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ABSTRACT

Wide-angle lenses are often used in scientific or virtual real-
ity applications to enlarge the field of view of a conventional
camera. Wide-angle lens distortion correction is an image
warping application which transforms the distorted images
back to the natural-looking, central perspective space. This
application is characterized by a non-linear streaming mem-
ory access pattern that makes main memory bandwidth a
key performance limiter.

This paper presents the implementation, optimization and
evaluation of a wide-angle lens distortion correction algo-
rithm on the Cell Broadband Engine. Cell is a heterogeneous
multi-core processor that has been architected to accelerate
applications with large degree of thread- and data-level par-
allelism. We alleviate the ‘memory wall’ inefficiencies by
applying source level optimizations such as tiling to better
utilize the on-chip memory of the SPE, and maximize data
reuse within a frame of pixel data. Using these transforma-
tions on the Cell processor, we are able to achieve a 7.27x
speedup compared to a Core2 Duo processor, and enable
potential applications such as real-time correction for video
teleconferencing using cameras with wide-angle lenses. To
the best of our knowledge, this is the first paper to describe
the mapping and optimization of an image warping applica-
tion to the Cell BE architecture.

Categories and Subject Descriptors

I.4.9 [Image Processing and Computer Vision]: Ap-
plications; C.1.3 [Processor Architectures]: Other Archi-
tecture Styles—Heterogeneous (hybrid) systems; D.1.3 [Pro-
gramming Techniques]: Concurrent Programming—Par-
allel Programming

General Terms

Algorithms, Design, Measurement, Performance
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1. INTRODUCTION
Wide-angle lenses allow imaging a large sector of the sur-

rounding space with a single photo. While ordinary rectilin-
ear lenses map incoming light rays to a planar photosensitive
surface, wide-angle lenses map them to a spherical surface,
which is capable for a much wider field of view (FoV). It is
possible, and in fact very common, for wide-angle lenses to
encompass a FoV of 180o. Such hemispherical images have
been traditionally used for specialized applications such as
surveillance [16], robot navigation [6], content creation for
immersive environments and virtual reality [19], photogra-
phy [21], astronomy, etc. In addition, wide-angle imaging is
moving towards more mainstream applications such as con-
sumer digital imaging and video capture, or even real-time
video conferencing. By capturing a larger section of the sur-
rounding space, a wide-angle lens camera affords a wider
horizontal and vertical viewing angle, provided that the dis-
torted images at the wide-angle space can be corrected and
transformed into the central perspective space in real time
before being viewed by the end user (Figure 1). Real-time
distortion correction for megapixel input frame resolution
is beyond the reach of today’s mainstream general purpose
processors, as we show in section 3.

In this paper, we first explain the algorithmic aspects of
wide-angle lens distortion correction in section 2. In sec-
tion 3 we describe the mapping and optimization of a wide-
angle lens distortion correction algorithm on the Cell Broad-
band Engine (CBE) heterogeneous multicore processor.

The CBE offers a rich repertoire of mechanisms to ex-
ploit thread and data level parallelism owing to eight Syner-
gistic Processing Elements (SPEs) and a 2-way SMT Pow-
erPC core (PPE) [7]. The processor is clocked at 3.2 GHz.
Each SPE offers a 128-bit wide SIMD computational engine
and has access to a private, 256 KB software-controlled lo-
cal store (LS), which is shared by both program code and
data. SPEs can access the main memory only through asyn-
chronous DMA requests. Up to two SIMD instructions can
be issued per cycle, although specific instructions on each
issue slot, resulting to a maximum theoretical performance
of 204.8 Gflops for single precision floating point operations.

This paper explores how the inherent parallelism of the
wide-angle lens distortion correction algorithm is exploited



 

Figure 1: The wide-angle lens distortion correction algorithm for two cases for field of view FoV=60o and
FoV= 8o . The output images are VGA (640x480). The lower FoV results into a zoomed output image.

on the CBE architecture to achieve real time functionality
at 30 frames/sec for megapixel input frames. We present
a quantitative analysis on the impact of each optimization
on application performance, using a real Playstation3 (PS3)
based on the Cell processor. Although the image warping
algorithm has a high degree of data level parallelism at mul-
tiple levels of granularity, the exploitation of this parallelism
is not trivial due to complex memory access patterns. We
make use of the high local memory bandwidth available in
SPEs by organizing the computations around tiled datasets.
The use of the local store (LS) memory provides plenty of
bandwidth to feed the SIMD engine of each SPE, yet the
lack of availability of non vector-aligned loads and stores
places a significant burden on the programmer, who has to
tune the code to match the size and alignment of the SPE
architecture. This can limit Cell performance for a series of
multimedia applications that are characterized by random,
non-aligned memory accesses.

Another interesting finding is that the SPE code required
a significant degree of manual instruction scheduling to re-
duce pipeline stalls due to data dependencies and slot mis-
alignments. This illustrates the need for more mature SPE
compiler technology capable of producing optimized code.
The aforementioned optimizations are applicable to many
stencil computation codes.

Mapping an algorithm with inherent multilevel parallelism
on a complex, heterogeneous parallel architecture, like the
CBE, requires the developer to make numerous design de-
cisions. Section 4 presents the most interesting ” what-if ”
scenarios and how they affect performance.

The contribution of this paper lies on introducing a com-
plex image processing application, explaining the source level
optimizations on the original code to exploit the heteroge-
neous multicore architecture of CBE and evaluating the per-
formance under numerous implementation scenarios. The
detailed empirical optimizations we outline are highly un-
likely to be made automatically by an optimizing compiler,
especially since they require the application of high level
compiler transformations to the original, sequential code.
We also identify some counter-intuitive optimizations that
minimize the effects of unaligned memory accesses in the
local store of SPEs.

2. WIDE-ANGLE LENS DISTORTION

CORRECTION ALGORITHM
The stereoscopic geometry of wide-angle photography does

not comply with the conventional central perspective pro-
jection shown in Figure 2(a)[15]. The latter is based on the
premise that the incidence angle of an incoming ray from an
object point is equal to the angle between the ray and the
optical axis. Object points with incidence angle close to 90o

would be projected to a point at infinite distance from the
principle point, thus limiting the FoV to angles close to the
optical axis.

The wide-angle projection model1 is based on the princi-
ple that the incidence angle is proportional to the distance
between the image point and the central point i.e. d1

d2

= a1

a2

(Figure 2(b)). The incoming rays are refracted closer to the
optical axis, thus expanding the FoV.

In order to associate the coordinates (i,j) of a point at
the 2D central perspective image space to the coordinates
(x,y) of the corresponding point at the wide-angle space
(inverse mapping), one has to first compute the coordinates
(Xc, Yc, Zc) of the projection of the (i,j) point to the 3D
camera coordinate system by applying a rotation matrix:
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After some algebraic transformations [15], the equations that
describe the projection on the image plane when using wide-
angle lens are:
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where (Xc, Yc, Zc) are object point coordinates on the 3D
camera coordinate system, dx, dy are lens-distortion parame-
ters, xh, yh are the coordinates of the principle point and R is
1Also known as fisheye projection in the literature



(a) Central Perspective projection model (b) Wide-angle projection model

Figure 2: Projection models used in camera systems. Each ray passes through the principle point. The
optical axis is depicted in orange.

the image radius. Equations (1) provide a method to convert
the 3D central perspective space coordinates (Xc, Yc, Zc) of
an object back to the distorted 2D wide-angle space (in-
verse mapping). They can be broken into elementary math-
ematical functions and the lens distortion parameters can
be folded into the equations:

d =
p

X2
c + Y 2

c , Du =
d

Zc

, Ru = arctan Du (2a)

P = k1 · R4
u + k2 · R3

u + k3 · R2
u + k4 · Ru + k5 (2b)

x =
P

d
· Xc + xh, y =

P

d
· Yc + yh, (2c)

where ki are lens parameters.
Note that equations (1) produce a fractional pair of co-

ordinates at the wide-angle plane, and the pixel value at
that point has to be interpolated based on the values of
the pixels at neighboring integer positions. We use bicubic
interpolation [9] to approximate the pixel value at that frac-
tional point, which equals the pixel value at the initial (i, j)
location in the central perspective space.

Bicubic interpolation is a robust, yet computationally ex-
pensive technique. It uses cubic sampled functions to ap-
proximate intermediate points of a continuous event, given
the interpolation nodes Ci where the interpolation function
g() is known to equal the (unknown) interpolated function
f(). The following equation approximates the value of a func-
tion f() at point x, based on known sampled point values
Ci = f(xi):

g(x) = C1 · U1(s) + C2 · U2(s) + C3 · U3(s) + C4 · U4(s)

U1 =
−s3 + 2s2 − s

2
, U2 =

3s3 − 5s2 + 2

2

U3 =
−3s3 + 4s2 + s

2
, U4 =

s3 − s2

2

where the point x is such that x1 ≤ x2 ≤ x ≤ x3 ≤ x4 and

s = x − x2.
Although other techniques, such as nearest neighbor or

bilinear are simpler, the high Signal to Noise (SNR) require-
ments of the correction algorithm, especially for low FoV
angles, makes this the method of choice. More computation-
ally expensive methods like the Elliptical Weighted Average
(EWA) [5], require computing complex power values, which
can tax the ability of the FP unit to process frames in real
time.

The inverse mapping and 2D bicubic interpolation flows
are shown in Figure 4. Note that the algorithm starts by
enumerating the (i, j) pixel coordinates at the perspective
space and then maps these coordinates back to the wide-
angle space. The approximation (using bicubic interpola-
tion) of the pixel value at these fractional points is equal
to the value of the corresponding pixel at the perspective
space. The two-dimensional bicubic interpolation method
consists of an one-dimensional interpolation in each dimen-
sion. The method requires the use of the 16 pixel values of
a 4x4 window around the interpolated point.

In order to eliminate high frequency artifact noise on the
image, we apply a 5-tap vertical and a 5-tap horizontal low
pass filter on the corrected image to downsample the image
to the resolution requirements of the target application, in
our case 640x480 VGA.

Figure 3 outlines the high-level pseudocode of the distor-
tion correction algorithm.

3. MAPPING AND OPTIMIZATION
An important observation from the algorithmic analysis

of section 2 is that the fractional pixel coordinates follow a
complicated non-linear pattern (Figure 4). The exact trace
shape depends on a variety of factors including the FoV, the
location of the pixel, and parameters modeling lens distor-
tion. The trace is not data dependent, and thus, can be
theoretically pre-computed. However, the complex memory



Figure 4: Inverse mapping is used to convert the coordinates from the perspective space back to the wide-
angle space. A 4x4 pixel neighborhood around the fractional points on the distorted space is used to perform
bicubic interpolation and compute the pixel values at the fractional points.

1: {Input: The frames (in the wide-angle space) to be cor-
rected}

2: {Output: The corrected frames (in the perspective space)}
3: for all frames do

4: for all pixels in the output frame do
5: Compute the corresponding fractional position in the in-

put frame (InverseMapping())
6: Interpolate the pixel value at that fractional position

(BicubicInterpolation())
7: end for

8: Apply a 2-D low-pass filter to resize the output frame
(LPF())

9: end for

Figure 3: Fisheye lens distortion correction algo-
rithm (original version).

access pattern deems aggressive DMA prefetching rather im-
practical.

The algorithm has a large degree of data reuse but not
necessarily across a row or column of the frame. Reuse is
maximized by applying 2D tiling in each frame, a technique
used by optimizing compilers to improve cache hit rate. We
partition the output frame in blocks of equal size, and pro-
duce pixels block by block. By tiling computations to exploit
reuse at the block level, we also facilitate data distribution
to SPE Local Stores.

Figure 5 shows a block of output pixel data from the frame
in Figure 1, and the corresponding curved bounding block of
pixels at the distorted space (shown in red), needed to inter-
polate the output pixels. Adjacent rectangular boxes in the
fisheye space will partially overlap, due to the curvature of
the distorted boxes. As a result, pixels close to the edges of
the bounding box are being fetched from the memory more
than once.

The input image in our experiments (Figure 1) is full RGB
with size 2592x1944, but the inverse mapping, bicubic inter-
polation and low-pass filter are applied on a 4xVGA image
(1280x960) since we always work within a region of inter-
est (ROI). The output image is then downsampled to VGA
resolution.

We evaluated the execution time of the application with
a FoV varying from 1.0o to 60.0o and for all possible ROIs

Figure 5: Each SPE works on a tile of pixel data and
produces a rectangular pixel block. The input tiles
(left) contain extra pixels beyond the red boundary,
so that their shape is always rectangular.

on the input frame, and we found the execution time to be
insensitive to these parameters. This was expected, since
the size and resolution of the output image are fixed, and
the amount of computation per output image pixel is not
dependent on the input data and parameters. For the rest
of the paper, we assume that the FoV is 40.0o.

In order to evaluate whether achieving real-time wide-
angle lens distortion correction on a conventional, general-
purpose processor is a realistic undertaking, we executed a
parallel, optimized version of the code on a system based on
an Intel T7500 Core2 Duo processor, clocked at 2.2 GHz.
The system is equipped with 2 GB of RAM and runs Linux
(OpenSuse 10.3 with a 2.6.22 kernel). We used both the
icc from the Intel compiler suite and gcc, using the com-
piler flags that resulted to the lowest execution times. The
performance of executables produced by icc proved slightly
higher, so we report only these results.

The code on the Intel-based platform has been parallelized
using OpenMP. Each tile of the output image is computed
independently, potentially by a different execution context
of the processor. In addition to tiling the input and out-
put frames, all applicable optimizations, described later in
this section, have been applied. More specifically operations
have been vectorized using the SSE ISA extensions, loops
have been unrolled, and special attention has been paid to
the manipulation of unaligned loads to vector registers.



Figure 6: Program execution time for the PPE (with
gcc) and Core2 Duo (with icc).

The application processes 2.38 frames/sec (fps) using one
thread, raising to 4.17 fps when two threads are used, far
from the minimum requirement of 25-30 fps for real-time
processing of video streams. These results motivate the use
of a high-performance, non-conventional processor such as
the CBE.

The rest of the chapter describes the porting of the ap-
plication on the Cell processor, taking the following steps:
(1) the transformation of the initial frame-based code into
a block-based version, (2) the porting of the new code ver-
sion on the PPE only, (3) the offloading of the inverse map-
ping, bicubic interpolation and low pass filter functions to
the SPEs, and (4) the optimization of the SPE code by us-
ing vectorization, optimizing LS unaligned accesses, manual
instruction scheduling to reduce stalls, and overlapping of
DMA accesses with SPU execution.

For our experimental evaluation, we used a PS3 platform
in which only six out of the eight SPEs of the Cell processor
are available. The systems runs Yellow Dog Linux 6 with
a 2.6.23 kernel. All software runs on top of a hypervisor,
which does not allow user access to the hardware perfor-
mance counters of the processor. Therefore, to obtain more
detailed results, and evaluate performance on eight SPEs,
we used the cycle-accurate full-system Cell simulator under
Fedora Linux 7. The latest version (3.1) of the simulator
is cycle accurate for almost all elements of the system. We
compiled the source code using both gcc (version 4.2.1) and
xlc compiler (version 9.0), using in each case the compiler
flags which resulted to the fastest executables. The perfor-
mance of the executables produced by gcc was higher, so we
only report results using gcc.

3.1 Porting to the PPE
The first step in mapping the code to the Cell processor

is to apply source level transformations to re-arrange the
processing in tiles. We profiled the optimized code to iden-
tify the most computationally demanding functions. The
code was profiled on a single-threaded execution on both the
Core2 Duo system and on the PPE Cell processor (without
Altivec extensions).

The execution time of the code is mainly spent in three
functions: inverse mapping, bicubic interpolation, and
low pass filter. Figure 6 depicts the breakdown of the exe-
cution time on the two processors.

The results show that bicubic interpolation is the most
time-consuming kernel on both processors accounting for

Figure 7: Execution time when (a) we exploit task
level parallelism w/o double buffering and (b) for
the final, optimized version of the code described
later in section 4.3. Note that the graph is in log-
arithmic scale. The data points for seven and eight
SPEs are obtained using the Cell simulator. The
performance reported by the simulator for 1-6 SPEs
coincides with measurements on the real machine.

more than 60% of the execution time in all cases. Inverse
mapping is very efficient, owing to the fast FP units of the
Core2 Duo and the PPE. Core2 Duo outperforms the Power
Processing Element (PPE), thus the PPE is also incapable
of handling real-time distortion correction. In the following
subsections, we discuss the sequence of coarse and fine-grain
optimizations we applied on the code to achieve real-time
functionality on the CBE.

Note also that the inverse mapping kernel does not need
to be invoked for every frame, and it is only called if the
ROI or the FoV parameters change. For a realistic usage
scenario, we do not expect that to happen very often, at
least no more frequently than once every few seconds. The
results depicted in Figure 6 assume that the inverse mapping
is computed for every frame. Later, in section 4 we evaluate
the case where we execute inverse mapping only once, store
the results to the main memory, and transfer the fractional
coordinates to the SPEs for each tile.

3.2 Block-level Parallelism
The functions inverse mapping, bicubic interpolation, and

low pass filter are mapped to the SPEs since they are re-
sponsible for the vast majority of execution cycles (Fig-
ure 6). The PPE runs the initialization code, and spawns
six threads, to be executed one on each SPE.

We exploit the independence between the tiles of the out-
put image and we assign tiles to SPEs, using a data-cyclic
partitioning scheme. Each SPE fetches a new block of input
data from the main memory, applies the three functions on
the pixel data and writes the results back to main memory.
We set the tile size to be 256 columns by 48 rows. We ex-
periment with different tile sizes in section 4 to determine
their effect on the execution time.

The DMA requests are initiated by the SPEs. The afore-
mentioned partitioning enables the SPEs to work indepen-
dently from other SPEs and from the PPE and the only
explicit synchronization is at the end of each frame.

Figure 7 shows that there is significant performance gain
when we increase the number of participating SPE accel-
erators, due to the high degree of data level parallelism at



Table 1: Execution time, speedup factor and branch misprediction overhead (a) before any SPE optimization,
(b) after vectorization and 4x outer loop unrolling, and (c) after 3x inner loop unrolling. In all cases, all 6
SPEs of the PS3 platform are used.

Optimization Exec. Time Speedup Branch misprediction
(sec) over (a) stalls (% cycles)

(a) Coarse grain parallelization 0.84 1 12.5%
(b) Vectorization and 4x unroll 0.093 9.03 3.1%

(c) 3x inner loop unroll 0.07 12 2.6%

the block level. In fact, the execution time drops linearly
with the number of SPEs from 4.93 secs/frame down to 0.62
secs/frame (speedup is 8x). Figure 7 also shows that the
SPE architecture is not optimized to run scalar code as ef-
ficiently as the PPE architecture: a single PPE thread of
execution processes one frame every 1.8 secs, whereas a sin-
gle SPE thread processes the frame in 4.93 secs.

3.3 DMA Double Buffering
In the unoptimized version of the code, SPE computation

does not overlap with DMA transactions. This adds a small
performance overhead of 0.005 secs/frame to the execution
time, since the high available bandwidth of the EIB bus
(96 B/cycle) ensures that all DMA transactions are served
quickly.

Nevertheless, we accelerate the previous process by allo-
cating two separate buffers, and overlapping computation for
tile N from one buffer with incoming input transfers for tile
N+1 and outgoing result transfers for tile N-1. This double
buffering technique effectively hides memory access latency
at the expense of increased pixel storage requirements and
code complexity. The elimination of this small overhead is,
however, more important in the final, optimized version of
the code.

3.4 Vectorization and loop unrolling
The next step is to optimize the code executed on the

SPEs. We are using a series of manual software transfor-
mations to take advantage of features such as the vector
execution units and the dual issue pipeline, as well as more
unconventional optimizations that would not typically be
applied in a scalar processor.

Most calculations in each SPE processor are enclosed in
doubly-nested loops. The outer loop (pixel scan) first com-
putes the fractional coordinates of each pixel in the tile
(inverse mapping) and then applies bicubic interpolation
within a nested loop of three iterations, one iteration for
each of the color components (RGB). Likewise, two sub-
sequent outer loops are used for the vertical and horizontal
filtering, each enclosing a second-level nested loop with three
iterations.

We utilize the vectorization capability of the SPEs by clus-
tering four single precision FP operands in a vector register
and operating on them in parallel. Under this scheme, in-
verse mapping produces four coordinate pairs in an iteration,
the one-dimensional bicubic interpolation stencil is applied
to four pixel values per iteration and so on. Since SPEs
spend all of their execution time within the outer loops of
these three functions, the SIMD parallelization alone can
potentially speed up the program by 4x.

The implicit loop unrolling due to vectorization has the
additional positive effect of reducing the backward branches

of the outer loop by a factor of 4. Mispredicted branches
incur a large penalty of up to 20 cycles whereas the typical
instruction latency is only 2 to 7 cycles. This penalty is
always paid in the case of backward loop branches, since the
SPE always predicts branches as not taken, unless instructed
differently by the compiler or the programmer. To further
the positive effects of branch elimination and increase the
potential for efficient instruction scheduling, we unroll all the
inner loops (for R,G,B) three times, effectively eliminating
them.

Table 1 shows that the first optimization has a cumulative
speedup of 9.03 over the unoptimized SPE code, and reduces
the stall overhead due to mispredicted branches from 12.5%
down to 3.1% of the total cycles. The unrolling of the inner
loops further reduces the execution time to 0.07 sec/frame
for a total 12x speed up. Further unrolling the outer loops
did not result into significant gains.

3.5 Unaligned loads
One of the challenges to SIMD vectorization is that the

bicubic interpolation requires memory accesses to addresses
that are not vector aligned (Figure 4). In the case of scalar
loads, the SPE compiler inserts extra assist and shift in-
structions in order to move the scalar data to the preferred
slot. The static profiling of the SPE pipeline indicated that
the majority of the remaining pipeline stalls were due to the
unaligned memory accesses in the formation of the 4x4 win-
dow. The four pixels of each row − for a single color channel
− are loaded individually in a single precision floating point
vector register. The conversion from integer to single preci-
sion floating point is needed because subsequent operations
on the pixels use FP arithmetic. Since each vector register is
loaded consecutively for each pixel in the row, data depen-
dencies from previous loads stall future loads on the same
register, making the vector register a point of contention.

We reverse the loading of pixels to the vector register by
loading first the first column of pixels (on four different reg-
isters, one per row), then the second column, and so on. We
still use a single vector register to store each row of pixels,
but we change the sequence in which the four registers are
filled (Figure 4). This modification spreads out the instruc-
tions that access the same register, allowing enough time to
load a pixel into one register, before we load the next pixel
to the same register. Note that this is a counter-intuitive
schedule, since compiler optimization techniques tend to ar-
range data accesses in rows. This optimization results into
a further reduction of the execution time to 0.06 secs/frame.

3.6 Vectorizing conditional statements and
manual scheduling

The bicubic interpolation() function includes the follow-
ing conditional statement to check whether a given location



Figure 8: Wide-angle lens distortion correction performance on the Core2 Duo and the CBE under all
different optimization scenarios. The final version requires only 0.05 secs to process a frame and can achieve
20 fps. All the numbers refer to real execution times on the PS3 platform.

(X,Y ) is outside the frame boundaries. If this is the case,
the corresponding pixel is set to black in the array lpf, which
serves as an intermediate buffer and stores the results of the
vertical low-pass filter:

if ((X < 0) || (X > (Width - 1)) ||
(Y < 0) || (Y > (Height- 1)))
lpf[loc][0]=lpf[loc][1]=lpf[loc][2]=0;

After SIMD optimization, there are four such if-statements
in the outer loop and four X and Y coordinates reside in two
different vector registers. We face a problem similar to that
of unaligned loads, since we need to extract the individual
coordinates, calculate the value of the conditional, and then
execute or bypass the instructions inside the if-statement.

Our approach is to vectorize the calculation of the condi-
tional and move it at the beginning of the outer loop. We
still have to extract the scalar conditional values, but this
is done at the beginning of the outer loop, enough cycles
before these values are needed.

As a last optimization step, we eliminate most of the re-
maining pipeline stalls by manual scheduling of instructions.
We interleave unaligned loads with computational opera-
tions, thus enabling the compiler to schedule the instruc-
tions more efficiently. Manual scheduling is facilitated by
the previous 3x unrolling optimization which provide a large
number of instructions that can be interleaved. It should be
noted that the compiler proved too conservative reschedul-
ing independent instructions only locally.

Figure 8 illustrates the performance of the application af-
ter each one of the optimizations described in this section.
Exploiting coarse-grain data-level parallelism across SPEs
and fine-grain parallelism like vectorization, and elimination
of backward branch instructions were the most successful op-
timizations. The results show that although the single- and
multi-threaded execution on Core2 Duo clearly outperform
the PPE by a margin of 4.29x and 7.5x respectively, the
combination of the PPE (as control processor) and 6 SPEs
is 4.8x faster than the multi-threaded execution on the Intel
processor when the code is optimized (see bottom line in

Figure 7). This observation confirms the capability of the
CBE architecture to exploit multilevel parallelism, at the
expense of extensive source level optimizations.

4. DESIGN TRADE-OFFS AND

SENSITIVITY ANALYSIS
In this section we discuss various trade-offs we faced while

developing the wide-angle lens distortion correction applica-
tion on the CBE.

4.1 Tile size
Tile size and shape is a significant parameter in explicitly

blocked codes. Typically, tile size should be large enough
to use all available cache (or local store in the CBE), in
order to maximize data reuse and minimize communication
overhead. Moreover, partitioning to fewer tiles reduces the
total DMA transfer setup overhead.

In the case of wide-angle lens image correction however,
additional parameters, besides the local store size and the
footprint of other data, should be taken into account. The
area of the input frame that needs to be transferred is typi-
cally curved, as depicted in Figure 5. Since the manipulation
of non-rectangular memory areas is not trivial, we fetch the
enclosing rectangle of the curved area instead. Additional
limitations are imposed on the size and shape of the rectan-
gle i.e. its width should be a multiple of 4 in order to fa-
cilitate vectorization. Moreover, each line should start from
a 16B aligned address, the lowest permissible alignment to
achieve DMA transfers of more than 16B data chunks. Due
to the curvature of the input area, a very small tile results
to a higher overhead of pixels outside the input area of in-
terest, that should nevertheless be transferred since they
reside in the enclosing rectangle. The effect of tiles being
too stretched to any dimension is similar.

The top diagram of Figure 9 depicts the overhead (pix-
els transferred divided by total frame pixels) of input pixels
transfered for the correction of a single frame, for different
legal output tile sizes and shapes, according to the aforemen-
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Figure 9: (a) Input pixels transferred to the SPE
local stores divided by the number of pixels in the
frame, and (b) execution time normalized with re-
spect to the optimal execution time, when output
frame is partitioned into 5x20 rectangular tiles. The
white boxes with the X mark, do not correspond to
a valid tile partition.

tioned limitations. The bottom diagram depicts the corre-
sponding normalized execution times on the 6 SPEs of the
PS3. The two diagrams reveal a close relation among data
transfers and execution time for different tile sizes. More-
over, it is clear that too small tiles or stretched tiles (upper
left and lower right corners) are not preferable. The per-
centage of excessive pixel transfers ranges from 9% to 331%.
The potential slowdown, with respect to the execution time
using the optimal block size, is up to 22%. Driven by these
results, we used a decomposition of the output frame to 5
tiles in the x-dimension by 20 tiles in the y-dimension.

4.2 Amortization of inverse mapping cost
Inverse mapping, i.e. the procedure of calculating for each

pixel in the output frame the coordinates of the correspond-
ing fractional pixel in the input frame, is one of the three

1: {Input: The frames (in the wide-angle space) to be cor-
rected}

2: {Output: The corrected frames (in the perspective space)}
3: Partition the output frame to blocks
4: for all frames do

5: if FoV has changed then

6: for all pixels in the output frame do

7: Compute the corresponding fractional position in the
input frame (InverseMapping())

8: end for

9: Calculate the area of the input frame required for the
calculation of each output frame block

10: end if

11: {Output blocks are statically partitioned to SPEs and pro-
cessed concurrently on different SPEs}

12: for all output blocks i do

13: Fetch (async. DMA) input data for output block i + 1
14: Fetch (async. DMA) fractional coordinates in the wide-

angle space for each pixel of the output block i + 1
15: Store (async. DMA) output block i − 1
16: for all pixels in output block i do

17: Interpolate the pixel value at that fractional position
(BicubicInterpolation(), SIMDized)

18: end for

19: Apply a 2-D low-pass filter to resize the output block
(LPF(), SIMDized)

20: end for

21: end for

Figure 10: Fisheye lens distortion correction algo-
rithm (final, optimized version).

main contributors to the total execution time of the applica-
tion (Figure 6). As aforementioned, the correspondence of
input versus output pixel coordinates depends solely on the
region of interest (ROI) and the field of view (FoV). These
two parameters can be changed interactively at run-time,
however this occurs infrequently, if at all. As a result, the
cost of inverse mapping can be amortized, if it is computed
once and reused across multiple frames. This is achieved
at the expense of storage space: the size of the resulting
data structure is 4.8 MB, since it contains 1280x960 pairs
of single-precision floating points. A data structure of that
size can not be accommodated in the local store of SPEs.
We evaluated the option of storing the inverse mappings
at main memory and transferring the appropriate block of
fractional coordinates to each local store, according to the
output image tile processed by the corresponding SPE.

The computation vs. communication trade-off is of par-
ticular interest, given the vast processing power of the CBE.
We found that the increased communication requirements
resulted, even after double buffering, to a 4x increase of the
cycles the application spends waiting for the completion of
DMA requests. Nevertheless, the computation time, evalu-
ated over a sequence of 10 frames, decreased to an average of
0.045 sec/frame when all 6 SPEs of the PS3 are used, yield-
ing a rate of more than 22 fps. The simulator reported an
average of 0.033 sec per frame, or 30 fps, when 8 SPEs are
available. This corresponds to a speedup of 7.27x over the
multithreaded execution on Core2 Duo. Figure 10 outlines
the resulting pseudocode.

Another parameter in the communication vs. computa-
tion trade-off is whether Ui(s), Vj(t) interpolation coeffi-
cients should be pre-computed and stored in the main mem-
ory instead of the s and t coordinates. These coefficients
depend only on the values of the s and t coordinates, and



can therefore be computed once in the PPE and transferred
to the SPEs for the bicubic interpolation. The disadvantage
of this approach is that eight such floating point coefficients
for each pixel (compared to only two coordinates) should be
transferred and stored to the LS. This would necessitate the
use of a smaller tile size, with detrimental effects on perfor-
mance as shown in section 4.1.

4.3 Input data preprocessing at the PPE
We discussed earlier that misaligned memory accesses,

typical in stencil computations where the stencil sweeps over
input data, is a major performance limiter in the SPEs.
Each input frame is organized as a 2D array of pixels, with
three bytes per pixel (RGB color intensities). The code that
loads pixel values to SPE registers has to: (a) demultiplex
the bytes corresponding to different colors, since each color
is processed separately, and thus is loaded to a different 128-
bit register, (b) upgrade 8-bit integer values to 32-bit floats,
since computation is performed with single-precision floating
point arithmetic, and (c) pack in the same register the data
corresponding to a specific color of four consecutive pixels.

We experimented with preprocessing input data at the
PPE, in order to minimize data manipulation at the SPEs.
Input data are converted to floats in main memory and dif-
ferent colors of each frame are demultiplexed. Register loads
are now aligned with a probability of 25%. In order to double
the number of aligned loads, we created a second copy of the
input tiles in main memory, padded by two floats. As a re-
sult, loads are aligned with a probability of 50%. However,
the amount of input tile data that have to be transferred
from the main memory to each SPE, and the footprint of
input tiles on each local store have both been multiplied by
a factor of 8.

The new version of the code executed 30% slower. We
used the CBE simulator to identify the cause, which proved
to be the inability to overlap communication with computa-
tion. Moreover, the preprocessing overhead made the PPE
code the main bottleneck of the application, further limiting
overall performance.

5. RELATED WORK
The CBE processor was originally targeted to the gaming

and multimedia markets. It soon, however, attracted the in-
terest of the scientific community, due to its vast computing
power and its very appealing price / performance and power
/ performance ratios.

It has been successfully used in the context of medical
imaging [10], computational biology [13], particle transport
simulations [12], data mining [1, 3] and on-line network in-
trusion detection systems [14]. The exploitation of the com-
puting capabilities made available by the CBE facilitated
dealing with challenging problems that previously required
expensive, large-scale computing systems, or even special-
ized hardware support. CBE is also a popular target for
media processing applications, such as high definition video
decoding [2], and speech recognition [11]. Media applica-
tions are usually computationally demanding, and are char-
acterized by a low computation to communication ratio and
often set real-time constraints. To the best of our knowl-
edge, this is the first study of the feasibility of real-time
image warping on the CBE.

In [8] and [17] the authors evaluate the performance of
stencil computation kernels on Cell. They observe that the

rigid requirements of data alignment imposed by the pro-
cessor can be a significant, performance-limiting bottleneck
for such codes. They suggest explicit blocking and time
skewing [18] in order to improve locality and increase the
computation versus communication ratio.

Eichenberger et al. [4] introduce compiler techniques tar-
geted towards the automatic generation of highly efficient
code for the Cell B.E. These techniques include compiler as-
sisted memory alignment and branch prediction, SIMD and
thread-level parallelization, and compiler-controlled software
caching. Similarly, Zhao and Kennedy [20] introduce a re-
search compiler for Cell, which offers automatic, dependence-
driven loop-parallelization and SIMDization. Our work re-
veals some weaknesses of current, commercially available
compilers for Cell, and outlines the importance of advanced
compiler support in order to facilitate the programmability
of complex, heterogeneous multi-core architectures like the
CBE.

6. CONCLUSIONS
The unprecedented processing power of the Cell Broad-

band Engine heterogeneous multi-core processor enabled soft-
ware solutions to computationally demanding applications
with real-time constraints, previously requiring specialized
hardware support. In this paper we focused on the imple-
mentation of a real-time, wide-angle lens distortion correc-
tion algorithm, an image-warping technique with applica-
tions to different scientific domains. This application is char-
acterized by a static, yet irregular memory access pattern
that makes data prefetching a challenging undertaking.

We outlined and evaluated experimentally the step-by-
step algorithmic and architecture-driven optimizations that
were required to achieve a 30 fps real-time performance for
sequences of full RGB, 2592x1944 input and 640x480 output
frames. We explored the performance implications of several
coarse and fine-grain optimizations. Starting from a perfor-
mance of 4.17 fps on a Core2 Duo processor, we were able to
map and gradually optimize the code on the CBE, converg-
ing to the final implementation running at 30 fps. In the
course of this experimental evaluation, we determined that
the most profitable optimization steps were task offloading,
vectorization and branch elimination.

Moreover, we explored a series of interesting ” what-if ”
scenarios to assess the impact of alternative software trans-
formations on the application performance. It turned out
that the optimal performance is reached when the PPE ex-
ecutes the inverse mapping (using Altivec) and then dis-
tributes the values of the fractional coordinates to the SPEs.
This approach attains the minimum execution time at 0.033
secs/frame.
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