a variety of bus bandwidth
demands. All experiment sets benefit significantly from the
new scheduling policies. Both policies attain average per-
formance gains of 26%. The scheduling algorithms are ro-
bust for both high- and low-bandwidth applications. As ex-
pected however, ‘Quanta Window’ proves to be much more
stable than ‘Latest Quantum’. It performs well even in cases
the latter proves too sensitive to sudden, short-term changes
in the bandwidth consumption of applications.

6 Conclusions

Symmetric multiprocessors are nowadays very popular
in the area of high performance computing both as stan-
dalone systems and as building blocks for computational
clusters. The main reason is that they offer a very compet-
itive price/performance ratio. However the limited band-
width of the bus that connects processors to memory has
adverse effects to the scalability of SMPs. Although this
problem is well-known, neither user- nor system-level soft-
ware is optimized to minimize these effects.

In this paper we have presented experimental results
which indicate that bus saturation is reflected to an almost
3-fold decrease in the performance of bus bandwidth con-
suming applications. Even less demanding applications suf-
fer slowdowns between 2% and 55%.

Motivated by this observation, we introduced two
scheduling policies that take into account the bus bandwidth
requirements of applications. Both policies have been im-
plemented in the context of a user-level CPU manager. The
information required to drive policy decisions is provided
by the performance monitoring counters present in all mod-
ern processors. To the best of our knowledge this is the

first time these counters have been used to improve appli-
cation performance at run-time. ‘Latest Quantum’ policy
uses the bus transactions rate of applications during the lat-
est quantum, whereas ‘Quanta Window’ uses a moving win-
dow average. At any given scheduling point both policies
try to schedule the application which bus transaction rate
per thread better matches the available bus transaction rate
per unallocated processor in the system.

In order to evaluate the performance of our policies, we
have executed three sets of workloads. In the first set, ap-
plications of interest coexisted with highly bus demanding
microbenchmarks. The second set consisted of the appli-
cations of interest and microbenchmarks that pose no over-
head on the bus. In the third set applications executed in an
environment composed of both highly-demanding and not-
demanding microbenchmarks. Both policies attained an av-
erage 26% performance improvement over the native Linux
scheduler. Moreover, ‘Quanta Window’ has been much
more stable than ‘Latest Quantum’. It maintained good
performance even in corner-cases where ‘Latest Quantum’
proved to be oversensitive to application peculiarities.

We plan to continue this work in the following directions.
First, we will derive analytic or empirical models of the ef-
fect of sharing resources such as the bus, caches and main
memory, on the performance of multiprogrammed SMPs.
Using these models, we can re-formulate the multiproces-
sor scheduling problem as a multi-parametric optimization
problem and derive practical model-driven scheduling algo-
rithms. We plan to test our scheduler with I/O and network-
intensive workloads which stress the bus bandwidth, using
scientific applications, web and database servers. Our work
can also be extended in the context of multithreading pro-
cessors, where sharing happens also at the level of internal
processor resources, such as the functional units.

References

[1] G. Alverson, S. Kahan, R. Corry, C. McCann, and B. Smith.
Scheduling on the Tera MTA. In Proc. of the first Work-
shop on Job Scheduling Strategies for Parallel Processing
(JSSPP’95), LNCS Vol. 949, pages 19–44, Santa Barbara,
CA, Apr. 1995.

[2] N. M. Amato, J. Perdue, A. Pietracaprina, G. Pucci, and
M. Mathis. Predicting Performance on SMPs. A Case Study:
The SGI Power Challenge. In Proc. of the International Par-
allel and Distributed Processing Symposium (IPDPS 2000),
Cancun, Mexico, May 2000.

[3] C. D. Antonopoulos, D. S. Nikolopoulos, and T. S. Pap-
atheodorou. Scheduling Algorithms with Bus Bandwidth
Considerations for SMPs. Technical Report HPCLAB-TR-
090703, High Performance Information Systems Lab, Uni-
versity of Patras, July 2003.

[4] Meeting the I/O Bandwidth Challenge: How HyperTrans-
port Technology Accelerates Performance in Key Appli-

cations. Technical report, HyperTransport Consortium,
http://www.hypertransport.org/, December 2002.

[5] Infiniband Architecture Specification, Release 1.1.
Technical report, Infiniband Trade Association,
http://www.infinibandta.org, November 2002.

[6] H. Jin, M. Frumkin, and J. Yan. The OpenMP Implemen-
tation of NAS Parallel Benchmarks and its Performance.
Technical Report NAS-99-011, NASA Ames Research Cen-
ter, 1999.

[7] J. D. McCalpin. Memory Bandwidth and Machine Balance
in Current High Performance Computers. Technical Com-
mittee on Computer Architecture (TCCA) Newsletter, De-
cember 1995.

[8] C. McCann, R. Vaswani, and J. Zahorjan. A Dynamic
Processor Allocation Policy for Multiprogrammed Shared
Memory Multiprocessors. ACM Transactions on Computer
Systems, 11(2):146–178, May 1993.

[9] A. Snavely and D. Tullsen. Symbiotic Job Scheduling for a
Simultaneous Multithreading Processor. In Proc. of the 9th
International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS’IX),
pages 234–244, Cambridge, Massachusetts, Nov. 2000.

[10] M. Squillante and E. Lazowska. Using Processor-Cache
Affinity Information in Shared-Memory Multiprocessor
Scheduling. IEEE Transactions on Parallel and Distributed
Systems, 4(2):131–143, Feb. 1993.

[11] G. Suh, S. Devadas, and L. Rudloph. Analytical Cache
Models with Applications to Cache Partitioning. In Proc.
of the 15th ACM International Conference on Supercomput-
ing (ICS’01), pages 1–12, Sorrento, Italy, June 2001.

[12] G. Suh, L. Rudolph, and S. Devadas. Effects of Memory
Performance on Parallel Job Scheduling. In Proc. of the 8th
Workshop on Job Scheduling Strategies for Parallel Process-
ing (JSSPP’02), pages 116–132, Edinburgh, Scotland, June
2002.

[13] J. Torrellas, A. Tucker, and A. Gupta. Evaluating the Per-
formance of Cache-Affinity Scheduling in Shared-Memory
Multiprocessors. Journal of Parallel and Distributed Com-
puting, 24(2):139–151, Feb. 1995.

[14] A. Tucker and A. Gupta. Process Control and Scheduling
Issues for Multiprogrammed Shared-Memory Multiproces-
sors. In Proc. of the 12th ACM Symposium on Operating
Systems Principles (SOSP’89), pages 159–166, Litchfield
Park, Arizona, Dec. 1989.

[15] R. Vaswani and J. Zahorjan. The Implications of Cache
Affinity on Processor Scheduling for Multiprogrammed
Shared Memory Multiprocessors. In Proc. of the 13th ACM
Symposium on Operating System Principles (SOSP’91),
pages 26–40, Pacific Grove, California, Oct. 1991.

[16] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta.
The splash-2 programs: Characterization and methodologi-
cal considerations. In Proceedings of the 22nd Annual Inter-
national Symposium on Computer Architecture (ISCA’95),
pages 24–36, June 1995.

[17] M. Zagha, B. Larson, S. Turner, and M. Itzkowitz. Per-
formance Analysis Using the MIPS R10000 Performance
Counters. In Proceedings of the SuperComputing 1996 Con-
ference (SC96), Pittsburgh, USA, November 1996.

