
RAxML-Cell: Parallel Phylogenetic Tree Inference
on the Cell Broadband Engine

Filip Blagojevic1, Alexandros Stamatakis2,
Christos D. Antonopoulos3 and Dimitrios S. Nikolopoulos1

1Center for High-end Computing Systems 2 School of Computer & 3 Department of Computer Science
Department of Computer Science Communication Sciences College of William and Mary

Virginia Tech École Polytechnique Fédérale de Lausanne and Greek Armed Forces
660 McBryde Hall, Blacksburg VA 24061 Station 14, Ch-1015 Lausanne, Switzerland Division of Research and Informatics

{filip,dsn}@cs.vt.edu Alexandros.Stamatakis@epfl.ch cda@cs.wm.edu

Abstract

Computational phylogeny is a challenging application even for
the most powerful supercomputers. It is also an ideal candidate
for benchmarking emerging multiprocessor architectures, because
it exhibits fine- and coarse-grain parallelism at multiple levels. In
this paper, we present the porting, optimization, and evaluation of
RAxML on the Cell Broadband Engine. RAxML is a provably ef-
ficient, hill climbing algorithm for computing phylogenetic trees,
based on the Maximum Likelihood (ML) method. The Cell Broad-
band Engine, a heterogeneous multi-core processor with SIMD ac-
celerators which was initially marketed for set-top boxes, is cur-
rently being deployed on supercomputers and high-end server ar-
chitectures. We present both conventional and unconventional,
Cell-specific optimizations for RAxML’s search algorithm on a
real Cell multiprocessor. While exploring these optimizations, we
present solutions to problems related to floating point code execu-
tion, complex control flow, communication, scheduling, and multi-
level parallelization on the Cell.

1 Introduction

Phylogenetic (evolutionary) tree construction is one of
the grand-challenge problems in computational biology. A
phylogenetic tree depicts the evolutionary relationships be-
tween organisms, starting from a multiple alignment of
DNA or AA sequences (taxa) representing the organisms.
The problem is intractable under the ML criterion [7].

Recent advances in high-performance computational bi-
ology enabled the construction of parallel, heuristic algo-
rithms for the inference of phylogenetic trees. RAxML-
VI-HPC is an efficient parallel algorithm for phylogenetic
tree inference, based on the Maximum Likelihood (ML)
method. The original RAxML algorithm uses a rapid hill

1-4244-0910-1/07/$20.00 c©2007 IEEE.

climbing search heuristic, which is able to infer large trees
—in the order of 1,000 organisms— with low time and
space requirements [26]. RAxML uses an embarrassingly
parallel master-worker model for non-parametric bootstrap-
ping and multiple inference on distinct, reasonable random-
ized starting trees (more specifically, random stepwise ad-
dition sequence Maximum Parsimony trees [27]), in order
to search for the best-known ML tree. RAxML’s master-
worker model is implemented using MPI. RAxML-VI-HPC
has been further parallelized with OpenMP, to exploit loop-
level parallelism in the likelihood functions. The shared-
memory parallelization of the algorithm scales well and has
good cache locality with inputs comprising large multi-gene
alignments [28].

In this paper, we present the porting, optimization and
evaluation of RAxML on a Cell multiprocessor. The Cell
Broadband Engine [11] (or Cell BE), has been developed
jointly by Sony, Toshiba, and IBM. Although originally in-
tended as a processor for Sony PlayStation3, Cell is a fully
operational general-purpose microprocessor, which at the
same time offers a rich palette of thread-level and data-level
parallelization options to the programmer. Cell has eight
computation acceleration cores, named Synergistic Process-
ing Elements (SPEs), each equipped with a vector execu-
tion unit and a vector ISA. The chip also includes an SMT
PowerPC processor, named the Power Processing Element
(PPE), which runs Linux and operates both as a standalone
general-purpose microprocessor, and as a scheduler of com-
putation on the SPEs. The memory and interconnection net-
work architecture of Cell achieve a maximum on-chip data
transfer bandwidth of over 200 Gigabytes/s. The PPE, SPEs
and interconnect are all packaged on a single, thumb-size
die, operating within the upper range of existing processor
frequencies (3.2 GHz for current models, projected to run at
more than 5 GHz in the near future [30]). Power consump-
tion on Cell is comparable to that of mobile processors [30].

An exploration of programming models, runtime envi-
ronments, compiler support and application development on
Cell is highly relevant. The Cell is the processor of choice
for Roadrunner, the machine which is anticipated as the first
system to sustain a Petaflop, by the end of 20081 .

This paper makes four primary contributions:

• We present a detailed empirical optimization process of
RAxML on Cell. We use a real Cell multiprocessor for
this study. We show that although RAxML is seemingly
an ideal target for Cell due to its inherent multilevel par-
allelism, optimizing RAxML on Cell is a non-trivial ex-
ercise. Moreover, we find it highly unlikely to achieve
the desired level of optimization automatically, without
additional support from the runtime environment.

• We quantify Cell-specific code optimizations and assess
their impact, using RAxML. We find that merely expos-
ing multi-level parallelism is insufficient for high per-
formance. Both conventional and unconventional opti-
mizations are important to accelerate program execution.
The conventional optimizations applied include the use
of optimized numerical libraries for the SPEs, double-
buffering for communication/computation overlap, vec-
torization of floating point code, multi-level paralleliza-
tion and offloading of the bulk of the computation on
SPEs. Unconventional optimizations include the vector-
ization of conditional statements, asynchronous commu-
nication through direct SPE memory accesses, and in-
terleaved event-driven scheduling of tasks across SPEs.
We find, somewhat surprisingly, that unconventional op-
timizations such as the vectorization of conditionals, can
have a larger impact on performance than conventional
optimizations.

• We find that multi-level parallelization on Cell is both fea-
sible and necessary, however its exploitation is an elabo-
rate process. Depending on the input, RAxML can ex-
ploit two or three layers of parallelism, with two layers of
parallelism (task-level parallelism across SPEs and task
vectorization within SPEs) being more beneficial for re-
alistic workloads and three layers of parallelism (task-
level parallelism across SPEs, loop-level parallelization
across SPEs and vectorization within SPEs), being bene-
ficial for workloads with a low degree of task-level paral-
lelism available per processor.

• We present a comparison between Cell, a cutting-edge
multicore microprocessor (IBM Power5) and a mature
multithreaded microprocessor (Intel Xeon with HT tech-
nology), using RAxML. To the best of our knowledge this
is one of the first such studies, using a real-silicon Cell
prototype. The results demonstrate the superiority of Cell
as a processor for high-end computing.

1See http://www.hpcwire.com/hpc/893353.html and several other ar-
ticles in the popular press.

The rest of this paper is organized as follows: Section 2
summarizes related work on programming support for Cell
and studies of computational biology codes on emerging
parallel architectures. Section 3 presents RAxML-VI-HPC,
the parallel version of RAxML for distributed and shared
memory architectures. Section 4 outlines the Cell archi-
tecture. Section 5 presents step by step the RAxML port-
ing and optimization process, along with experimental re-
sults for each step of the process. Section 6 compares Cell
with the IBM Power5 and the Intel Xeon HT. Section 7 con-
cludes the paper.

2 Related Work

Since the popularization of Cell for general-purpose
computing tasks, several researchers engaged in analyzing
the performance of the processor and developing compiler
and programming support. Kistler et. al [17] provide a per-
formance analysis of the Cell’s on-chip interconnection net-
work, including DMA latencies and bandwidth. Williams
et. al [31] present an analytical framework to predict perfor-
mance of code written for Cell. They exercise their model
using small linear algebra kernels and, driven by their obser-
vations, they propose microarchitectural extensions to im-
prove double-precision floating point performance.

Eichenberger et. al [9] present several compiler tech-
niques targeting automatic generation of highly optimized
Cell code. The techniques include compiler-assisted mem-
ory alignment, branch prediction, SIMD parallelization, and
OpenMP task level parallelization. They also present a
compiler-controlled software cache. Our work departs in
that it considers optimizations which may be hard to de-
rive automatically in a compiler, such as casting and vector-
ization of conditionals, dynamic multi-level parallelization,
event-driven task scheduling, and communication optimiza-
tion.

Phylogenetic tree construction has attracted considerable
attention from the high-performance computing commu-
nity, due to the computational challenges of the problem.
RAxML has already been studied on distributed memory
architectures [26], shared-memory multiprocessors [28] and
graphics processing units [5]. Other researchers have stud-
ied phylogenetic tree construction on shared-memory paral-
lel architectures using parsimony-based approaches [2], and
distributed memory multiprocessors using maximum likeli-
hood methods [29].

3 RAxML-VI-HPC

RAxML-VI-HPC (v2.2.0) (Randomized Axelerated
Maximum Likelihood version VI for High Performance
Computing) [26] is a program for large-scale ML-based

(Maximum Likelihood [12]) inference of phylogenetic
(evolutionary) trees using multiple alignments of DNA or
AA (Amino Acid) sequences. The program is freely avail-
able as open source code at icwww.epfl.ch/˜stamatak (soft-
ware frame).

Phylogenetic trees are used to represent the evolution-
ary history of a set of n organisms. An alignment with the
DNA or AA sequences representing those n organisms (also
called taxa) can be used as input for the computation of phy-
logenetic trees. In a phylogeny, the organisms of the input
data set are located at the tips (leaves) of the tree whereas
the inner nodes represent extinct common ancestors. The
branches of the tree represent the time which was required
for the mutation of one species into another, new one. The
inference of phylogenies with computational methods has
many important applications in medical and biological re-
search (see [3] for a summary).

The fundamental algorithmic problem computational
phylogeny faces, consists in the immense amount of alter-
native tree topologies which grows exponentially with the
number of organisms n. For example, for n = 50 organisms
there exist 2.84∗1076 alternative trees. The number is com-
parable to the number of atoms in the universe (≈ 1080). In
fact, it has only recently been shown that the ML phylogeny
problem is NP-hard [7]. In addition, ML-based inference of
phylogenies is memory- and floating point-intensive, there-
fore the application of high performance computing tech-
niques as well as the assessment of new CPU architectures
can contribute significantly to the reconstruction of larger
and more accurate trees.

Nonetheless, over the last years there has been signifi-
cant progress in the field of heuristic ML search algorithms
with the release of programs such as IQPNNI [21], PHYML
[14], GARLI [32] and RAxML [27, 26].

Some of the largest published ML-based biological
analyses to date have been conducted with RAxML [13,
18, 19, 22]. The program is also part of the green-
genes project [8] (greengenes.lbl.gov) as well as the
CIPRES (CyberInfrastructure for Phylogenetic RESearch,
www.phylo.org) project. To the best of the authors knowl-
edge, RAxML-VI-HPC has been used to compute trees
on the two largest data matrices analyzed under ML to
date: a 25,057-taxon alignment of protobacteria (length:
1,463 nucleotides) and a 2,182-taxon alignment of mam-
mals (length: 51,089 nucleotides).

The current version of RAxML incorporates a signifi-
cantly improved rapid hill climbing search algorithm. A
recent performance study [26] on real world datasets with
≥ 1,000 sequences reveals that the algorithm is able to find
better trees in less time and with lower memory consump-
tion than other current ML programs (IQPNNI, PHYML,
GARLI). Moreover, RAxML-VI-HPC has been parallelized
with MPI (Message Passing Interface), to enable embar-

rassingly parallel non-parametric bootstrapping and multi-
ple inferences on distinct starting trees in order to search for
the best-known ML tree. In addition, the maximum likeli-
hood calculations have been parallelized with OpenMP [28]
to exploit shared-memory multiprocessors through fine-
grained loop-level parallelism. RAxML has also been
ported to a GPU (Graphics Processing Unit) [5].

The MPI version of RAxML exploits the parallelism that
is inherent to every real-world phylogenetic analysis. In or-
der to conduct a “publishable” tree reconstruction, a cer-
tain number (typically 20–200) of distinct inferences (tree
searches) on the original alignment as well as a large num-
ber (typically 100-1,000) of bootstrap analyses have to be
conducted (see [13] for an example of a real-world analysis
with RAxML). Thus, if the dataset is not extremely large,
this represents the most reasonable approach to exploit HPC
platforms from a user’s perspective.

Multiple inferences on the original alignment are re-
quired in order to determine the best-known (best-scoring)
ML tree (we use the term best-known because the problem
is NP-hard). This is the tree which will then be visualized
and published. In the case of RAxML, each independent
tree search starts from a distinct starting tree. This means,
that the vast topological search space is traversed from a
different starting point every time and will yield final trees
with different likelihood scores [27].

Bootstrap analyses are required to assign confidence val-
ues ranging between 0.0 and 1.0 to the internal branches
of the best-known ML tree. This allows to determine how
well-supported certain parts of the tree are and is important
for the biological conclusions drawn from it. Bootstrapping
is essentially very similar to multiple inferences. The only
difference is that inferences are conducted on a randomly
re-sampled alignment for every bootstrap run, i.e. a cer-
tain amount of columns (typically 10–20%) is re–weighted.
This is performed in order to assess the topological stabil-
ity of the tree under slight alterations of the input data. For
a typical biological analysis, a minimum of 100 bootstrap
runs is required.

All those individual tree searches be it bootstrap or
multiple inferences are completely independent from each
other and can thus be exploited by a simple master-worker
scheme.

4 The Cell BE

The Cell BE integrates a multithreaded PowerPC core,
called the Power Processing element (PPE), with eight com-
putation acceleration cores, called the Synergistic Process-
ing Elements (SPEs) [10]. The SPEs are connected around
a ring-structured network called the Element Interconnect
Bus (EIB). The PPE is also connected on the EIB.

The PPE is a 64-bit, dual-thread PowerPC processor,

with Vector/SIMD Multimedia extensions [1] and two lev-
els of on-chip cache. The SPEs are the high-end computing
engines of Cell. Each SPE has two major components: a
Synergistic Processor Unit (SPU) and a Memory Flow Con-
troller (MFC). All instructions are executed on the SPU.
The SPU includes 128 registers, each 128 bits wide, and
256 KB of software-controlled local storage. Each SPU
can directly load instructions and data only from its local
storage, and can directly store data only to its local stor-
age. Access to the local storage of remote SPEs, as well
as global RAM access is possible via DMA requests. The
SPU implements a Cell-specific set of SIMD instructions.
All single precision floating point operations on the SPU are
fully pipelined, and the SPU can issue one single-precision
floating point operation per cycle. Double precision float-
ing point operations are partially pipelined and the SPU can
issue two double-precision floating point operations every
six cycles. With all eight SPUs active and fully pipelined
double precision FP operation, the Cell BE is capable of a
peak performance of 21.03 GFLOPS. With single-precision
FP arithmetic, the Cell BE is capable of a peak performance
of 230.4 GFLOPS [6].

The SPE can access RAM and the local storages of re-
mote SPEs through direct memory access (DMA) requests.
The DMA transfers are handled by the MFC. Data trans-
ferred between local storage and main memory must be
128-bit aligned. The size of each DMA transfer can be
at most 16 KB. DMA-lists are used for transferring large
amounts of data (more than 16 KB). A list can have up to
2,048 DMA requests, each for up to 16 KB. The MFC sup-
ports only DMA transfer sizes that are 1, 2, 4, 8 or multiples
of 16 bytes long.

The EIB handles communication between the PPE, SPE,
main memory, and I/O devices. It is organized as a 4-ring
structure and can transmit 96 bytes per cycle, thus achieving
a peak bandwidth of 204.8 Gigabytes/second. The EIB can
also support more than 100 outstanding DMA requests.

5 Porting and Optimizing RAxML on Cell

We ported RAxML to Cell in four steps: (i) we ported
the MPI code on the PPE; (ii) we offloaded the most time-
consuming parts of each MPI process on the SPEs; (iii)
we optimized the SPE code using the vectorization, cus-
tomization of mathematical library functions through the
Cell SDK, vectorization of control statements coupled with
a specialized casting transformation, overlapping of com-
putation and communication (double buffering) and other
communication optimizations; (iv) lastly, we implemented
multi-level parallelization schemes across and within SPEs
in selected cases, as well as a scheduler for effective simul-
taneous exploitation of task, loop, and SIMD parallelism.
We outline these optimizations in the following sections.

The results reported in this section are obtained from a
real dual-Cell multiprocessor, located at the Barcelona Su-
percomputing Center (http://www.bsc.es). The Cell proces-
sors on this platform run at 3.2 GHz and the system has 512
MB of XDR RAM. The PPEs have a 32 KB L1 instruction
cache, a 32 KB L1 data cache, and a 512 KB unified L2
cache. The system runs Linux Fedora Core 5 (with kernel
version 2.6.16), including Cell-specific kernel patches. We
compiled our code using Toolchain 4.0.2.

5.1 Porting MPI Code

Mapping MPI processes to PPE threads using a one-to-
one scheme on the Cell may underutilize SPEs, if the PPE
threads do not expose enough task-level parallelism to of-
fload to SPEs. To address this problem, we introduced both
loop-level parallelization of tasks across SPEs and an event-
driven scheduler which multiplexes more than two MPI pro-
cesses on the PPE, so that more sources of task-level par-
allelism are made available for offloading computation on
SPEs.

5.2 Function Off-loading

We profiled the application using gprofile to identify the
computationally intensive functions that could be candi-
dates for offloading and optimization on SPEs. We used
an IBM Power5 processor for profiling RAxML. For the
profiling and benchmarking runs of RAxML presented in
this paper, we used the input file 42 SC, which contains 42
organisms, each represented by a DNA sequence of 1167
nucleotides. The number of distinct data patterns in a DNA
alignment is on the order of 250.

On the IBM Power5, 98.77% of the total execution time
is spent in three functions: 76.8% in newview() - which
computes the partial likelihood vector [12] at an inner node
of the phylogenetic tree, 19.16% in makenewz() - which op-
timizes the length of a given branch with respect to the tree
likelihood using the Newton–Raphson method, and 2.37%
in evaluate() - which calculates the log likelihood score of
the tree at a given branch by summing over the partial likeli-
hood vector entries. Note that the log likelihood value is the
same at all branches of the tree if the model of nucleotide
substitution is time-reversible [12, 24]. These functions are
the best candidates for offloading on SPEs.

The prerequisite for computing evaluate() and make-
newz() is that the likelihood vectors at the nodes to the right
and left of the branch have been computed. Thus, make-
newz() and evaluate() initially make calls to newview(), be-
fore they can execute their own computation. The newview()
function at an inner node p calls itself recursively when the
two children r and q are not tips (leaves) and the likelihood
array for r and q has not already been computed. Conse-

(a)

1 worker, 1 bootstrap 36.9s

2 workers, 8 bootstraps 207.67s

2 workers, 16 bootstraps 427.95s

2 workers, 32 bootstraps 824s

(b)

1 worker, 1 bootstrap 106.37s

2 workers, 8 bootstraps 459.16s

2 workers, 16 bootstraps 915.75s

2 workers, 32 bootstraps 1836.6s

Table 1. Execution time of RAxML (in sec-
onds). The input file is 42 SC. (a) The
whole application is executed on the PPE, (b)
newview() is offloaded on one SPE.

quently, the first candidate for offloading is newview(). Al-
though makenewz() and evaluate() are both taking a smaller
portion of the execution time than newview(), offloading
these two functions results in significant speedup (see Sec-
tion 5.2.7). Besides the fact that each function can be exe-
cuted faster on an SPE, having all three functions offloaded
to an SPE reduces significantly the amount of PPE-SPE
communication.

In order to have a function executed on an SPE, we
spawn an SPE thread at the beginning of each MPI pro-
cess. The thread executes the offloaded function upon re-
ceiving a signal from the PPE and returns the result back
to the PPE upon completion. To avoid excessive overhead
from repeated thread spawning and joining, threads remain
bound on SPEs and busy-wait for the PPE signal, before
starting to execute a function.

5.2.1 Optimizing Off-Loaded Functions

The discussion in this Section refers to function newview(),
which is the most computationally expensive in the code.
Table 1 summarizes the execution times of RAxML before
and after newview() is offloaded. The first column shows the
number of workers (MPI processes) used in the experiment
and the amount of work (bootstraps) performed.

As shown in Table 1, merely offloading newview() causes
performance degradation. We profiled the new version of
the code in order to get a better understanding of the ma-
jor bottlenecks. Inside newview(), we identified 4 parts
where the function spends almost its entire lifetime: The
first part includes math library functions such as exp() and
log(). The exp() function is required to compute the tran-
sition probabilities of the nucleotide substitution matrix for
the branches from the root of a subtree to its descendants.
The log() function is used to scale the branch lengths for nu-
merical reasons [12, 23]. The second part includes a large

if(. . .) statement with a conjunction of four arithmetic com-
parisons, that is used to check if small likelihood vector en-
tries need to be scaled to avoid numerical underflow (simi-
lar checks are used in every ML implementation). The third
time-consuming part involves DMA transfers. The fourth
includes the loops that perform the actual likelihood vec-
tor calculation. In the next few sections we describe the
techniques used to optimize the aforementioned parts in
newview(). The same techniques were applied to the other
offloaded functions.

5.2.2 Mathematical Library Functions

The code in newview() executes on average 25,554 floating
point operations per invocation, for the 42 SC input data
set. 65% of these operations are multiplications and 34%
are additions. The exp() function is called approximately
150 times. Although it represents a very small portion of the
total number of floating point operations, the exp() function
accounts for 50% of the execution time in newview(). We
replaced the PPC math library function exp() with the exp()
function provided by the Cell SDK 1.1. The new exp() func-
tion implements a numerical method for the exponent cal-
culation. The execution time after replacing exp() is shown
in Table 2. This optimized reduces execution time by 37%–
41% in the tested cases.

5.2.3 Vectorizing Conditional Statements

RAxML always invokes newview() at an inner node of the
tree (p) which is at the root of a subtree. The main com-
putational kernel in newview() has a switch statement which
selects one out of four paths of execution. If one or both
descendants (r and q) of p are tips (leaves), the compu-
tations of the main loop in newview() can be simplified.
This optimization leads to significant performance improve-
ments [26]. To activate the optimization, we use four imple-
mentations of the main computational part of newview() for
the case that r and q are tips, r is a tip, q is a tip, or r and q
are both inner nodes.

Each of the four execution paths in newview() leads to a
distinct—highly optimized—version of the loop which per-

1 worker, 1 bootstrap 62.8s

2 workers, 8 bootstraps 285.25s

2 workers, 16 bootstraps 572.92s

2 workers, 32 bootstraps 1138.5s

Table 2. Execution time of RAxML when the
code uses the exp() function from the SDK li-
brary. The input file is 42 SC.

forms the actual likelihood vector calculations. Each itera-
tion of this loop executes the previously mentioned if() state-
ment (Section 5.2.1), to check for likelihood scaling. Mis-
predicted branches in the compiled code for this statement
incur a penalty of approximately 20 cycles [15]. We pro-
filed newview() and found that 45% of the execution time
is spent in this particular conditional statement. Further-
more, almost all the time is spent in checking the condition,
while negligible time is spent in the body of code in the fall-
through part of the conditional statement. The problematic
conditional statement is shown below. The symbol ml is a
constant and all operands are double precision floating point
numbers.

if (ABS(x3->a) < ml && ABS(x3->g) < ml

&& ABS(x3->c) < ml && ABS(x3->t) < ml) {. . .}
This statement is a challenge for a branch predictor, since

it implies 8 conditions, one for each of the four ABS()
macros and the four comparisons against the minimum like-
lihood value constant (ml).

On an SPE, comparing integers can be significantly
faster than comparing doubles, since integer values can be
compared using the SPE intrinsics. Although the current
SPE intrinsics support only comparison of 32-bit integer
values, the comparison of 64-bit integers is also possible
by combining different intrinsics that operate on the 32-bit
integers. The current spu-gcc compiler automatically op-
timizes an integer branch using the SPE intrinsics. To op-
timize the problematic branches, we made the observation
that integer comparison is faster than floating point compar-
ison on an SPE. According to the IEEE standard, numbers
represented in float and double formats are “lexicographi-
cally ordered” [16]. We used this property to replace float-
ing point comparison with integer comparison.

To get an absolute value of a floating point number, we
used the spu and() logic intrinsic, which performs vector
bit-wise AND operation. With spu and() we always set the
left most bit of a floating point number to one. After com-
puting the absolute values of all the operands involved in
the if() statement, we cast each operand to an unsigned long
long and perform the comparison.

Following optimization of the offending conditional
statement, its contribution to execution time in newview()
comes down to 6%, as opposed to 45% before optimization.
The total execution time (Table 3) improves by 19%–21%.

5.2.4 Double Buffering and Memory Management

Depending on the size of the input alignment, the major cal-
culation loop (the loop that performs the calculation of the
likelihood vector) in newview() can execute up to 50,000
iterations. The number of iterations is directly related to
the alignment length. The loop operates on large arrays,
and each member in the arrays is an instance of a likeli-
hood vector structure. The arrays are allocated dynamically

1 worker, 1 bootstrap 49.3s

2 workers, 8 bootstraps 230s

2 workers, 16 bootstraps 460.43s

2 workers, 32 bootstraps 917.09s

Table 3. Execution time of RAxML after the
floating-point conditional statement is trans-
formed to an integer conditional statement
and vectorized. The input file is 42 SC.

at runtime. Since there is no limit on the size of these ar-
rays, we are unable to keep all the members of the arrays in
the local storage of SPEs. Instead, we strip-mine the arrays,
by fetching a few array elements to local storage at a time,
and execute the corresponding loop iterations on a batch of
elements at a time. We use a 2 KByte buffer for caching
likelihood vectors, which is enough to store the data needed
for 16 loop iterations. It should be noted that the space used
for buffers is much smaller than the size of the local storage.

In the original code where SPEs wait for all DMA trans-
fers, the idle time accounts for 11.4% of execution time of
newview(). We eliminated the waiting time by using double
buffering to overlap DMA transfers with computation. The
total execution time of the application after applying double
buffering and tuning the data transfer size (set to 2 KBytes)
is shown in Table 4.

5.2.5 Vectorization

All calculations in newview() are enclosed in two loops. The
first loop has a small trip count (typically 4–25 iterations)
and computes the individual transition probability matrices
(see Section 5.2.1) for each distinct rate category of the CAT
or Γ models of rate heterogeneity [25]. Each iteration ex-
ecutes 36 double precision floating point operations. The
second loop computes the likelihood vector. Typically, the
second loop has a large trip count, which depends on the
number of distinct data patterns in the data alignment. For
the 42 SC input file, the second loop has 228 iterations and

1 worker, 1 bootstrap 47s

2 workers, 8 bootstraps 220.92s

2 workers, 16 bootstraps 441.39s

2 workers, 32 bootstraps 884.47s

Table 4. Execution time of RAxML with dou-
ble buffering applied to overlap DMA trans-
fers with computation. The input file is
42 SC.

1 worker, 1 bootstrap 40.9s

2 workers, 8 bootstraps 195.7s

2 workers, 16 bootstraps 393s

2 workers, 32 bootstraps 800.9s

Table 5. Execution time of RAxML following
vectorization. The input file is 42 SC.

executes 44 double precision floating point operations per
iteration. Each SPE on the Cell is capable of exploiting data
parallelism via vectorization. The SPE vector registers can
store two double precision floating point elements. We vec-
torized the two loops in newview() using these registers. We
present a simplified explanation of our vectorization strat-
egy due to space considerations. As an example, we are
using the second, larger loop. The first loop is optimized
with the same method.

Figure 1 illustrates the loop (showing a few selected in-
structions which dominate execution time in the loop). The
variables x1->a, x1->c, x1->g, and x1->t belong to the
same C structure (likelihood vector) and occupy contiguous
memory locations. Only three of these variables are multi-
plied by the elements of the array left[]. This makes vec-
torization more difficult, since the code requires vector con-
struction instructions such as spu splats(). Obviously, there
are many different possibilities for vectorizing this code.
The scheme shown in Figure 1 is the one that achieved the
best performance in our tests. Note that due to involved
pointer arithmetic on dynamically allocated data structures,
automatic vectorization of this code may be challenging for
a compiler. After vectorization, the number of floating point
instructions in the body of the loops drops from 36 to 24 for
the first loop, and from 44 to 22 for the second loop. Vec-
torization adds 25 instructions for creating vectors.

Without vectorization, newview() spends 19.57 seconds
(or 69.4% of its execution time) in the two loops. Follow-
ing vectorization, the time spent in loops drops to 11.48 sec-
onds, or 57% of the execution time of newview(). Table 5
shows execution times following vectorization.

5.2.6 PPE-SPE Communication

Although newview() accounts for most of the execution
time, its granularity is fine and its contribution to execution
time is attributed to the large number of invocations. For
the 42 SC input, newview() is invoked 230,500 times and
the average execution time per invocation is 71µs. In order
to invoke an offloaded function, the PPE needs to send a sig-
nal to an SPE. Also, after an offloaded function completes,
it sends the result back to the PPE.

In an early implementation of RAxML, we used mail-

1 worker, 1 bootstrap 39.9s

2 workers, 8 bootstraps 180.46s

2 workers, 16 bootstraps 357.08s

2 workers, 32 bootstraps 712.2s

Table 6. Execution time of RAxML following
the optimization of communication to use di-
rect memory-to-memory transfers. The input
file is 42 SC.

boxes to implement the communication between the PPE
and SPEs. We observed that PPE-SPE communication can
be significantly improved if it is performed through main
memory and SPE local storage instead of mailboxes. Us-
ing memory-to-memory communication improves execu-
tion time by 2%–11%. Table 6 shows RAxML execution
times, including all optimizations discussed so far and di-
rect memory to memory communication, for the 42 SC in-
put. It is interesting to note that direct memory-to-memory
communication is an optimization which scales with par-
allelism on Cell, i.e. its performance impact grows as the
code uses more SPEs. As the number of workers and boot-
straps executed on the SPEs increases, the code becomes
more communication-intensive, due to the fine granularity
of the offloaded functions.

5.2.7 Increasing the Coverage of Offloading

In addition to newview(), we offloaded makenewz() and
evaluate(). All three offloaded functions were packaged in
a single code module loaded on the SPEs. The advantage
of using a single module is that it can be loaded to the lo-
cal storage once when an SPE thread is created and remain
pinned in local storage for the rest of the execution. There-
fore, the cost of loading the code on SPEs is amortized and
communication between the PPE and SPEs is reduced. For
example, when newview() is called by makenewz() or eval-
uate(), there is no need for any PPE-SPE communication,
since all functions already reside in SPE local storage.

Offloading all three critical functions improves perfor-
mance by a further 31%–38%. A more important impli-
cation is that after offloading and optimization of all three
functions, the RAxML code split between the PPE and one
SPE becomes actually faster than the sequential code exe-
cuted exclusively on the PPE, by as much as 25%. Func-
tion offloading is another optimization which scales with
parallelism. When more than one MPI processes are used
and more than one bootstraps are offloaded to SPEs by each
process, the gains from offloading rise to 47%. Table 7 il-
lustrates execution times after fill function offloading.

for(. . .)
{
ump x1 0 = x1->a;
ump x1 0 += x1->c * *left++;
ump x1 0 += x1->g * *left++;
ump x1 0 += x1->t * *left++;

ump x1 1 = x1->a;
ump x1 1 += x1->c * *left++;
ump x1 1 += x1->g * *left++;
ump x1 1 += x1->t * *left++;
. . .

}

for(. . .)
{

a v = spu splats(x1->a);
c v = spu splats(x1->c);
g v = spu splats(x1->g);
t v = spu splats(x1->t);
l1 = (vector double)(left[0],left[3]);
l2 = (vector double)(left[1],left[4]);
l3 = (vector double)(left[2],left[5]);
ump v1[0] = spu madd(c v,l1,a v);
ump v1[0] = spu madd(g v,l2,ump v1[0]);
ump v1[0] = spu madd(t v,l3,ump v1[0]);
. . .

}

Figure 1. The second loop in newview(). Non–vectorized code shown on the left, vectorized code
shown on the right. spu madd() multiplies the first two arguments and adds the result to the third
argument. spu splats() creates a vector by replicating a scalar element.

5.3 Multilevel Parallelization

Mapping MPI code on Cell can be achieved by assigning
one MPI process to each thread of the PPE. Given that the
PPE is a dual-thread processor and each MPI process exe-
cutes one bootstrap, two MPI processes can use only two
out of eight SPEs for parallel execution. We considered two
programming models in order to exploit the rest of the SPEs
on Cell. The first is loop-level parallelization (LLP) within a
bootstrap, coupled with loop distribution across SPEs. The
second is event-driven task-level parallelization (EDTLP),
in which the PPE scheduler oversubscribes the PPE with
more than two MPI processes, to increase the availability of
bootstraps for SPEs. We implemented both parallelization
methods and observed that there is no single method that
performs the best in all cases [4]. Consequently, we also im-
plemented a dynamic parallelization scheme, named MGPS
(Multi-grain Parallelism Scheduling) [4], which combines
the LLP and EDTLP models.

In the MGPS model, the scheduler decides on-the-fly
which parallelization model (EDTLP, LLP, or both) the ap-
plication should use. The parallelization model may also
change at runtime, depending on the application workload

1 worker, 1 bootstrap 27.7s

2 workers, 8 bootstraps 112.41s

2 workers, 16 bootstraps 224.69s

2 workers, 32 bootstraps 444.87s

Table 7. Execution time of RAxML after
offloading and optimizing three functions:
newview(), makenewz() and evaluate(). The input
file is 42 SC.

and more specifically the recent history of SPE utilization
by off-loaded tasks [4].

Using the MGPS model we were able to further reduce
the execution time of RAxML, as shown in Table 8. The
mechanisms, policies and ramifications of the EDTLP and
MGPS schedulers, as well as an application-independent
implementation of these schedulers on Cell are discussed
elsewhere [4]. In this paper we only demonstrate the im-
pact of these schedulers on RAxML. The schedulers reduce
execution time of one bootstrap by 36%, due to loop-level
parallelization, and up to 63% with more bootstraps, due to
simultaneous exploitation of task-level and loop-level par-
allelism.

1 bootstrap 17.6s

8 bootstraps 42.18s

16 bootstraps 84.21s

32 bootstraps 167.57s

Table 8. Execution time of RAxML when
the dynamic parallelization model (MGPS) is
used. The input file is 42 SC. The number of
workers is variable and is selected at runtime
by the scheduler.

6 Performance Comparison with Other Plat-
forms

We compare the performance of the Cell implementation
of RAxML to the MPI implementation of RAxML on two
multiprocessors:

• A dual-processor system, with 32-bit Intel Pentium 4
Xeon processors with Hyper-threading technology (2-
way SMT), running at 2GHz, with 8KB L1-D cache,
512KB L2 cache, and 1MB L3 cache.

• A single-processor system, with one 64-bit IBM
Power5 processor. The Power5 is a quad-thread, dual-
core processor with dual SMT cores running at 1.65
GHz, 32KB of L1-D and L1-I cache, 1.92 MB of L2
cache, and 36 MB of L3 cache.

We use 42 SC as the input data set. Figure 2 illustrates
execution time versus the number of bootstraps. While con-
ducting the experiments on the IBM Power5, we use both
cores, and on each core we use both SMT threads. There-
fore, RAxML is executed with four MPI processes on the
Power5. On the Intel multiprocessor, RAxML is executed
with four MPI processes, on two Intel processors with Hy-
perthreading activated on each processor.

The Cell clearly outperforms the Intel Xeon by a large
margin, more than a factor of four on a one-to-one com-
parison, and more than a factor of two if one Cell is
compared against two Xeons processors on the same data
set. One Cell performs also 9%-10% better than one IBM
Power5. Although the margin of difference between Cell
and Power5 seems small, Cell has some important advan-
tages over a general-purpose high-end processor such as the
Power5. The Cell is dramatically more cost-effective and
more power-efficient than the Power5 [30, 20].

0

200

400

600

800

1000

1200

1400

0 20 40 60 80 100 120 140

E
x
e
c
u
t
i
o
n

t
i
m
e

i
n

s
e
c
o
n
d
s

Number of bootsrtaps

Cell with MGPS programming model
IBM Power5
Intel Xeon

Figure 2. RAxML performance on different
multiprocessors with multithreaded and mul-
ticore components: Intel Xeon HT, IBM
Power5 and Cell. Execution time is plotted
against the number of bootstraps.

7 Conclusions

We presented the porting, optimization and evaluation of
RAxML (Randomized Axelerated Maximum Likelihood), a
challenging application from the domain of computational

phylogenetics, on the Cell Broadband Engine. We explored
a total of seven Cell-specific optimizations and the perfor-
mance implications of these optimizations: I) Offloading
the bulk of the maximum likelihood tree calculation on the
SPEs; II) Replacing expensive mathematical library func-
tions with Cell-specific numerical implementations; III)
Casting and vectorization of expensive conditional state-
ments involving multiple, hard to predict conditions; IV)
Double buffering for overlapping completely DMA trans-
fers with computation; V) Vectorization of the core of the
floating point computation; VI) Optimization of PPE-SPE
communication using direct memory-to-memory transfers;
VII) Dynamic multi-level parallelization, achieved by over-
subscribing the PPE and/or exploiting loop-level paral-
lelism when the task-level parallelism exposed by MPI pro-
cesses leaves SPEs unused.

Starting from an optimized version of RAxML for con-
ventional uniprocessors and multiprocessors, we were able
to boost performance on Cell by more than a factor of five
and bring it to a higher level than the performance achieved
by leading current multicore processors.

In future work we plan to experiment with different sizes
of the offloaded functions, especially those functions with
an object code size that may exceed the size of the local stor-
age. In RAxML we did not experience this problem, since
the total size of all offloaded functions occupies about 50%
of the local storage. For large data sets, a more elaborate
code management methodology, such as executing non-leaf
procedures on the PPE and off-loading leaf procedures on
the SPEs, or stack spilling and retrieval from the SPEs, is
needed. We also intend to incorporate different scheduling
policies in our current runtime system. The need for cus-
tomized, application-specific scheduling policies emerges
together with the porting of more real-world parallel appli-
cations on the Cell.

Acknowledgments

This research is supported by the National Science
Foundation (Grants CCR-0346867, ACI-0312980, CNS-
0521381), the U.S. Department of Energy (Grant DE-
FG02-06ER25751), the Swiss Confederation Funding,
the Barcelona Supercomputing Center, which generously
granted us access to their Cell multiprocessor, and the Col-
lege of Engineering at Virginia Tech.

References

[1] PowerPC Microprocessor Family: Vector/SIMD Multimedia Exten-
sion Technology Programming Environments Manual. http://www-
306. ibm.com/chips/techlib.

[2] D. Bader, V. Chandu, and M. Yan. ExactMP: An Efficient Parallel
Exact Solver for Phylogenetic Tree Construction using Maximum

Parsimony. In Proc. of the 2006 International Conference on Parallel
Processing, pages 65–72, Columbus, OH, August 2006.

[3] D.A. Bader, B.M.E. Moret, and L. Vawter. Industrial Applications
of High-Performance Computing for Phylogeny Reconstruction. In
Proc. of SPIE ITCom, volume 4528, pages 159–168, 2001.

[4] F. Blagojevic, D. S. Nikolopoulos, A. Stamatakis, and C. D.
Antonopoulos. Dynamic Multigrain Parallelization on the Cell
Broadband Engine. 2007 ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, March 2006.

[5] M. Charalambous, P. Trancoso, and A. Stamatakis. Initial Experi-
ences Porting a Bioinformatics Application to a Graphics Processor.
In In Proceedings of the 10th Panhellenic Conference on Informatics
(PCI 2005), pages 415–425, 2005.

[6] T. Chen, R. Raghavan, J. Dale, and E. Iwata. Cell Broadband Engine
Architecture and its first implementation. IBM developerWorks, Nov
2005.

[7] B. Chor and T. Tuller. Maximum Likelihood of Evolutionary Trees:
Hardness and Approximation. Bioinformatics, 21(1):97–106, 2005.

[8] T. Z. DeSantis, P. Hugenholtz, N. Larsen, M. Rojas, E. L. Brodie,
K. Keller, T. Huber, D. Dalevi, P. Hu, and G. L. Andersen.
Greengenes, a Chimera-Checked 16S rRNA Gene Database and
Workbench Compatible with ARB. Appl. Environ. Microbiol.,
72(7):5069–5072, 2006.

[9] A. E. Eichenberger et al. Optimizing Compiler for a Cell proces-
sor. Parallel Architectures and Compilation Techniques, September
2005.

[10] B. Flachs et al. The Microarchitecture of the Streaming Processor
for a CELL Processor. Proceedings of the IEEE International Solid-
State Circuits Symposium, pages 184–185, February 2005.

[11] D. Pham et al. The Design and Implementation of a First Generation
Cell Processor. Proc. Int’l Solid-State Circuits Conf. Tech. Digest,
IEEE Press, pages 184–185, 2005.

[12] J. Felsenstein. Evolutionary Trees From DNA Sequences: A Maxi-
mum Likelihood Approach. J. Mol. Evol., 17:368–376, 1981.

[13] G. W. Grimm, S. S. Renner, A. Stamatakis, and V. Hemleben. A
Nuclear Ribosomal DNA Phylogeny of Acer Inferred with Maximum
Likelihood, Splits Graphs, and Motif Analyses of 606 Sequences.
Evolutionary Bioinformatics Online, 2006. to be published.

[14] S. Guindon and O. Gascuel. A Simple, Fast, and Accurate Algorithm
to Estimate Large Phylogenies by Maximum Likelihood. Syst. Biol.,
52(5):696–704, 2003.

[15] IBM. Cbe tutorial v1.1. 2006.

[16] W. Kahan. Lecture Notes on the Status of IEEE Standard 754 for
Binary Floating-Point Arithmetic. 1997.

[17] M. Kistler, M. Perrone, and F. Petrini. Cell Multi-
processor Interconnection Network: Built for Speed.
IEEE Micro, 26(3), May-June 2006. Available from
http://hpc.pnl.gov/people/fabrizio/papers/ieeemicro-cell.pdf.

[18] R. E. Ley, J. K. Harris, J. Wilcox, J. R. Spear, S. R. Miller, B. M.
Bebout, J. A. Maresca, D. A. Bryant, M. L. Sogin, and N. R. Pace.
Unexpected Diversity and Complexity of the Guerrero Negro Hyper-
saline Microbial Mat. Appl. Envir. Microbiol., 72(5):3685 – 3695,
May 2006.

[19] R.E. Ley, F. Backhed, P. Turnbaugh, C.A. Lozupone, R.D. Knight,
and J.I. Gordon. Obesity Alters Gut Microbial Ecology. Proceedings
of the National Academy of Sciences of the United States of America,
102(31):11070–11075, 2005.

[20] Sun Microsystems. Sun UltraSPARC T1 Cool Threads Technology.
December 2005. http://www.sun.com/aboutsun/media/presskits/ net-
workcomputing05q4/T1Infographic.pdf.

[21] B. Q. Minh, L. S. Vinh, A. von Haeseler, and H. A. Schmidt.
pIQPNNI: Parallel Reconstruction of Large Maximum Likelihood
Phylogenies. Bioinformatics, 21(19):3794–3796, 2005.

[22] C.E. Robertson, J.K. Harris, J.R.Spear, and N.R. Pace. Phylogenetic
Diversity and Ecology of Environmental Archaea. Current Opinion
in Microbiology, 8:638–642, 2005.

[23] A. Stamatakis. Distributed and Parallel Algorithms and Systems for
Inference of Huge Phylogenetic Trees based on the Maximum Likeli-
hood Method. PhD thesis, Technische Universitt Mnchen, Germany,
October 2004.

[24] A. Stamatakis. Parallel and Distributed Computation of Large Phy-
logenetic Trees. In Albert E.Zomaya, editor, Parallel Computing
for Bioinformatics and Computational Biology, pages 327–346. John
Wiley & Sons, 2006.

[25] A. Stamatakis. Phylogenetic Models of Rate Heterogeneity: A
High Performance Computing Perspective. In Proceedings of 20th
IEEE/ACM International Parallel and Distributed Processing Sym-
posium (IPDPS2006), High Performance Computational Biology
Workshop, Proceedings on CD, Rhodos, Greece, April 2006.

[26] A. Stamatakis. RAxML-VI-HPC: Maximum Likelihood-Based Phy-
logenetic Analyses With Thousands of Taxa and Mixed Models.
Bioinformatics, page btl446, 2006.

[27] A. Stamatakis, T. Ludwig, and H. Meier. RAxML-III: A Fast Pro-
gram for Maximum Likelihood-based Inference of Large Phyloge-
netic Trees. Bioinformatics, 21(4):456–463, 2005.

[28] A. Stamatakis, M. Ott, and T. Ludwig. RAxML-OMP: An Efficient
Program for Phylogenetic Inference on SMPs. In Proc. of PaCT05,
pages 288–302, 2005.

[29] C. Stewart, D. Hart, D. Berry, G. Olsen, E. Wernert, and W. Fischer.
Parallel Implementation and Performance of FastDNAml – A Pro-
gram for Maximum Likelihood Phylogenetic Inference. In Proc. of
Supercomputing’2001: High Performance Networking and Comput-
ing Conference, Denver, CO, November 2001.

[30] D. Wang. Cell Microprocessor III. Real World Technologies, July
2005.

[31] S. Williams, J. Shalf, L. Oliker, S. Kamil, P. Husbands, and K. Yelick.
The Potentinal of the Cell Processor for Scientific Computing. ACM
International Conference on Computing Frontiers, May 3-6 2006.

[32] D. Zwickl. Genetic Algorithm Approaches for the Phylogenetic Anal-
ysis of Large Biologiical Sequence Datasets under the Maximum
Likelihood Criterion. PhD thesis, University of Texas at Austin,
April 2006.

