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ABSTRACT
With high-end systems featuring multicore/multithreaded proces-
sors and high component density, power-aware high-performance
multithreading libraries become a critical element of the system
software stack. Online power and performance adaptation of mul-
tithreaded code from within user-level runtime libraries is a rela-
tively new and unexplored area of research. We present a user-level
library framework for nearly optimal online adaptation of multi-
threaded codes for low-power, high-performance execution. Our
framework operates by regulating concurrency and changing the
processors/threads configuration as the program executes. It is in-
novative in that it uses fast, runtime performance prediction derived
from hardware event-driven profiling, to select thread granulari-
ties that achieve nearly optimal energy-efficiency points. The use
of predictors substantially reduces the runtime cost of granularity
control and program adaptation. Our overall framework achieves
performance andED2 (energy-delay-squared) levels which are: i)
comparable to or better than those of oracle-derived offline predic-
tors; ii) significantly better than those of online predictors using
exhaustive or localized linear search. The complete prediction and
adaptation framework is implemented on a real multi-SMT system
with Intel Hyperthreaded processors and embeds adaptation capa-
bilities in OpenMP programs.

Categories and Subject Descriptors
D.4.1 [Operating Systems]: Process Management—Threads; D.4.8
[Operating Systems]: Performance—Modeling and prediction; C.1.4
[Computer Systems Organization]: Processor Architectures—
Parallel Architectures

General Terms
Management, Measurement, Performance

Keywords
online adaptation, power-aware computing, performance predic-
tion, hardware performance counters
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1. INTRODUCTION
Multicore and multithreaded processors have a prominent role in

high-end computing. Thread-level parallelism has long been recog-
nized as the means to sustain performance scaling and overcome
the limitations of conventional techniques for exploiting instruction-
level parallelism [13]. Although multicore and multithreaded ar-
chitectures have proven their potential and have been adopted in
several commercial products [8, 9, 10], the programming technolo-
gies used for these architectures date from almost two decades ago.
Software is still parallelized using POSIX threads or similar low-
level substrates, regardless of whether the target architecture is an
SMP, a ccNUMA, a CMP, an SMT or a layered architecture such
as an SMP of SMTs or a CMP of SMTs.

Although well established, existing multithreading libraries lack
essential capabilities for tapping into the performance and power
advantages of emerging CMPs, SMTs and layered architectures
built from these components. Effective execution of programs on
multiprocessors with multiple layers of multithreading requires re-
thinking of the design of threading libraries, for several compelling
reasons:

• Threads interact with different layers of parallel execution hard-
ware – such as execution contexts in an SMT processor, cores
in a multicore processor or processors in an SMP system – in
complex and non-trivial ways. Interaction between threads and
hardware and inter-thread interference may also differ substan-
tially from one layer to another. Threads interfere in both posi-
tive and negative ways, depending on a large number of cross-
cutting factors involving the program such as granularity, local-
ity, control structure, instruction-level parallelism and the ar-
chitecture, such as cache/TLB size and organization, available
bandwidth, branch predictor design, instruction cache design,
etc. Unfortunately, multithreading libraries overlook the inter-
action between threads and hardware and thread interference at
different parallel execution layers, and lack the sophistication
to effectively map parallel computation to layered parallel ar-
chitectures, or even the expressiveness to allow the programmer
to do so.

• Multithreading libraries currently lack power-aware execution
capabilities. If negative interference between threads at cer-
tain execution layers of the system could be detected by a li-
brary, the library would be able to simultaneously improve per-
formance and reduce power consumption by throttling con-
currency and deactivating threads, execution cores or entire
processors. With steep increases in processor power consump-
tion, rising energy cost and more system maintenance and re-
liability problems arising due to power and thermal consider-
ations, energy conservation becomes equally as important as



high performance. The potential of energy conservation through
multithreading libraries is, however, not well explored.

These observations suggest that multithreading libraries can no
longer consider concurrency as an one-dimensional entity. They
need to regulate concurrency at multiple parallel execution layers,
using potentially different strategies at each layer. Moreover, mul-
tithreading libraries should provide a versatile software infrastruc-
ture for high-performance and energy-aware execution of parallel
programs on layered multiprocessors. This paper addresses these
issues by proposing a novel, transparent, self-managed scheme for
online performance and power adaptation in the context of mul-
tithreading libraries. Specifically, this paper makes the following
contributions:
• We present a runtime performance prediction model based on

dynamically collected and dynamically analyzedprofiles of par-
allel execution phases. The profiles are collected from hard-
ware event counters. The prediction model uses a few snap-
shots – more precisely as many as the number of parallel ex-
ecution layers in the architecture – of normalized event rates,
for each phase of multithreaded execution in the program. The
event rates are forwarded to an online predictor, which derives
a transfer function to predict the IPC of the given phase with
different system configurations (number of processors, number
of threads per processor). The predictor makes an instanta-
neous decision on the seemingly optimal (from a performance,
energy, or energy-performance perspective) number of threads
to activate at each layer of the architecture. In addition to pro-
viding the necessary input for adaptation, our prediction model
minimizes runtime overhead, without necessarily sacrificing
accuracy in finding optimal or nearly optimal operating points
in the program. In this respect, our prediction model substan-
tially improves previous work on adaptive thread-level con-
currency control, which relied heavily on exhaustive or semi-
exhaustive searches and timing of program configurations. Fur-
thermore, our prediction model is the first targeted explicitly at
IPC prediction across system configurations and is significantly
more accurate than other proposed models based on hardware
event-based predictors when applied in this context.

• We present a comprehensive framework for autonomic power-
performance adaptation of multithreaded programs, including a
multithreaded hardware event profiling component, an on-the-
fly performance characterization and prediction runtime system
using feedback from the profiling component, a rapid predic-
tor, and the necessary thread control mechanisms to implement
adaptation at runtime, so that the performance penalty during
the adaptation process is minimized.

• We deploy and evaluate our framework on OpenMP programs
running on a real layered multiprocessor (a system with multi-
ple Intel processors with Hyperthreading technology) and show
that it achieves performance, energy consumption andEnergy∗
Delay2 which are comparable to, and often better than, those
achieved by the best static execution scheme. The best sta-
tic scheme can only be known through an oracle or exhaustive
experimentation. Our scheme also outperforms by significant
margins other runtime program adaptation schemes that use di-
rect search approaches, in terms of performance, energy and
energy-delay metrics.

The rest of this paper is organized as follows. Section 2 dis-
cusses related work in the area of performance and power adapta-
tion on parallel architectures. In section 3, we present the complete
power-performance adaptation framework. Section 4 presents our
experimental analysis and results. Finally, section 5 concludes the
paper.

2. RELATED WORK
Our work relates to prior research in four thematic areas: runtime

loop-level concurrency control for high performance paralleliza-
tion; event-driven accounting of energy using hardware counters;
compiler-driven and architecture-driven schemes for energy sav-
ings on CMPs; and symbiotic job scheduling on SMTs and CMPs.

2.1 Runtime Loop-Level Adaptation for High
Performance

Researchers have used live timing analysis of loops in iterative
parallel codes to improve performance by controlling the number
of worker threads and the loop scheduler used by the runtime sys-
tem on a loop by loop basis. Recent relevant research efforts using
Intel’s Hyperthreaded processors as a test bed have been presented
by Zhang and Voss [19] and by Jung et al. [7]. These schemes
are not power-aware, since they consistently activate all processors
in the system, even in cases when activating less processors could
be done without harming performance. Furthermore, live timing
analysis of loop executions requires substantial runtime overhead
and may force short-lived programs or programs with fine-grain
phases to execute for significant parts of their lifetime with sub-
optimal configurations. Our work overcomes this problem using
instantaneous and direct performance and power predictions.

The classification tree approach for prediction presented in [19]
partially mitigates the runtime overhead but suffers from two draw-
backs which make it unsuitable for our purposes. The first is that
classification trees have difficulties accurately predicting continu-
ous performance metrics, in particular when multiple, numerically
close predictions need to be compared to derive a decision on the
optimal operating point for a given phase of the program. Sec-
ond, classification based on absolute values of events is inferior as
a performance or power predictor, since the absolute number of oc-
currences of an event does not necessarily reflect the contribution
of the event to either execution time or power consumption.

Jung et al. [7] use fixed thresholds to decide between using one
or two hyperthreads per processor and between executing loops
sequentially, or using all processors. Their adaptation scheme is
based on the threshold value of a single metric, namely L2 cache
misses per instruction. Our work shows that performance adapta-
tion with a single classifier is inadequate for locating power and
performance-efficient program execution points across the spec-
trum of possible processor/thread configurations. For example, the
parallel loop at line 43 of filel2norm.f of the LU-HP benchmark
of the NAS benchmarks suite, has a miss rate per instruction per
thread of 0.016 or higher. The threshold used in [7] for switching
off Hyperthreading was 0.01 on the same processor that we use for
our experiments. However, the specific loop consistently obtains
performance improvement of at least 30% per processor, when Hy-
perthreading is activated.

2.2 Event-Driven Accounting of Energy
Power modeling using hardware event counters (also known as

hardware performance monitoring counters), is a relatively recently
explored area. The characteristic of hardware counters which makes
them an appealing option for estimating runtime power consump-
tion is that they reflect the activity levels of different components
of the microprocessor over time. Combining these activity lev-
els with power consumption estimates for each individual compo-
nent leads to simple, yet accurate power estimation methodologies.
Such methodologies have been presented by Weissel and Bellosa
[18], and Isci and Martonosi [5]. The model proposed in [5] is pro-
hibitively costly for runtime power estimation and optimization. It
requires four complete program executions with different, rotating



counter configurations, in order to collect the necessary input infor-
mation. Therefore, although our work uses this model for offline
power and energy consumption measurements of program execu-
tions, we use a simpler and faster relativistic power model to esti-
mate the impact of concurrency control on power consumption at
runtime.

2.3 Compiler-Driven and Architectural Mech-
anisms for Power Control on CMPs

The optimizing compiler and computer architecture communi-
ties have recently studied the problem of power-efficient program
execution on chip multiprocessors from various perspectives, using
predominantly simulated chip multi-processors.

Liu et al. [12] have exploited idle time during barriers to stretch
computation via DVFS and conserve energy without harming per-
formance. Our contribution, which is based on granularity control,
is complementary and orthogonal to DVFS-based schemes.

Li and Mart́ınez [11], presented some runtime search algorithms
for DVFS and processor control, to find power-efficient program
execution points on chip multiprocessors. The authors used a com-
bination of hill climbing, binary search and linear search to find lo-
cally optimal numbers of processors and voltage/frequency levels,
given specific performance targets. Reduced search overhead via
prediction is one important difference in our work. Furthermore,
their scheme searches program configurations with a fixed perfor-
mance target, while our scheme searches for aninitially unknown
optimal (from a performance or power-performance perspective)
operating point. In other words, our scheme does not require prior
knowledge of application performance characteristics.

2.4 Symbiotic Job Scheduling on SMTs/CMPs
Several researchers have investigated the problem of symbiotic

job scheduling on SMTs, CMPs and layered designs (e.g. CMPs of
SMTs), using approaches similar to our work.

Moseley et al. [15] presented two methods, based on classifi-
cation trees and linear regression respectively, to predict theIPC
of sequential programs when executed in pairs on a Hyperthreaded
processor. Their methods use as input a sample of the rates of some
selected hardware events during an execution interval (25 million
cycles), to predict theIPC of the same program during the next exe-
cution interval. The predictedIPC values are used in turn to derive
decisions for co-scheduling highIPC with low IPC threads on each
SMT, thereby achieving better thread symbiosis [17]. Our work
has a different objective, since it targets power-efficient execution
of parallel programs, rather than efficient execution of workloads
of multiple sequential programs. In terms of the prediction model
used, the scheme presented in [15] uses uniform random sampling
of the program to delineate phases, whereas our scheme identifies
phases at the boundaries of recurring parallel regions. A third im-
portant deviation is that we employ a different performance pre-
diction model, using event rates as multiplicative factors forIPC,
instead of linear components ofIPC [17].

DeVuyst, Kumar and Tullsen have recently proposed various
symbiotic job schedulers for CMPs of SMTs [2]. Their sched-
ulers, similarly to our framework, use runtime performance pro-
jections. More specifically, they use direct measurements of per-
formance and energy, such asIPC, and PowerperCycle/IPC or
PowerperCycle/IPC2. These measurements are used as feedback
to their decision making process which can optimize for perfor-
mance, energy, or both, by shuffling threads across cores and mov-
ing threads away from underutilized cores. Our runtime system
uses similar metrics as theoutput of our predictor, however we
sample only two occurrences of each program phase and the in-

put to our predictor consists of multiple event rates. Using input
from multiple hardware event counters is necessary in our frame-
work, since standalone values of IPC are not strong indicators of
scalability across configurations with a variable number of proces-
sors or threads. Although the scheme in [2] shares the objective
of optimizing performance and energy on layered multiprocessors
with our work, it targets multiprogram workloads of sequential pro-
grams and cannot be applied for the adaptation of parallel codes.

3. POWER-EFFICIENT PROGRAM EXECU-
TION USING INSTANTANEOUS PERFOR-
MANCE PREDICTION

Earlier efforts on adaptive parallel program execution techniques
on multiprocessors – including chip multiprocessors, SMTs, and
multi-SMTs – have heavily relied upon runtime searching of pro-
gram configurations, using different numbers of threads/processors,
and/or different voltage/frequency levels. An enabling factor for
using direct search methods is that many applications, particularly
in the scientific and engineering computing domains, have domi-
nant periodic phases. The applications execute multiple iterations
of discrete parallel execution phases. Some of these iterations can
thus be leveraged for a direct search of the best program configura-
tion for any given phase.

Unfortunately, there are several disadvantages in using direct
search approaches for runtime adaptation. On systems with a large
number processors, cores per processor, threads per core, or volt-
age/frequency levels, direct search can span many iterations through
the execution life of the application, during which the application is
executed with mostly sub-optimal configurations, incurring signif-
icant performance and power penalties. Furthermore, many impor-
tant codes have only few main iterations, or have fine-grain, short-
lived parallel execution phases, during which direct search is often
infeasible. Although direct search may be improved with heuris-
tics such as hill climbing [1, 11], with microprocessor technology
moving to multicore designs with more cores and higher degrees
of multithreading in each core, direct search methods may prove
inadequate and inefficient.

Our contribution in this context is a comprehensive, self-managed
runtime adaptation scheme, based on predictions of the optimally
exploitable number of execution contexts at each architectural layer
of the system, namely processors, cores per processor and threads
per core.

3.1 Basic Performance Prediction Strategy
In the following discussion, we assume for simplicity a two-level

multiprocessor architecture, with multiple SMT processors. Our
scheme performs a two-level prediction for selecting how many
processors and how many threads per processor to use in each par-
allel execution phase. The prediction scheme uses input from two
test executions of the phase on all available processors (all procs),
one with multithreading activated (SMTactive= 1), and a second
with multithreading deactivated (SMTactive= 0) on each proces-
sor1. More specifically, the input consists of the two observed IPCs
(IPCobs(all procs,SMTactive)) and a set of additional hardware perfor-
mance metrics (m1(all procs,SMTactive), ...,mn(all procs,SMTactive)) ob-
served at runtime, during each of the two test executions. We note
here that we assume that the test executions of each phase are on the
critical path of the program and they are not off-line experiments.

1On an SMP with 4 SMT processors, supporting 2 threads
each, the test configurations would be(4procs,2thr/proc) and
(4procs,1thr/proc).



All the aforementioned performance metrics are attained from per-
formance monitoring counters, a resource available on all modern
microprocessors.

For our purposes, a phase is defined as a parallel region. Our pre-
dictor is not dependent on the number of processors or the number
of threads or execution cores available on each processor. Instead, it
applies as many prediction steps as the number of architectural lev-
els available in the machine. In a three-level multiprocessor (mul-
tiple processors, each a CMP, with multiple threads in each core),
our predictor would obtain input from 3 executions, one targeting
each of the discrete architectural levels of the system.

For each possible configuration (nproc,nthr/proc), we predict
performance in terms of the estimated cumulative IPC (IPCest) across
all processors/threads executing the application:

IPCest(nproc,nthr/proc) = IPCobs(all procs,SMTactive)

·H(nproc,nthr/proc)(m1(all procs,SMTactive), ...,mn(all procs,SMTactive))

+e(nproc,nthr/proc) (1)

Equation 1 estimates the IPC for the target configuration (nproc,nthr/proc)
using a transfer functionH(nproc,nthr/proc)() to scale the observed

IPC at the corresponding test execution2. The estimated IPC is then
corrected by a constant residual (e(nproc,nthr/proc)). The transfer
function is a linear combination of the hardware performance met-
ricsm1(all procs,SMTactive), ...,mn(all procs,SMTactive) observed during
the corresponding test execution. It should be noted that the model
applies a differentH() ande for each target configuration.

Our performance predictor is based on the assumption that the
relative difference in the IPC between parallel executions under
different processor / threads per processor configurations is equiv-
alent to the relative performance difference attained by those con-
figurations. This assumption is valid in the context of data-parallel
loops, since the total computational load – and thus the total num-
ber of instructions – is independent of the way the loop is executed.
Our technique excludes the overhead of synchronization instruc-
tions from IPC measurements and estimations. Spinning at syn-
chronization points results in many instructions that are unrelated
to the main computation, which obfuscates predictions by distort-
ing instruction count and instruction stream characteristics.

Our framework supports OpenMP programs and leverages the
OpenMP mechanisms for controlling the number of threads used on
a region by region basis. It includes our own customized library for
monitoring performance and for binding threads on specific proces-
sors and hardware contexts within processors. Our model requires
N + 1 invocations (including a warmup iteration) of each parallel
phase to predict IPC for all possible configurations on anN− level
layered multiprocessor. Our predictor directly selects the most “ef-
ficient” configuration, based on the IPC predictions. The criterion
for efficiency is adjustable and can be tuned to give priority to per-
formance, power or a combination of power and performance.

3.2 Predictor Details

3.2.1 Selecting Hardware Events for Prediction
The hardware events we use for prediction, quantify basic performance-

limiting events, both within and across processors. They are all
normalized with respect to the duration (in clock cycles) of each
parallel region. More specifically, we monitor therate of bus ac-
cesses, as an indicator of memory access intensity and contention
2Depending on whether the target execution has simultaneous mul-
tithreading activated or not.

for accessing the shared bus, therate of L2 cache misses, as an in-
dicator of locality and potential interference for the shared cache
by threads executing on the same SMT processor, thepercentage
of cycles in which the processor’s trace cache is in deliver mode,
as an indirect indicator of the instruction cache hit ratio on the Intel
P4, therate of branch instructions, as an indicator of the granular-
ity – or indirectly the length – of basic blocks in the target parallel
region, therate of mispredicted branches, as an indication of the
frequency of pipeline flushes and discarding of speculative compu-
tation, andretired instructions per cycle (IPC), which is used as the
basis for the calculation of the estimated IPCs of the other configu-
rations.

Our choice of hardware events can also be justified in quantita-
tive terms. The Hyperthreaded Pentium processor support count-
ing of up to 18 individual hardware events, shared between the two
hyperthreads. Not all combinations of events are permissible on
the counters. An optimal exhaustive event selection strategy would
try all permissible combinations of events on the 9 counters cor-
responding to each thread and select the combination which is the
most accurate in predicting IPC across configurations. Such an ex-
haustive search is impractical. Furthermore, only few events affect
performance significantly, and thus should be used for performance
predictions. Therefore, we ignored events with negligible occur-
rence rates. Besides the 6 events mentioned above, other events
that seem to contribute significantly to performance are memory
hierarchy events (such as L1 misses and TLB misses). Unfortu-
nately, L1 and TLB misses cannot be measured in addition to the
aforementioned set of events, due to conflicts for counters / config-
uration registers. Furthermore, L1 and TLB misses are, intuitively,
less significant contributors to performance and scalability than L2
cache misses and bus accesses on our experimental platform, in
which the limited memory bandwidth is a primary concern.

Finally, we performed a simple sensitivity analysis to investi-
gate whether each of the 6 selected events contributes to prediction
accuracy. Our results (not shown due to space considerations) in-
dicated that each of the 6 events contributes to an improvement of
prediction accuracy, and the prediction accuracy may improve by
as much as 44%, as the event set is grown incrementally from 1 to
6 events. Certain events, such as instructions per cycle and bus ac-
cesses per cycle are more critical than others in terms of affecting
prediction accuracy.

3.2.2 Estimation of the Transfer FunctionsH()
As we mentioned in section 3.1, the transfer functions used to de-

rive an IPC prediction for a specific configuration(nproc,nthr/proc)
are linear combinations of performance metrics monitored during
a test execution(all procs,SMTactive) of the target code region.
Each transfer functionH(nproc,nthr/proc) can be written as:

H(nproc,nthr/proc)(m1(all procs,SMTactive), ...,mn(all procs,SMTactive))

=
n

∑
i=1

(ai(nproc,nthr/proc) ·mi(all procs,SMTactive) +bi(nproc,nthr/proc))

+c(nproc,nthr/proc) (2)

Combining equations 1 and 2, the IPC estimation for a specific
configuration(nproc,nthr/proc) is calculated – starting from IPC
and hardware metrics observations from the test execution of the
configuration(all procs,SMTactive) – as:

IPCest(nproc,nthr/proc) =
n

∑
i=1

(ai(nproc,nthr/proc) ·mi(all procs,SMTactive)



·IPCobs(all procs,SMTactive))+d(nproc,nthr/proc)

·IPCobs(all procs,SMTactive) +e(nproc,nthr/proc) (3)

whered(nproc,nthr/proc) = c(nproc,nthr/proc) +∑n
i=1bi(nproc,nthr/proc).

As a result, the estimation of the transfer function for a specific
configuration(nproc,nthr/proc) is equivalent to the estimation of
the coefficientsai(nproc,nthr/proc) andd(nproc,nthr/proc), as well as of
the residuale(nproc,nthr/proc).

The coefficients and the residual are calculated by applying lin-
ear regression off-line, using the least squares method, on a train-
ing population of parallel regions. After selecting a subset of our
benchmarks for training, we executed each benchmark in the train-
ing set statically with a fixed(nproc,nthr/proc) combination through-
out each execution, and repeated the same executions for all valid
combinations ofnprocandnthr/procavailable on the system. The
resulting cumulative IPC has been recorded for each parallel re-
gion in the training set. For the configurations that correspond to
test executions, we have also recorded the values of the 5 additional
metrics (mi(all procs,SMTactive)) for the events listed in section 3.2.1.
The set of benchmarks used in the training process is entirely dis-
joint from the set of benchmarks used in our evaluation.

During the training for each target configuration, the observed
IPC for the specific configuration plays the role of thedependent
variable. Theindependent variablesare the productsmi(all procs,SMTactive) ·
IPC(all procs,SMTactive), as well as the IPC(all procs,SMTactive) alone.
The application of linear regression on the training population re-
sults in estimations for the coefficientsai(nproc,nthr/proc), d(nproc,nthr/proc)
and the residuale(nproc,nthr/proc). These off-line calculated values
are used in equation 3 to derive – at run-time – IPC estimations
for all possible configurations of a target parallel region, given the
performance data collected during the two3 test executions of the
specific region.

To further refine our prediction model, we divided the IPC ob-
servations in two buckets, using the IPC value of 1.0 as a threshold,
and applied our regression process independently for the samples
in each bucket. The rationale behind this decision was to derive
different scaling coefficients of IPCs for scalable and non-scalable
parallel regions. The threshold value of 1.0 was selected from em-
pirical observation of IPC scaling in our test cases. More educated
threshold selection strategies will be investigated in future work.

3.2.3 Adaptation Criteria
The performance predictor is flexible and can be used to provide

input to adaptive strategies. Our adaptive infrastructure integrates a
multitude of strategies, targeting different performance/energy op-
timization criteria.

The simplest strategy is a pure performance-oriented one. The
adaptive policy selects the configuration that results in the high-
est cumulative predicted IPC across all possible(nproc,nthr/proc)
configurations. Although the strategy is not directly energy aware,
it has the potential of improving energy consumption by reducing
application execution time, since several parallel regions execute
faster with a less than maximum degree of concurrency. Further,
through the performance oriented deactivation of processors, less
power is consumed as well. A slight variation of this policy allows
some performance penalty, to a user-specified extent, if this can po-
tentially predict a configuration that uses fewer processors and thus
consumes less power.

More sophisticated adaptation strategies take directly into ac-
count energy consumption and try to optimize either pure-energy or
energy/performance combining criteria. As we explained in section

3In the case of a 2-level architecture.

Config (1,1) (1,2) (2,1) (2,2) (3,1) (3,2) (4,1) (4,2)
Power 0.32 0.34 0.55 0.59 0.79 0.81 1.0 1.01

Table 1: Power scaling coefficients used to approximate the
expected cumulative power consumption of all processors of
our experimental platform, under different configurations.
Power is normalized with respect to the consumption in the
(4 processors/ 1 thread per processor) configuration.

2.2, existing models for power consumption estimation through
performance counters [5] are not practical for use in an online run-
time power adaptation strategy, since they require four whole ex-
ecutions of the target code region in order to collect all necessary
metrics. As a work-around, we use static, scaling coefficients to
approximate the expected power consumption in different configu-
rations, with respect to the power consumption of a base case. The
coefficients are calculated by applying the power estimation model
to the same population of training regions used for the estimation
of transfer functions for IPC scaling (section 3.2.2). Table 1 sum-
marizes the static power coefficients derived for our experimental
platform.

A pure, energy-driven adaptation strategy estimates the relative
energy consumption under different configurations by multiplying
the estimated CPI (1/IPC) for each configuration by the respective
power scaling coefficient. The strategy then executes each region
with the configuration that results in the lowest energy consump-
tion. energy-driven policy often favors executions with Besides en-
ergy, metrics such asenergy×delay(ED) orenergy×delay2 (ED2)
are also popular in the context of high performance computing sys-
tems [14], since they take into account both the energy savings and
the potential performance penalty. We implemented an ED- and an
ED2-driven strategy, in which we estimate the relative ED and ED2

among different configurations by multiplying the power scaling
coefficient for each configuration with the estimated CPI2 or CPI3

respectively.

3.2.4 Implementation Issues
Our power/performance-centric adaptation infrastructure is im-

plemented – without limitations in its applicability – in the context
of a back-end runtime library for applications parallelized using
OpenMP. It uses the boundaries of parallel regions as phase mark-
ers4. At the same time, it intercepts entries and exits to/from the
body of each parallelized loop. The interception is performed right
after the work distribution code and right before the barrier-type
synchronization that are usually introduced by the OpenMP run-
time at the beginning and at the end of loops respectively, in order
to avoid distorting the measured performance data by code unre-
lated to the main computation performed in each loop.

As explained earlier, a set of performance metrics is monitored
during the two test configurations executed at the first two invoca-
tions of each parallel region. The performance-related information
is read from the performance monitoring counters of the processor.
We use PACMAN (PerformAnce Counters MANager), our custom
performance monitoring library, to configure performance moni-
toring hardware and read the data. PACMAN, in turn, uses the
Perfctr kernel-level driver [16] to gain access to the counters and
their configuration registers. We use per-thread performance mon-
itoring, instead of system-wide performance monitoring. System-
wide monitoring supports a safe sampling rate of only 10 Hz, since

4The boundaries of loops would be more accurate phase markers,
however the OpenMP specification prohibits varying the number of
processors inside a parallel region.



Bench. BT CG FT IS LU LU-HP MG SP UA MM5
Iter. 200 15 6 10 250 250 4 400 200 180

Regions 10 14 8 5 10 20 13 15 59 189
Re-exec. 5 5 5 1 3 11 6 9 49 70
regions

Table 2: Benchmarks used throughout our experimental eval-
uation. UA and MM5 were used for training.

Benchmark IPC Error (%)
BT 9.34
CG 18.33
FT 25.07
IS 127.33
LU 27.91
LU-HP 15.32
MG 11.14
SP 8.46
All 19.5

Table 3: The accuracy of the IPC predictor, measured as the
weighted percentage of difference between predicted and actual
IPC across all parallel regions in all valid static configurations.

the values returned by Perfctr are updated approximately every 100
msec, at scheduling points or upon entry to / exit from the kernel.
Per-thread monitoring directly reads the values of the counters on
the processor on which the thread executes. As a result, it allows
frequent sampling of the counters and is suitable for monitoring
very fine program regions.

Pentium 4 processors share performance monitoring hardware
between the threads simultaneously using the two execution con-
texts of the processor. As a result, conflicts may occur if both
threads attempt to use the same counter- or configuration-register.
In order to eliminate conflicts, Perfctr allows threads that use per-
formance monitoring to execute only on the first execution context
of each processor. We have removed that limitation from Perfctr
and delegated to PACMAN the assignment of non-conflicting per-
formance monitoring configurations for threads executing on the
same processor, as well as the binding of threads to specific proces-
sors and execution contexts within each processor. It should be
pointed out that the binding scheme also targets the minimization
of cache distortion and the optimal exploitation of already cached
data whenever configurations are changed, either across different
parallel regions, or during the initial test executions of each paral-
lel region.

Whenever a processor remains idle, the operating system has the
option to put it at its deepest power-saving mode. For Intel Pen-
tium 4 processors, for example, this is achieved by executing the
privilegedhlt instruction. The overhead of transferring a Pentium
4 processor to the halted state and back is less than 1000 cycles
[19], whereas the power consumption of the processor is reduced
by approximately 7W (from 9W when idling to 2W in halted state).
Although our adaptive strategies do not directly put processors in
halted state, they leave processors idle whenever possible, allow-
ing the operating system to demote them to halted state. In fact,
our experimental results indicate that the processors are halted dur-
ing 89% of their idling time in the course of our adaptive program
executions.

4. EXPERIMENTAL RESULTS

4.1 Experimental Setting
To evaluate our power-performance adaptation framework, we

used nine OpenMP benchmarks from the NAS Parallel Benchmarks
suite [6] (version 3.1) and an OpenMP implementation of a mesoscale
weather prediction model, MM5 [4]. The NAS benchmarks used
are BT, SP, LU, LU-HP, CG, FT, MG, IS and UA. For the results
presented in this section, we used the parallel regions in UA and
MM5 as our training set and the rest of the NAS benchmarks as
our test set. UA and MM5 combined contain a fairly large number
of parallel regions (248 in total), with a wide variance in absolute
performance (IPC), scalability, granularity, locality and other per-
formance and power-critical characteristics. In general, our train-
ing set selection strategy was to select minimal sets of applications
with a good coverage of regions that stand at the opposite ends
of the performance and scalability spectra. Here we use one out
of many possible training sets from our benchmark collection that
meet our selection criterion.

We experimented on a Dell PowerEdge server, composed of 4
Hyperthreaded Intel Xeon MP 1.4GHz processors, with 1GB of
main memory. Each processor has a 512KB level-3 cache, a 256KB
level-2 cache, a 8KB level-1 data cache and a 12KB level-1 instruc-
tion trace cache. The system runs Linux kernel version 2.4.25. We
compiled the benchmarks with the Intel FORTRAN compiler (ver-
sion 9.0). We ran the NAS benchmarks with the problem size set to
class A, which is large enough to yield realistic results, while be-
ing small enough to ensure that the working sets of all applications
fit entirely in main memory. The benchmarks used for testing our
runtime system and our prediction model contain applications with
as few as 4 and as many as 400 outermost loop iterations (see Table
2), as well as a varying number of recurring parallel regions, rang-
ing from 1 in IS to 11 in LU-HP. Recurring parallel regions offer
opportunities for power-performance adaptation.

4.2 Results

4.2.1 IPC Predictor Accuracy
Table 3 shows a direct evaluation of the accuracy of the IPC pre-

diction model described in section 3. The IPC predictor is eval-
uated as follows. For each parallel region, and for each of the 8
possible static configurations to execute the region, we record the
observed IPC and the IPC predicted by our model. We calculate
the normalized error (as a percentage) and we weigh the error with
the weight of the region in the parallel code. The weight of the
region is the percentage of parallel execution time attributed to the
region. Finally, we sum the weighted errors to derive a single IPC
error rate for each benchmark. Table 3 summarizes these results.
We observe that the weighted IPC error is under 20% in five out
of our eight test cases and is unacceptably high only in IS. Note
however that although the IPC error is very high in IS, our model
correctly predicts the optimal configuration to execute the single
parallel execution phase of the benchmark. Overall, the IPC predic-
tion accuracy is good, considering the simplicity of our prediction
model, and its performance compares very favorably to the perfor-
mance of other statistical approaches for IPC prediction reported in
the literature [3].

Another point of comparison for our IPC prediction model are
previously proposed models in which IPC is predicted as a linear
combination of individual hardware event rates and partial prod-
ucts of event rates [15], rather than with a transfer function. We
replicated the model presented in [15], in which both individual
events rates and all intermediate products of event rates are used
as independent variables to predict IPC, the dependent variable in
the regression model. Using the same training set as used for our



% Parallel execution time Weighted performance
with optimal prediction improvement/loss in

mispredicted regions
BT 64.10 -0.83
CG 0.01 +11.27
FT 51.86 +18.49
LU 99.39 -0.05

LU-HP 94.45 -0.08
MG 88.03 +4.63
SP 27.88 -1.28
IS 100 0.00

AVG 65.72 +4.02

Table 4: Configuration prediction accuracy of our model. The
second column shows the percentage of parallel execution time
during which our model predicts correctly the best static opti-
mal configuration. The third column shows the weighted per-
formance improvement or loss incurred in the regions where
our predictor mispredicts the optimal configuration.

approach, the IPC prediction error of that model ranged between
84% and 700% across all static configurations of our benchmarks.
This clearly shows that our model is more effective at predicting
IPC values across system configurations than that proposed in [15].

Though a useful indicator, the absolute IPC prediction error it-
self is not the most important metric of effectiveness for our predic-
tion model. Our predictor will only be effective if it selects operat-
ing points which are identical to or near (in terms of performance
and power consumption) the optimal operating points that would
be selected by an oracle. In other words,optimal configuration
prediction accuracyis a more important metric than absolute IPC
prediction accuracy for our predictor.

Table 4 provides insight into the configuration prediction accu-
racy of our model. The table shows two indicators of configuration
prediction accuracy: The fraction of time during which the adap-
tive version of each benchmark executes with the optimal config-
uration predicted correctly by our predictor; and the weighted per-
formance loss (or gain) in the remainder of each benchmark, while
our predictor mispredicts the optimal configuration. We calculate
this weighted performance difference as∑NB

i=1wi ×Di , whereNB
is the number of mispredicted regions in benchmarkB, wi is the
weight of each mispredicted region expressed as the percentage of
the total parallel execution time ofB that the region accounts for,
andDi is the performance improvement (positive) or loss (negative)
in mispredicted regioni, compared to the performance of the best
static configuration for the same region.

As can be seen from the second column in Table 4, our pre-
dictor successfully predicts and executes regions with the optimal
program configuration (in terms of both number of processors and
the threads per processor) during 65.7% of the execution time of
our benchmarks, on average. In 3 benchmarks, LU, LU-HP and
IS, prediction accuracy in terms of deriving the optimal program
configuration is excellent. Prediction accuracy is also very good in
MG. In the 3 applications where optimal predictions are used dur-
ing 94% or more of the execution time (LU, LU-HP, IS), the penalty
of mispredictions is marginal, ranging from 0 performance loss (IS)
to a maximum performance loss of 0.08% (LU-HP). In MG, there
is actually a performance gain from misprediction of one region,
which is explained in detail in the following paragraphs.

The four programs in which the predictor is suboptimal in terms
of deriving the best configuration for each region (BT, CG, FT and
SP) merit further discussion. Detailed examination of the results in-
dicates that mispredictions incur a very small performance penalty
in BT and SP (0.8% and 1.3% respectively). In CG and FT, mis-

predictions incur a seemingly counter-intuitive, and non-negligible
performance improvement. In BT and SP, our predictor always
predicts the second best static configuration, and the difference in
performance between the two top configurations is marginal. The
counterintuitive result in CG and FT is explained as follows.

CG has 3 consecutive mispredicted parallel regions. Let us name
these regionsR1, R2, R3. R2 accounts for 96% of the execution
time. In those 3 regions our predictor predicts configuration (4,2)
i.e. 4 processors, 2 hyperthreads per processor as the optimal, whereas
the statically optimal configuration is (4,1). However, the statically
optimal configuration of the parallel region immediately preceding
the 3 mispredicted regions (we name itR0) is (4,2). Our predic-
tor retains (4,2) as the chosen configuration across the 4 consecu-
tive regionsR0, . . . ,R3, whereas an optimal static execution would
switch the configuration from (4,2) inR0 to (4,1) inR1, . . . ,R3. This
switch would incur a non-negligible performance penalty due to
cache interference and changes in the working sets of the 4 threads
that stay alive after the switch from (4,2) to (4,1) inR1. By not
changing the configuration, our predictor actually preserves cache
locality and executes the dominant mispredicted regionR2 about
12% faster than the statically optimal configuration. SinceR2 cov-
ers more than 96% of the program, the overall performance of the
adaptive execution with the predictor is better than that of the best
static execution. The exact same phenomenon is observed in FT
for 3 consecutive regions that account for more than 80% of the
parallel execution time, and in MG for 3 consecutive regions which
account for more than 70% of the parallel execution time.

To summarize, we observe that our predictor matches optimal
oracle-derived predictions almost perfectly in a variety of bench-
marks, and in the cases where it mispredicts, the performance penalty
is either negligible, or non-existent, since the predictor often dic-
tates that the runtime system should maintain a stable configuration
across critical program phases and preserve cache performance.

4.2.2 Performance and Energy Impact
Figure 1 depicts the execution times attained by different static

configurations and dynamic adaptation strategies for the 8 bench-
marks from the NAS suite. It is clear from the diagrams that, in
many cases, providing more processors / threads to the application
does not necessarily improve execution time. CG, for example,
performs optimally with 3 threads, distributed across 3 different
physical processors. Activating more processors or threads results
in performance degradation. At the same time, the activation of the
4th processor obviously increases power and energy consumption
as well. Dynamic adaptation policies look for such optimal points
in the configuration space of applications in order to optimize ei-
ther performance or an energy/performance combining metric. Fig-
ure 2 depicts the performance of dynamic, adaptive strategies, with
respect toenergy(E), energy× delay (ED) and energy× delay2

(ED2), normalized over the static execution with 8 threads. The lat-
ter would normally be the natural configuration choice for a system
with 4 processors and 2 Hyperthreads per processor. The rightmost
column in each bar group corresponds to the optimal static config-
uration with respect to each metric. It should be noted that even in
cases when all 4 processors are used by an adaptation strategy, en-
ergy savings and performance improvement can often be obtained
by deactivating the second Hyperthread on each processor.

The simplest adaptive strategy is the one that optimizes execu-
tion time for each region, based on exhaustive search of all pos-
sible configurations (exh in the diagrams). Exhaustive search out-
performs the execution time of the static configuration using eight
threads in all but one case (CG), by an average of 9%. It is also
better in terms of ED2 for all applications (32% on average). At the
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Figure 1: Execution time of the benchmarks under the 8 different static configurations (left side) and the 7 dynamic adaptation
strategies (right side). The best performing static configuration for each application has been marked with striped bars.

same time, it is – on average – 21% more energy efficient than the 8
threads configuration. However, exhaustive search suffers from ex-
tensive overhead during the search phase. The effect of the search
phase overhead is more profound in applications with few outer-
most iterations. As a result, exhaustive search proves on average
18% slower than the execution time optimal static configuration.

In a previous work we presented HPPATCH [1], a hill-climbing
search-based adaptive heuristic. HPPATCH performs a localized
search of the configuration space. It starts from the (4,2) static
configuration and looks for a configuration that results in a local
minimum in terms of execution time. HPPATCH has the potential
to decrease the total number of search iterations, and thus the asso-
ciated overhead. At the same time, however, it may get trapped in a
sub-optimal local minimum and fail to identify the best configura-
tion. When compared to statically using eight threads, HPPATCH
is 10% faster and uses 18% less energy on average. It is however
15% slower than the optimal, execution time-wise, static config-
uration. Even with the reduced number of search iterations, the
initialization overhead is still non-negligible in applications with
few outermost loop iterations, such as FT, IS and MG. Excluding
these applications, HPPATCH is able to match – on average – the
execution time of the optimal static configuration.

The performance adaptation strategy based on IPC prediction
(Pr in diagrams) reduces the length of the search phase to just
two iterations. When compared to the static 8 threads configura-
tion, IPC prediction-based adaptivity is, on average, 22% faster.
This corresponds to 14% and 13% improvements over exhaustive
search and HPPATCH respectively. Even compared to the execu-
tion time optimal static configuration, IPC prediction-based adap-
tivity is faster by 2%. In fact, the only static configurations that
outperform predicted IPC-based adaptation are for FT, IS and MG.

This dynamic adaptation strategy performs well with respect to
energy/performance-centric metrics, too. It consumes 26% less en-
ergy, compared to the static execution with 8 threads. The adap-
tive approach locates opportunities to execute with fewer proces-
sors and thereby consume less power, while – at the same time
– reducing execution time as well. As a result, it also improves
ED2 by 49%, with respect to the 8 threads static execution and is
within 11% of the ED2-optimal static configuration. Even in ap-
plications with few iterations (FT, IS and MG), the IPC prediction-
based adaptive policy minimizes the overhead of the search phase
and results in execution times within 6% of that of the optimal static
configurations for these applications.

The next type of adaptation approach that we considered toler-
ates some degree of performance loss if this would allow using
a configuration that consumes less power. We experimented with
acceptable performance loss of 5%, 10% and 25%. In practice, ac-
tivating a configuration which tolerates even a 5% lower IPC (Pr
(5%) in the diagrams) often proved to result in a significant execu-
tion time increase. As a result, the potential energy savings from
the use of fewer processors are outweighed by the execution time
penalty. In fact, for all metrics, IPC prediction-based adaptivity
without performance loss tolerance outperforms – on average – that
with performance tolerance.

The adaptive strategy that directly targets the optimization of en-
ergy consumption (Pr E in diagrams) proves unsuitable in the con-
text of a high performance computing environment. Despite the
fact that it results in a 34% average reduction of energy consump-
tion compared with the static, 8 threads execution, it still consumes
23% more energy than the energy-optimal static configuration. At
the same time, it was on average 42% slower than a static execution
with 8 threads. Table 5 reveals that the energy optimization strategy
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Figure 2: Performance of the dynamic adaptation strategies in terms of energy (first group of bars), energy*delay (second group
of bars) and energy*delay2 (third group of bars). Each group of bars has been normalized with respect to the performance of the
(4 processors/2 threads per processor) static configuration for the respective metric. The rightmost bar in each group corresponds to
the optimal static configuration for the respective metric.

Bench BT CG FT IS LU LU-HP MG SP
Exh 3.84 3.01 3.30 2.33 3.93 3.81 3.69 3.63
HPPATCH 3.99 3.82 3.76 1.83 4.00 3.51 3.57 3.99
Pr 3.94 3.98 3.90 1.61 4.00 3.86 3.16 3.65
Pr (5%) 3.94 3.99 3.81 1.62 4.00 3.01 3.43 3.55
Pr E 2.43 1.47 2.94 1.60 1.02 1.02 1.95 1.01
Pr ED 3.19 2.46 2.92 1.62 4.00 2.07 2.77 2.09
Pr ED2 3.14 2.46 2.83 1.61 4.00 2.09 3.03 2.29

Table 5: Average number of processors used during the adap-
tive executions of the benchmarks, for each of the seven tested
adaptation strategies.

favors executions with few processors, often downgrading parallel
applications to sequential execution. This results in an unaccept-
able performance penalty, as the reader can observe in Figure 1.

The last two adaptive strategies focus on the minimization of the
ED and ED2 metrics (Pr ED andPr ED2 in the diagrams respec-
tively). The average ED and ED2 improvements over the static
execution with 8 threads are in the range of 33% and 39% respec-
tively. However, the two strategies are 27% and 34% worse than
the ED and ED2 optimal static configurations. At the same time,
the ED and ED2 attained by the pure IPC-based adaptation strategy
are better than the ones attained by strategies specifically targeting
the optimization of ED and ED2 by 9% and 16% respectively. ED-
and ED2-centric strategies tend to deactivate processors in order to
reduce power consumption. This trend is clear in table 5. However,

they frequently select too few processors, thus increasing execution
time on average by 18% and 14%. This happens due to the fact that
any error in CPI prediction is amplified when a prediction is made
for ED or ED2 because the CPI prediction is raised to the second
and third powers respectively, as discussed in section 3.2.3. For
example, if the CPI prediction error is only 10%, then the resulting
prediction error for ED will be 21%, and 33% in the case of ED2. It
should also be taken into account that energy estimations are based
on static energy scaling coefficients. We expect the performance
of ED and ED2-centric adaptation strategies to significantly benefit
from more accurate, performance counters-driven, run-time power
estimators, which are in the focus of our future work.

Overall, the performance-centric adaptive strategy driven by IPC
predictions outperforms the other adaptive approaches in all met-
rics (execution time, E, ED, ED2). Moreover it is significantly more
efficient compared with static executions which activate all execu-
tion resources of the architecture and proves comparable to or bet-
ter than optimal, oracle-chosen static configurations. The adaptive
strategy is based on a fast, accurate online IPC predictor which re-
duces the configuration search phase to just 2 iterations and at the
same time yields optimal or almost optimal configuration predic-
tions for each parallel region of the program.

5. CONCLUSIONS AND FUTURE WORK
Chip multithreading provides a hardware environment in which

software can be optimized for multiple performance and energy ob-
jectives. Multithreading and concurrency function as knobs which



can be used to tune programs to run at power-efficient and performance-
efficient operating points. This paper makes contributions towards
effectively utilizing the concurrency knob of chip multithreading
and layered multiprocessor architectures to achieve near optimal
energy-efficiency. We presented a very fast and effective – in find-
ing nearly optimal operating points – online performance predic-
tion model in which performance, power and combined metrics are
predicted with as few as two snapshots of hardware event coun-
ters, on a phase by phase basis. Our model overcomes the limita-
tions of and outperforms earlier schemes which relied on exhaus-
tive or heuristic searches of optimal operating points via direct tim-
ing analysis of phases. Furthermore, our prediction model is signif-
icantly more accurate than other similar models based on snapshots
of hardware event counters.

In the future, we plan to extend our framework in two direc-
tions. The first is the integration of a more educated power predic-
tion model, which will replace our simple relativistic model. The
current model projects power across system configurations with-
out taking into account program characteristics. We plan to use
our hardware profiler for predicting power online, from snapshots
of hardware event counters taken during phases. An interesting
exercise in this context will be to investigate whether both power
and performance can be predicted using the same set of hardware
events. Our second target is to improve our framework in the han-
dling of program phases with irregularities, including time-dependent
and non-deterministic behavior. Although our current prediction
model can be used effectively to capture a variety of phase char-
acteristics, it operates under the assumption that phases exhibit in-
variant behavior across invocations. Capturing and modeling vari-
ability in phase characteristics will be a first step towards deploying
our predictor in irregular codes.
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