
Scheduling Algorithms for Effective Thread Pairing on Hybrid Multiprocessors

Robert L. McGregor Christos D. Antonopoulos
Department of Computer Science
The College of William & Mary
Williamsburg, VA 23187-8795

rlmcgr,cda,dsn@cs.wm.edu

Dimitrios S. Nikolopoulos

Abstract

With the latest high-end computing nodes combin-
ing shared-memory multiprocessing with hardware multi-
threading, new scheduling policies are necessary for work-
loads consisting of multithreaded applications. The use of
hybrid multiprocessors presents schedulers with the prob-
lem of job pairing, i.e. deciding which specific jobs
can share each processor with minimum performance
penalty, by running on different execution contexts. There-
fore, scheduling policies are expected to decide not only
which job mix will execute simultaneously across the pro-
cessors, but also which jobs can be combined within each
processor.

This paper addresses the problem by introducing new
scheduling policies that use run-time performance informa-
tion to identify the best mix of threads to run across pro-
cessors and within each processor. Scheduling of threads
across processors is driven by the memory bandwidth uti-
lization of the threads, whereas scheduling of threads within
processors is driven by one of three metrics: bus transac-
tion rate per thread, stall cycle rate per thread, or outer-
most level cache miss rate per thread. We have implemented
and experimentally evaluated these policies on a real mul-
tiprocessor server with Intel Hyperthreaded processors.

The policy using bus transaction rate for thread pair-
ing achieves an average 13.4% and a maximum 28.7% per-
formance improvement over the Linux scheduler. The pol-
icy using stall cycle rate for thread pairing achieves an av-
erage 9.5% and a maximum 18.8% performance improve-
ment. The average and maximum performance gains of the
policy using cache miss rate for thread pairing are 7.2%
and 23.6% respectively.

1. Introduction

Shared-memory multiprocessors are the most com-
mon building block for high-end clusters. The introduction

of multithreading capabilities in mainstream micropro-
cessors opens up new opportunities for boosting the
performance of shared-memory multiprocessors by us-
ing hardware-supported multithreading for memory latency
hiding and fine-grain parallel execution. Thesehybrid mul-
tiprocessors present new challenges to the system soft-
ware, which needs to manage two levels of parallelism,
intra- and inter-processor.

In most cases, spreading the threads of a job across many
processors is a lot more efficient than clustering them in a
few processors, due to contention for shared resources be-
tween threads on each processor. On the other hand, if the
scheduler is flexible enough to pair1 jobs in each multi-
threaded processor, it has a lot more opportunities for op-
timal utilization, but needs to consider the implications of
pairing on the performance of jobs.

In this paper, we are concerned with the performance im-
plications of sharing processor resources on multithreaded
execution cores, and how these implications can be factored
in a realistic job scheduler. Cache interference has so far
been the only analogous criterion used in scheduling [18].
On multithreaded processors, looking only at the cache as
a shared resource is insufficient. Multiple resources, includ-
ing the cache, execution units, TLBs, branch predictors and
others, are shared between threads and numerous complex
interactions on these resources may affect performance.

We introduce and evaluate new scheduling poli-
cies for hybrid multiprocessors with simultaneous multi-
threaded processors [19]. The policies conceptually belong
to a class of multiprocessor scheduling policies that ana-
lyze performance characteristics besides CPU utilization on
the fly, to adjust and improve the schedule [2, 6]. One dis-
tinguishing aspect of the policies is that they use hard-
ware event counters to collect performance metrics at
run-time and optimize schedules driven by these met-
rics. In other words, hardware counters are used as an

1 The termpairing is used in a broad sense and implies running threads
from multiple jobs in different hardware contexts and processors,
rather than scheduling actual thread pairs.



online optimization tool, as opposed to offline optimiza-
tion, which is their most common use. We also introduce a
technique which allows to concurrently use the shared per-
formance monitoring hardware by both execution contexts
on Intel Hyperthreaded processors.

We use three run-time metrics that characterize thread
interference within and across processors. One metric we
consider is stall cycles, a single metric that characterizes
the impact of sharing and interference on multiple shared
resources of the processor. Cache misses at the outermost
level of the cache hierarchy are an alternative metric we
consider for tracking interference in processors, due to the
sensitivity of many workloads to cache contention. Cache
misses are also an important contributing factor to bus con-
tention. We also consider bus transactions as an indica-
tion of contention between threads to access the bus inter-
face on the processor. Contention for the bus interface in-
creases memory latency. Driven from these metrics, we de-
vise policies that attempt to optimize the utilization of mem-
ory bandwidth, and then balance a metric of choice (se-
lected between stall cycle rate, cache miss rate or bus trans-
action rate) across processors, by strategically tuning the
mixes of threads running on each processor. The policies
are, to the best of our knowledge, the first policies aware
of both multiprogramming and multiprocessing which have
been tested on a real hybrid multiprocessor, outperforming
the standard OS scheduler by up to 28.7%. Their complex-
ity is linear with respect to the number of execution contexts
and they can easily be embedded into general purpose pri-
ority schedulers.

The new policies have been incorporated in a user-level
processor manager, implemented as a server for Linux sys-
tems. The latter is coupled with a run-time library that of-
fers a communication interface between jobs and the pro-
cessor manager.

The rest of the paper is organized as follows. Section 2
describes the processor manager. Section 3 summarizes the
performance monitoring capabilities of Hyperthreaded In-
tel Pentium-4 processors and the technique we used to attain
performance measurements in the presence of Hyperthread-
ing. Section 4 describes the motivation and some quantita-
tive intuition behind the policies we introduce in this pa-
per. Section 5 outlines the design of the new scheduling
policies and provides implementation details. Section 6 de-
scribes the experimental evaluation carried out to test the
performance of the policies and discusses the results. Sec-
tion 7 reviews related work. Finally, the paper is concluded
in section 8.

2. Processor Manager

All policies presented in this paper were implemented in
a low-overhead, user-level processor manager, which has its

origins in earlier work of ours on the nanothreads program-
ming model [11]. It has been heavily modified since then,
to be used as a tool for experimenting with feedback-guided
schedulers using hardware counters [2]. The processor man-
ager allows for the design and testing of scheduling policies
without having to alter the operating system.

The manager runs as a two-threaded server process on
the target system. The first thread performs scheduling us-
ing regular time slicing, while the second thread undertakes
the task of communicating with the applications and react-
ing to their requests. Each application that wishes to set it-
self under the control of the processor manager, sends a con-
nection message for each one of its threads. The connec-
tion message and any other communication between appli-
cations and the processor manager is performed through a
supporting run-time library. Besides notifying the proces-
sor manager of the creation of a thread, the connection call
triggers initialization of whatever bookkeeping information
the processor manager is using to schedule threads. For the
policies presented in this paper for example, the processor
manager initializes the hardware event counters needed to
collect information for stall cycles, L3 cache misses and bus
bandwidth consumption from each thread.

Applications may request a specific number of proces-
sors (or in the case of systems with multithreaded proces-
sors, execution contexts) from the processor manager. They
may also communicate other information that the processor
manager can use to improve its scheduling algorithms, such
as a change in the scheduling status of threads during syn-
chronization operations [1]. It is straightforward to incorpo-
rate these changes in the threading library used by the appli-
cations or, for more transparency, to enable them by inter-
cepting library or system calls from an unmodified run-time
library in the processor manager. In this work, we use the
former option with a research OpenMP compiler [3]. Work
on interfacing the processor manager with LAM/MPI and
the binaries produced by Intel OpenMP Compilers is cur-
rently under way.

The main sources of overhead of the processor man-
ager stem from messages for connecting, signals for block-
ing and unblocking threads, the manipulation of hardware
performance counters, and naturally the execution of the
scheduling policies. In any case the overall overhead of
the processor manager is practically negligible. In order to
quantify the overhead, we simulated the following worst-
case scenario: The processor manager executes on the sys-
tem, accepts thread connections and application requests,
reads their performance counters and executes the schedul-
ing policy. However, the policy decisions are not enforced.
All threads are blocked at the end of each scheduling quan-
tum and unblocked at the beginning of the next quantum.
Moreover, threads are not bound to a specific execution con-
text. As a result, the Linux scheduler is allowed to fully ap-



ply its own scheduling decisions. The execution time of the
workloads in this setting is compared with their respective
execution time when the processor manager is not activated.
Under these circumstances, the overhead of the processor
manager was measured to account for at most 1.8% of the
execution time of applications in the workloads.

3. Performance Monitoring: The Case of In-
tel Hyperthreaded Processors

Most modern processors are equipped with extra hard-
ware which allows monitoring of specific, performance re-
lated hardware events at run-time. These events character-
ize the interaction of applications with the hardware and
the event counters provide a relatively cost-effective mech-
anism to attain such information. Typical events are related
to the memory subsystem performance, the execution units
utilization, branch predictions, resource stalls, etc. Tradi-
tionally, the hardware event counters have been used for
off-line manual or automatic code restructuring and opti-
mization. In the context of this paper we use them in a com-
pletely different way. We exploit them at run-time, in or-
der to dynamically identify the characteristics of the execu-
tion environment and use this knowledge to reach educated
scheduling decisions.

On Intel processors equipped with Hyperthreading capa-
bilities, a single set of performance counters and the cor-
responding configuration registers are shared between two
execution contexts. As a consequence, conflicts may arise
if both threads on the same processor happen to request ac-
cess to the same counter or configuration register. In order
to avoid such conflicts, the operating system binds threads
that have activated performance counter monitoring to the
first execution context of each physical processor. In other
words, at any time snapshot, only one execution context on
each processor may accommodate threads that use perfor-
mance counters.

In order to overcome this limitation, we have used two
sets of counters for each event we measure. Both sets are
activated by the processor manager on the thread which is
specified to run on the first execution context of each phys-
ical processor during the next quantum. At the same time,
we take advantage of a bitmask in the configuration regis-
ters which allows the programmer to distinguish between
the events triggered by the thread running on each execu-
tion context. More specifically, in our case the first counter
set is used to measure events caused by the thread running
on the first execution context of the processor, whereas the
second counter set measures events caused by the thread on
the second execution context. At the end of time quanta, the
processor manager reads the values from both counter sets.
Given that the processor manager has accurate knowledge
and complete control on the association between execution

contexts and threads during any quantum, the values read
from each counter set can be attributed to the correspond-
ing thread. To the best of our knowledge, this is the first im-
plementation which successfully deals with the problem of
sharing performance monitoring hardware between threads
on Intel Hyperthreaded processors. Furthermore, our solu-
tion does not require any modification to kernel code.

4. Motivation for Policies

This paper presents policies that belong to a class of mul-
tiprocessor schedulers which consider hardware resource
interference as a primary scheduling criterion and track
the run-time usage of hardware resources inside and out-
side processors to make informed scheduling decisions.
The heuristics used in these policies may complement both
conventional and customized schedulers, or can be used
as user-level modules to enhance the job scheduling ca-
pabilities of front-end batch systems for supercomputers.
The policies we introduce in this paper seek an optimal
placement of simultaneously executing threads in the ex-
ecution contexts of multithreaded processors with respect
to certain interference-driven criteria. At the same time,
they attempt to reduce the negative interference between
groups of threads running on different processors due to
cache-to-memory bandwidth saturation. We consider only
CPU-intensive workloads running on hybrid multiproces-
sors. Ongoing work of ours is considering jobs with I/O and
communication requirements.

Multithreaded processors make extensive use of resource
sharing, as this yields more cost-effective designs. Sharing
has both positive and negative sides. Threads that share data
through the cache execute a lot faster than in conventional
shared-memory multiprocessors, in which all data sharing
happens through memory and the cache coherence protocol.
On the other hand, if threads running on the same processor
are not sharing any data, the effective cache space available
to each thread is reduced because of interference from other
threads. In the case of simultaneous multithreaded proces-
sors, co-scheduled threads must also share a single set of ex-
ecution units and other resources, including TLBs, branch
predictors, and instruction queues.

The strategy we investigate in this paper is to start with
an educated placement of threads on processors obtained
in a single time quantum. Following, we tune this place-
ment on the fly via individual thread exchanges between
multithreaded processors, or between mixes of threads co-
scheduled during different time quanta on the same proces-
sor. Furthermore, we impose the following requirements:
that performance is estimated using a few (more specifi-
cally two) run-time metrics obtained from hardware coun-
ters; that these metrics can be obtained simultaneously on
each processor; and that no historical information other than



some weighted averaging of old samples of the same metric
is needed to make scheduling decisions. Another aspect of
our strategy is that we seek information on interference in-
side and outside multithreaded processors, so that the sched-
uler can make a two-level decision. It first selects thread
mixes that live well together on different processors and
then splits these mixes into smaller groups, so that group
members live well together on the same processor.

Tuning of pairings is triggered by imbalance in certain
performance metrics across threads. The presence of imbal-
ance in a given metric, corresponding to a shared resource,
indicates that some threads exercise high pressure while
others exercise low pressure on that resource. For resources
with finite capacity that can meet the combined require-
ments of certain thread mixes, our strategy is to pair threads
exercising high pressure with threads exercising low pres-
sure. Intuitively, a low pressure thread leaves ample idle re-
sources for high pressure threads and a high pressure thread
does not leave enough resources for threads other than low-
pressure threads.

In order to determine if imbalance in resource usage ex-
ists across applications and if this imbalance can be ex-
ploited by our scheduling policies, we gathered statistics
for a sample workload consisting of four of the NAS par-
allel benchmarks written in OpenMP [7]: CG, FT, MG and
SP. The data sets chosen are those of the class A problem
sizes, and each instance of a benchmark uses two threads.
Two instances of each benchmark were used in the work-
load. The workload runs in closed-system mode for seven
minutes. This means that whenever a job finishes execut-
ing, a new instance of the same job is spawned and all exe-
cution contexts of all processors keep executing threads for
the duration of the experiment. After seven minutes, the in-
stances of the applications executing in the workload keep
running until they finish. As applications finish, the degree
of multiprogramming progressively decreases.

Our test system is a Dell PowerEdge 6650 Server with 4
Xeon processors using Intel’s Hyperthreading technology.
Each processor runs at 2.0 GHz and has an 8 KB, four-way
associative L1 data cache, a 12 KB eight-way associative
L1 instruction trace cache, a 512 KB eight-way associative
L2 cache, and an external 1 MB, eight-way associative L3
cache. The system has 2 GB of memory and runs the Linux
2.4.25 kernel.

Each Xeon MP processor with Hyperthreading technol-
ogy has two execution contexts with private register files
and instruction windows. The execution contexts share the
caches, TLBs and execution units as they feed the proces-
sor’s superscalar pipeline. The experiment uses the Linux
scheduler and no particular pairing strategy for the threads
running on each processor. We present data on the number
of bus transactions and stall cycles per microsecond.

Figures 1 and 2 depict those two metrics (bus transac-

0

2

4

6

8

10

12

14

16

18

0 50 100 150 200 250 300 350 400 450 500 550
Time (sec.)

Bu
s 

Tr
an

sa
ct

io
ns

 / 
us

ec

Max
Min
Avg

Figure 1. Maximum, minimum and average
number of bus transactions per microsecond
over time.

0.000001
0.00001
0.0001
0.001
0.01
0.1
1

10
100

1000
10000

0 5 0 1 0
0

1 5
0

2 0
0

2 5
0

3 0
0

3 5
0

4 0
0

4 5
0

5 0
0

5 5
0

Time (sec.)

Re
so

ur
ce

 S
ta

lls
 / 

us
ec

Max
Min
Avg

Figure 2. Maximum, minimum and average
number of stall cycles per microsecond over
time.

tions per microsecond per microsecond and stall cycles per
microsecond respectively) and show the maximum, mini-
mum and average value of the metrics across the eight exe-
cution contexts of the system. The values are sampled once
per 100 ms. We calculate the moving average of the val-
ues over one second intervals (corresponding to windows
of 10 samples) and plot this moving average over time. Fig-
ure 2 is plotted in logarithmic scale.

These figures pin-point imbalances within each sample.
The imbalance ranges from a factor of five in bus trans-



actions to 2-3 orders of magnitude in stall cycles. Similar
trends were observed when we conducted the same exper-
iment to measure imbalance in other metrics of the use of
shared resources, such as L3 cache misses. In the presence
of such imbalances, our policies try to reach an equilibrium
by changing the placement of threads on execution contexts
at run-time, so that threads which are sensitive to interfer-
ence (e.g. threads with already high numbers of stall cy-
cles or cache misses at a small temporal scale), are paired
with threads that are causing insignificant interference (i.e.
threads with small numbers of stall cycles or cache misses
at the same scale). Regulating interference in this manner
is likely to increase processor utilization and performance
of individual jobs. Long idle periods of a thread due to ex-
cessive resource stalls may be overlapped with the activity
of other threads that have lower requirements for the con-
gested resources and are less dependent on them to make
progress.

5. Policies

The scheduling policies we introduce use regular times-
licing with a base time quantum and co-schedule the threads
of multithreaded jobs, in the spirit of gang scheduling. The
goal of the policies is to select the best mix of threads to
co-schedule during a quantum, by taking into consideration
the interference between threads within and across proces-
sors. The policies focus on optimizing processor cycle us-
age for applications with high memory bandwidth require-
ments and sensitivity to contention for execution resources.
Priority control is not enforced among the running applica-
tions2, but it is easy to embed the policies into common pri-
ority schedulers. The policies do not take into account char-
acteristics other than the interactions between threads shar-
ing certain resources. They use detailed information from
hardware counters as the driving factor in their scheduling
decisions.

The processor manager uses a queue of waiting appli-
cations. Each application is served as a group of threads,
so that all the threads of multithreaded applications are co-
scheduled on different execution contexts, whenever they
are allocated processor time. The first application to run
during each time quantum is selected in a round-robin way,
from the head of the applications queue. The round-robin
allocation ensures that all applications will eventually have
the chance to execute, independent of their performance-
related characteristics. The free execution contexts, if any,
are then filled with threads from other applications with
the goal of optimizing bus bandwidth usage. The proces-
sor manager maintains historical information on the average

2 In common scheduling terminology, we assume that all jobs are CPU-
intensive. The scope of this work is to improve service for such jobs
in multithreaded/multiprocessor nodes used in high-end systems.

bus bandwidth utilization requirements of the applications
that executed during a window of previous quanta. This
information is attained through performance monitoring
counters. More specifically, the processor manager moni-
tors the rate of bus transactions issued by each thread. While
selecting the applications to execute during the next quan-
tum, the scheduler attempts to identify and form a group of
applications with bandwidth requirements close to that his-
toric average. This way, the scheduler avoids to overcom-
mit or waste bus bandwidth. At the same time, the sched-
uler is aparametric, in the sense that noa-priori knowledge
is required concerning the maximum capacity of the sys-
tem bus.

Note that, at this stage, the processor manager does not
allocate specific execution contexts to each application. The
new policies come into action during the second phase of
scheduling, when the processor manager has already de-
termined which applications to run during a time quantum.
In that sense, the scheduling policy applied during the first
phase for carefully managing bus bandwidth is orthogonal
to the new polices: The former selects the threads to co-
execute in the system during a quantum, while the latter fo-
cus on the optimal pairing of the selected threads on spe-
cific physical processors. The new policies are described in
more detail in the following paragraphs.

The scheduling policies we introduce track imbalance in
a metric (cache miss rates, stall cycle rates, or bus trans-
action rates) between threads or thread groups and use this
imbalance as a criterion to pair threads with high rates of
the specific metric with threads with low rates of the same
metric. The policies use a single metric and event counter,
which makes them appropriate for use in systems with lim-
itations in simultaneous event counting.

The rest of the discussion assumes that the stall cycle
rates is used as the primary metric. The scheduling policies
that use cache miss rates and bus transaction rates are iden-
tical in all aspects except from the criterion used to tune
thread pairings.

The base policy orders all threads that have been se-
lected for execution by the number of stall cycles per time
unit. This metric is calculated throughout a window of past
quanta during which each thread has been executed. In our
implementation and experimental evaluation the window
was 5 quanta long. This window length has been chosen
heuristically. We also experimented with using information
from the latest quantum only. This strategy introduces noise
in the performance data provided to the scheduling policies.
Using the moving average in a window of previous quanta
filters out this noise, while, at the same time, following ac-
curately the bus transaction, stall cycle and cache miss rate
patterns of threads.

Before deciding on thread placements, the scheduler
must determine the number of processors on which threads



need to be paired. This will be equal to the number of phys-
ical processors any time the degree of multiprogramming
is more than one. In other cases, we may be able to sched-
ule some threads alone on certain processors. The number
of pairs (npairs) is calculated using the following formula:





0 nallocated
nprocs ≤ 1

nallocated modnprocs 1 < nallocated
nprocs < 2

nprocs nallocated
nprocs ≥ 2

wherenallocated equals the number of threads we have
chosen to allocate during this time quantum andnprocs is
the total number of physical processors in the system.

Additionally, we define:

nsingles = nprocs − npairs

wherensingles represents the number of threads that will
be allocated alone on a physical processor. The policy allo-
cates thensingles most demanding threads, i.e. the threads
with the highest stall cycle rates, each to its own proces-
sor. We then place the remaining threads in pairs on the un-
allocatednpairs processors. At each iteration of our pair-
ing algorithm, we place the unallocated thread with the low-
est stall cycle rate and the unallocated thread with the high-
est stall cycle rate together, on the next available processor.

The policies try to pair threads from different applica-
tions on each processor. In general, if applications use more
threads than the number of processors in the system, this
constraint is not enforced. However, if applications require
less processors the policies deliberately strive for pairing
threads from different applications on the same processor.
The reason is straightforward: the performance of a multi-
threaded application when its threads run on different pro-
cessors almost always exceeds the performance of the same
application when the same number of threads runs on dif-
ferent execution contexts on the same processor. Contention
for shared resources limits efficiency dramatically on cur-
rent commercial multithreaded processors.

6. Experimental Results

We experimented with workloads composed of mixes of
the NAS parallel benchmarks. We used the OpenMP im-
plementations of the benchmarks [7]. The problem sizes
of class A have been been chosen for testing. The prob-
lem sizes are substantial enough to yield realistic results,
without overflowing the memory of our experimental plat-
form while running multiprogram workloads with up to four
benchmarks and 16 threads.

We used the processor manager with a base time quan-
tum of 100 msec, equal to that of the standard Linux sched-
uler. Since our test system has eight execution contexts (two
per physical processor), eight threads are selected to run

Workload Job mix
WL1 CG(1,1), FT(1,1), MG(1,1), SP(1,2)
WL2 BT(1,2), CG(1,1), EP(1,1), MG(1,1)
WL3 CG(4,1), FT(4,1), MG(4,1), SP(4,1)
WL4 BT(4,1), CG(4,1), EP(4,1), MG(4,1),
WL5 CG(2,2) , FT(2,2), MG(2,2), SP(2,2)
WL6 BT(2,2) , CG(2,2), EP(2,2), MG(2,2)

Table 1. Workloads used to test the schedul-
ing policies. The notation (x, y) in parenthe-
ses is used to indicate that x copies of a
benchmark, with y threads each are used in
a workload.

during each quantum by the processor manager. All work-
loads run continuously for seven minutes in a closed sys-
tem setting, as described in Section 4. We avoided using
randomized workloads to ensure that our performance re-
sults were affected only by the processor scheduling poli-
cies used and the processor utilization they achieve.

Table 1 lists the workloads we used for our evaluation.
The degree of multiprogramming is the total number of
threads of the programs in the workload divided by the
number of available execution contexts in the system.WL1

andWL2 have a multiprogramming degree less than one
(0.625), and they are used to evaluate the thread pairing
policies in isolation. In these workloads our schedulers use
thread migration triggered by imbalances in L3 cache miss
rates, stall cycle rates or bus transaction rates per thread per
processor. There is no activation of the policy for regulating
bus bandwidth consumption in these workloads. The work-
loads also isolate the effects of co-scheduling, since there
is no time-sharing of execution contexts between threads.
WL3 andWL4 use single-threaded benchmarks and their
multiprogramming degree is two. Both regulation of bus
bandwidth consumption and dynamic tuning of thread pair-
ing are used in these workloads.WL5 andWL6 also yield a
multiprogramming degree of two, however all benchmarks
in these workloads use two threads.WL5 and WL6 are
used to evaluate our policies when multiple parallel appli-
cations are co-scheduled on the same node.

The metric we are using to compare scheduling policies
is the weighted mean execution time of jobs. Each jobi is
associated with a weightwi = ni∑N

i=1
ni

, whereni is the

number of instances of the specific job that finish execution
in the seven-minute duration of the experiment andN is the
total number of jobs. The weighted execution time is de-
fined asWT =

∑N
i=1 witi, whereti is the mean execution

time of all instances of jobi in the experiment. This metric
factors in the widely varying length of different jobs, and ac-
counts for penalizations or improvements that the schedul-



Workload Linux Gang Bus Stall Cache
WL1 11.91 11.07 11.39 10.98 11.56
WL2 12.27 12.09 12.55 11.64 13.57
WL3 34.99 36.63 30.00 34.04 30.72
WL4 35.76 35.45 25.49 30.24 27.32
WL5 19.18 18.74 16.40 17.79 18.70
WL6 18.07 16.06 14.62 15.02 16.26

Table 2. Weighted mean execution times for
the six workloads under different scheduling
policies.

Improvement of the Weighted Average of the 
Execution Times over the Native Linux Scheduler

-15

-10

-5

0

5

10

15

20

25

30

1 2 3 4 5 6

Workload

Pe
rf.

 Im
pr

ov
em

en
t (%

)

Gang
Bus
Stalls
Cache

Figure 3. Improvements achieved by the new
scheduling policies over the native Linux
scheduler for each of the six workloads used
in the experiments. A comparison with the
simple gang scheduling is also included.

ing policies impose on different jobs, according to their re-
quirements for shared resources.

Table 2 reports the weighted mean execution time for
each of the six workloads, under five policies. In the ta-
ble, Linux is used as an abbreviation of the native Linux
scheduler;Gang represents a simple gang scheduling pol-
icy, without performance counters feedback or any spe-
cific thread pairing on processors;Busrepresents the perfor-
mance using the scheduling policy in which the bus band-
width consumption from the threads scheduled in each time
quantum is regulated and threads are paired on processors
so that bus transaction rates are balanced between proces-
sors. In the same sense,Stall represents the thread pairing
policy that balances stall cycle rates after regulating bus
bandwidth consumption andCacherepresents the thread
pairing policy that balances L3 cache miss rates after regu-
lating bus bandwidth consumption.

Figure 3 is a visual representation of the improvements
achieved by our scheduling policies when compared with
the native Linux scheduler. A performance comparison with
the standard gang policy is also included. We observed solid
performance improvements over the Linux scheduler in all
cases, exceptWL2, in which the policy that uses bus trans-
action rates is slightly inferior to Linux and the policy that
uses L3 cache miss rates deteriorates performance by over
10%. The policy that pairs based on bus transaction rates
is overall the most effective, yielding a 13.4% average im-
provement over Linux, with a maximum improvement of
28.7% forWL4. This policy captures accurately the con-
tention between threads for the bus interface, which sub-
sumes contention because of read and write memory trans-
actions, coherence, prefetching and I/O activity.

There is no consistent winner between the policy that
pairs threads based on stall cycle rates and the policy that
pairs threads based on L3 cache miss rates. The former
achieves improvements ranging between 2.7% (WL3) and
18.8% (WL6) over the Linux scheduler. The latter achieves
improvements ranging between 3.0% and 23.6% over the
Linux scheduler, but incurs slowdown in one workload
(WL2).

L3 cache misses is a good indicator of conflicts because
of sharing the cache between threads on the processor. How-
ever, this metric fails to capture contention accurately, be-
cause it does not reflect the impact of supporting multiple
outstanding misses and overlapping their latency. A high
L3 cache miss rate may be mitigated to some extent by this
overlap. Furthermore, a raw number of cache misses does
not provide a characterization of the misses.

Stall cycle rate appears to be a more effective metric, in
the sense that it summarizes the impact of contention on
all shared resources in the processor. This impact would be
harder to assess efficiently if the scheduler needed to con-
sider all the resources that can cause conflicts. The problem
with this metric is that it subsumes delays because of con-
tention and conflicts but it also subsumes delays because of
inherent application behavior and does not differentiate be-
tween these two types of delays. Again, a characterization
of stall cycles would assist the scheduler to make more ed-
ucated decisions, but such a characterization is not possible
without detailed hardware simulation.

Another trend observed in the charts is that theStallpol-
icy tends to perform the best when the degree of multipro-
gramming is less than one. WorkloadsWL1 andWL2 do
not impose time-sharing of execution contexts. The total
number of threads running in the workloads is constantly
less than the number of available execution contexts. This
reduces both cache pressure and contention to access the
bus interface on each processor. The former happens be-
cause fewer threads per processor cause less cache pollu-
tion and conflicts. The latter happens because with 8 execu-



tion contexts available for 6 threads, threads can be spread
out between processors so that two processors run a sin-
gle thread each, with no contention between their execution
contexts. The properties of this workload make the policies
using cache miss and bus transaction rates less effective.

The performance of the Linux scheduler can be ex-
plained as follows: Linux is oblivious to hardware metrics
and schedules workloads based mainly on load balancing
and dynamic priority criteria. More specifically, threads are
organized in a global ready queue, shared among all execu-
tion contexts. Any execution context that finds itself idling
tries to select the thread to execute next, by calculating the
”fitness” of all threads in the ready queue. Thread fitness de-
pends highly on the dynamic priority of each thread. In an
attempt to favor locality, the scheduler also gives a signif-
icant advantage to threads that executed in the past on the
specific execution context and a smaller advantage to those
belonging to the same virtual address space as the previ-
ously executing thread. That scheduling strategy is prob-
lematic in 2.4.x Linux kernels, because each execution con-
text is considered as a single processor. Therefore, one idle
execution context in a processor with a busy second exe-
cution context may be considered as ”unloaded” as an idle
execution context on a processor with both execution con-
texts idle. This will lead the Linux scheduler to mistakenly
schedule two threads on the same processor leaving another
processor idle at times. This problem is solved in Linux 2.6
via the use of local queues per processor (i.e. per two exe-
cution contexts). In the case of our workloads, this problem
shows up only inWL1 andWL2 when the multiprogram-
ming degree is less than 1 and there are two idle execution
contexts at any time in the system. The effect of this prob-
lem is not particularly harmful though. The Linux scheduler
makes suboptimal scheduling decisions even when there are
enough threads to keep all execution contexts busy and there
is no need for load balancing.

It is more subtle to explain the relative behaviour of the
Stall policy compared to theCachepolicy. In the work-
loads with single-threaded applications (WL3 andWL4),
the threads selected during each quantum exercise more
pressure in the cache, than the threads selected during each
quantum in the workloads with multithreaded applications
(WL5 andWL6). In the latter case the threads have smaller
memory footprints and less cache misses, since the appli-
cations are parallelized. As such,WL3 andWL4 are more
sensitive to cache performance thanWL5 andWL6. There-
fore, they can be better optimized with a thread pairing
criterion trying to alleviate cache pressure. On the other
hand, stall cycle rates capture the impact of interference in
resources other than the cache, which becomes relatively
more prevalent in the workloads with multithreaded pro-
grams.

It is clear from figure 3 that even the simple gang sched-

Appl. Exec. Times Normalized to the Exec. Time 
under the Linux Scheduler

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

CG FT MG SP

No
rm

al
iz

ed
 E

xe
cu

tio
n 

Ti
m

es
 

Bus
Stalls
Cache

Figure 4. Average execution times of appli-
cations in the WL3 workload under the new
scheduling policies.

uler outperforms the standard Linux scheduler in all cases
with the exception ofWL3. Gang scheduling guarantees
that all application threads will execute together, thus elimi-
nating any potential delays during inter-thread synchroniza-
tion due to inopportune scheduling decisions. All applica-
tions inWL3 are single-threaded. As a result they can not
benefit from gang scheduling. It is, however, worth notic-
ing that the performance improvements attained by the three
performance-driven policies are significantly higher than
those attained by the simple gang policy. This comparison
clearly isolates the benefits of the performance-driven, edu-
cated thread selection and pairing on the processors.

Figure 4 depicts the normalized, average execution times
of each application participating in theWL3 workload,
when the workload is executed with the new scheduling
policies. The average execution times have been normalized
with respect to the corresponding execution time of the ap-
plications under the native Linux scheduler. The results sug-
gest that by carefully selecting the co-scheduled threads and
pairing them on physical processors, it is possible not only
to reduce the average execution time of the workload but, at
the same time, to improve the performance of each individ-
ual application.

7. Related Work

Prior research on scheduling algorithms that take into
consideration the interaction between threads or processes
in processors is closely related to the work presented in this
paper. Several seminal works on cache affinity scheduling
[18, 20, 15] used simulation, physical experimentation and
analytical models to study the impact of time-sharing on



cache performance. Heuristics for estimating cache affin-
ity by measuring the time between consecutive executions
of the same thread on the same processor are used in practi-
cally all shared-memory multiprocessor schedulers. Thread
scheduling heuristics using accurate information on cache
misses from the hardware have also been proposed for stan-
dalone multithreaded programs [10, 21].

The advent of simultaneous multithreading has stim-
ulated research in all aspects of operating system sup-
port for processors using this technique [12]. Symbiotic
job scheduling [13, 14], an idea proposed originally for
scheduling on the Tera MTA architecture, has been pro-
posed as a viable way for factoring the implications of shar-
ing hardware resources between threads into the schedul-
ing process. Symbiotic job scheduling relies on sampling
the performance of different mixes of co-scheduled jobs,
using different types of performance metrics, until a con-
sensus on the best pairing is reached. This scheduling strat-
egy may reach optimality for certain workloads but is very
sensitive to their dynamic characteristics. The number of
possible thread pairings grows quickly with the number of
threads (or single-threaded jobs) in the workload and the
number of execution contexts on the processor. The perfor-
mance samples tend to get obsolete as jobs come and go,
or when jobs move through different phases of their com-
putation. The complexity grows even further if one needs to
consider multiple hardware metrics to infer the interference
in a given workload. Real processors can not support the
simultaneous counting of many hardware events, therefore
statistical sampling and averaging are necessary to gather
all the information. This paper takes a different approach.
Starting from a schedule selected to reduce interference be-
tween processors on the shared bus, we use hardware met-
rics to converge to a schedule that reduces thread interfer-
ence within each processor.

Hardware mechanisms proposed to improve the quality
of service to threads in terms of instruction throughput [5]
relate closely to job scheduling issues and the policies we
introduced in this paper, as they attempt to alleviate imbal-
ances of service between threads by regulating the number
of instruction issue slots used by each thread.

The interference between threads in the shared cache
has also been a focal point of investigation for multi-
threaded processors and chip multiprocessors [9]. The
problem presents several interesting challenges from the ar-
chitectural perspective, but with respect to job schedul-
ing, the most common technique used to alleviate thread
interference is to partition the cache between proces-
sors or execution contexts [16, 17, 4, 8]. Most of these
works propose static cache partitioning schemes, how-
ever dynamic schemes have also been proposed recently
[8]. There is a consensus among these works that cache par-
titioning tends to be beneficial for job scheduling, however

the problem of identifying the right static or dynamic parti-
tions to use in the cache is difficult.

8. Conclusions

For hybrid multiprocessors built with multithreaded pro-
cessors, it is necessary to consider both levels of paral-
lelism, intraprocessor and interprocessor, while designing
scheduling policies. This paper introduced new scheduling
policies that collect at run-time information about hardware
metrics related to the sharing of resources between threads.
This information is used to tune the schedule by educated
placement of threads on execution contexts. Tuning is mo-
tivated by the intuition that pairing jobs with high demands
on shared resources with jobs with low demands on shared
resources is likely to improve performance and resource
utilization. Thread pairing decisions on each processor are
made based on one of three types of information: bus trans-
action rate, cache miss rate, and stall cycle rate per thread.
All these metrics provide insight into the performance and
interaction of co-scheduled threads on a single processor.
Our experiments indicate that bus transaction rates are more
informative than stall cycle rates, which are in turn more in-
formative than cache misses. The scheduling policies use
no sampling or historical accumulation of the performance
of specific pairings. They start with a random thread place-
ment that tries to achieve fair sharing of processors and con-
verge progressively to a better placement via educated deci-
sions to migrate threads and alleviate contention.

We used workloads consisting of the NAS Paral-
lel Benchmarks with two different degrees of multipro-
gramming and combinations of only sequential, only mul-
tithreaded, or both sequential and multithreaded jobs. Our
evaluation focused on assessing the impact of the poli-
cies on job performance in the workloads. The policies
we introduce achieved up to a 28.7% performance im-
provement over the native Linux SMP scheduler, and out-
performed the Linux scheduler in 16 out of 18 cases and
a performance oblivious gang scheduler in 13 out of 18
cases.

Ongoing work of ours addresses the problem of thread
pairing for jobs that use both computation and commu-
nication. Early evaluation of thread pairing heuristics that
take into consideration the role of each thread (communica-
tion or computation) revealed substantial (over 30%) perfor-
mance improvements over the Linux scheduler. We are in-
vestigating ways to incorporate these heuristics in the pro-
cessor manager and derive thread characterization automat-
ically from hardware metrics. We also plan to investigate the
impact of I/O and memory pressure in our future work. In
parallel, we plan to adapt our processor manager to dynami-
cally intercept library calls from third-party and OpenMP li-
braries, so that our scheduling policies become ubiquitous.



We also work on devising specifications of our policies for
integration in mainstream priority schedulers.

Acknowledgments

This work is supported by an NSF ITR grant (ACI-
0312980), an NSF CAREER award (CCF-0346867), an IST
grant (2001-33071) and the College of William and Mary.

References

[1] C. Antonopoulos, D. Nikolopoulos, and T. Papatheodorou.
Informing Algorithms for Efficient Scheduling of Synchro-
nizing Threads on Multiprogrammed SMPs. InProc. of
the 2001 International Conference on Parallel Processing
(ICPP’01), pages 123–130, Valencia, Spain, Sept. 2001.

[2] C. D. Antonopoulos, D. S. Nikolopoulos, and T. S. Pap-
atheodorou. Scheduling Algorithms with Bus Bandwidth
Considerations for SMPs. InProc. of the 2003 International
Conference on Parallel Processing, pages 547–554, Kaohsi-
ung, Taiwan, October 2003.

[3] E. Ayguad́e, M. Gonz̀alez, X. Martorell, J. Oliver, J. Labarta,
and N. Navarro. NANOSCompiler: A Research Platform for
OpenMP Extensions. InProc. of the First European Work-
shop on OpenMP, pages 27–31, Lund, Sweden, Oct. 1999.

[4] G. Blelloch and P. Gibbons. Effectively Sharing a Cache
Among Threads. InProc. of the 16th ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA’2004),
Barcelona, Spain, June 2004.

[5] F. Cazorla, P. Knijnenburg, R. Sakellariou, E. Fernandez,
A. Ramirez, and M. Valero. Predictable Performance in SMT
Processors. InProceedings of the First ACM Conference
on Computing Frontiers, pages 433–443, Ischia, Italy, Apr.
2004.

[6] J. Corbalan, X. Martorell, and J. Labarta. Performance
Driven Processor Allocation. InProc. of the 4th USENIX
Symposium on Operating System Design and Implementa-
tion (OSDI’2000), San Diego, California, Oct. 2000.

[7] H. Jin, M. Frumkin, and J. Yan. The OpenMP Implementa-
tion of the NAS Parallel Benchmarks and its Performance.
Technical Report NAS-99-011, NASA Ames Research Cen-
ter, Oct. 1999.

[8] C. Liu, A. Sivasubramaniam, and M. Kandemir. Organizing
the Last Line of Defense before Hitting the Memory Wall
for CMPs. InProc. of the 10th International Symposium on
High Performance Computer Architecture (HPCA’04), pages
176–185, Madrid, Spain, Feb. 2004.

[9] B. Nayfeh and K. Olukotun. Exploring the Design Space for
a Shared-Cache Multiprocessor. InProc. of the 21st Inter-
national Conference on Computer Architecture, pages 166–
175, Chicago, Illinois, June 1994.

[10] J. Philbin, J. Edler, O. Anshus, C. Douglas, and K. Li. Thread
Scheduling for Cache Locality. InProc. of the 7th Interna-
tional Conference on Architectural Suppport for Program-
ming Langagues and Operating Systems (ASPLOS’VII),
pages 60–71, Boston, MA, Oct. 1996.

[11] E. Polychronopoulos, X. Martorell, D. Nikolopoulos,
J. Labarta, T. Papatheodorou, and N. Navarro. Kernel-Level
Scheduling for the Nano-Threads Programming Model. In
Proc. of the 12th ACM International Conference on Super-
computing (ICS’98), pages 337–344, Melbourne, Australia,
July 1998.

[12] J. Redstone, S. Eggers, and H. Levy. Analysis of Operat-
ing System Behavior on a Simultaneous Multithreaded Ar-
chitecture. InProc. of the 9th International Conference on
Architectural Support for Programming Languages and Op-
erating Systems (ASPLOS’IX), pages 246–256, Cambridge,
Massachusetts, Nov. 2000.

[13] A. Snavely and D. Tullsen. Symbiotic Job Scheduling for a
Simultaneous Multithreading Processor. InProc. of the Ninth
International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pages 234–
244, November 2000.

[14] A. Snavely, D. Tullsen, and G. Voelker. Sybmiotic Job-
scheduling for a Simultaneous Multithreading Processor. In
Proc. of the ACM 2002 Joint International Conference on
Measurement and Modeling of Computer Systems (SIGMET-
RICS’2002), pages 66–76, Marina Del Rey, CA, June 2002.

[15] M. Squillante and E. Lazowska. Using Processor-Cache
Affinity Information in Shared-Memory Multiprocessor
Scheduling.IEEE Transactions on Parallel and Distributed
Systems, 4(2):131–143, Feb. 1993.

[16] G. Suh, S. Devadas, and L. Rudolph. Analytical Cache Mod-
els with Applications to Cache Partitioning. InProc. of
the 15th ACM International Conference on Supercomputing
(ICS’01), pages 1–12, Sorrento, Italy, June 2001.

[17] G. Suh, L. Rudolph, and S. Devadas. Effects of Memory
Performance on Parallel Job Scheduling. InProc. of the 8th
Workshop on Job Scheduling Strategies for Parallel Process-
ing (JSSPP’02), pages 116–132, Edinburgh, Scotland, June
2002.

[18] J. Torrellas, A. Tucker, and A. Gupta. Evaluating the Per-
formance of Cache-Affinity Scheduling in Shared-Memory
Multiprocessors.Journal of Parallel and Distributed Com-
puting, 24(2):139 – 151, Feb 1995.

[19] D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simultaneous
Multithreading: Maximizing On-Chip Parallelism.In Pro-
ceedings of the 22nd Intenational Symposium on Computer
Architecture, pages 392 – 403, June 1995.

[20] R. Vaswani and J. Zahorjan. The Implications of Cache
Affinity on Processor Scheduling for Multiprogrammed
Shared Memory Multiprocessors. InProc. of the 13th ACM
Symposium on Operating System Principles (SOSP’91),
pages 26–40, Pacific Grove, California, Oct. 1991.

[21] B. Weissman. Performance Counters and State Sharing An-
notations: A Unified Approach to Thread Locality. InProc.
of the 8th ACM International Conference on Architectural
Support for Programming Languages and Operating Sys-
tems (ASPLOS-VIII), pages 127–138, San Jose, California,
Oct. 1998.


