
Scalable Locality-Conscious Multithreaded Memory Allocation

Scott Schneider
Department of Computer Science

College of William and Mary
scotts@cs.wm.edu

Christos D. Antonopoulos
Department of Computer Science

College of William and Mary
cda@cs.wm.edu

Dimitrios S. Nikolopoulos
Department of Computer Science

College of William and Mary
dsn@cs.wm.edu

Abstract
We present Streamflow, a new multithreaded memory manager
designed for low overhead, high-performance memory allocation
while transparently favoring locality. Streamflow enables low over-
head simultaneous allocation by multiple threads and adapts to se-
quential allocation at speeds comparable to that of custom sequen-
tial allocators. It favors the transparent exploitation of temporal and
spatial object access locality, and reduces allocator-induced cache
conflicts and false sharing, all using a unified design based on seg-
regated heaps. Streamflow introduces an innovative design which
uses only synchronization-free operations in the most common case
of local allocations and deallocations, while requiring minimal,
non-blocking synchronization in the less common case of remote
deallocations. Spatial locality at the cache and page level is favored
by eliminating small objects headers, reducing allocator-induced
conflicts via contiguous allocation of page blocks in physical mem-
ory, reducing allocator-induced false sharing by using segregated
heaps and achieving better TLB performance and fewer page faults
via the use of superpages. Combining these locality optimizations
with the drastic reduction of synchronization and latency over-
head allows Streamflow to perform comparably with optimized se-
quential allocators and outperform—on a shared-memory system
with four two-way SMT processors—four state-of-the-art multi-
processor allocators by sizeable margins in our experiments. The
allocation-intensive sequential and parallel benchmarks used in our
experiments represent a variety of behaviors, including mostly lo-
cal object allocation-deallocation patterns and producer-consumer
allocation-deallocation patterns.

Categories and Subject DescriptorsD.4.2 [Operating Systems]:
Storage Management—Allocation/deallocation strategies; D.3.3
[Programming Languages]: Language Constructs and Features—
Dynamic storage management; D.4.1 [Operating Systems]: Process
Management—Concurrency, Deadlocks, Synchronization, Threads;
D.1.3 [Programming Techniques]: Concurrent Programming

General Terms Algorithms, Management, Performance

Keywords memory management, multithreading, shared mem-
ory, synchronization-free, non-blocking

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ISMM’06 June 10–11, 2006, Ottawa, Ontario, Canada.
Copyright c© 2006 ACM 1-59593-221-6/06/0006. . . $5.00.

1. Introduction
Efficient dynamic memory allocation is essential for desktop,
server and scientific applications [27]. As more of these appli-
cations use thread-level parallelism to exploit multiprocessors and
emerging processors with multiple cores and threads, scalable mul-
tiprocessor memory allocation becomes of paramount importance.

Dynamic memory allocation can negatively affect performance
by adding overhead during allocation and deallocation operations,
and by exacerbating object access latency due to poor locality.
Therefore, effective memory allocators need to be optimized for
both low allocation overhead and good object access locality. Scal-
ability and synchronization overhead reduction has been the cen-
tral consideration in the context of thread-safe memory allocators
[3, 18], while locality has been the focal point of the design of se-
quential memory allocators for more than a decade [11].

Multiprocessor allocators add synchronization overhead on the
critical path of all allocations and deallocations. Synchronization
is needed because a thread may need to access another thread’s
heap in order to remotely release an object to the owning thread.
Since such operations may be initiated concurrently by multiple
threads, synchronization is used to arbitrate thread accesses to the
data structures used for managing the heaps. Therefore, local heaps
need to be protected with locks or updated atomically with read-
modify-write operations such ascmp&swap. The vast majority of
thread-safe allocators use object headers [3, 9, 15, 18, 25], which
facilitate object deallocation in local heaps but pollute the cache
in codes that allocate many small objects.

Locality-conscious sequential allocators segregate objects of
different sizes to different page blocks allocated from the operating
system [7]. Objects are allocated by merely bumping a pointer and
no additional information is stored with each object. In general,
the allocation order of objects does not necessarily match their
access pattern. However, contiguous allocation of small objects
works well in practice because eliminating object headers helps
avoid fragmentation and cache pollution.

Efficient, thread-safe memory allocators use local heaps to re-
duce contention between threads. The use of local heaps helps a
multiprocessor allocator avoid false sharing, since threads tend to
allocate and deallocate most of their objects locally [3]. At a lower
level, page block allocation and recycling policies in thread-safe
allocators are primarily concerned with fragmentation and blowup,
without necessarily accounting for locality [3].

The design space of thread-safe allocators that achieve both
good scalability and good data locality merits further investigation.
It is natural to consider combining scalable synchronization mech-
anisms (such as lock-free management of heaps) with locality-
conscious object allocation mechanisms (such as segregated heaps
with headerless objects). Although the two design considerations of
locality and scalability may seem orthogonal and complementary
at first glance, combining them in a unified design is not merely an
engineering effort. Several problems and trade-off’s arise in an at-

tempt to integrate scalable concurrent allocation mechanisms with
cache- and page-conscious object allocation mechanisms in a uni-
fied design. Addressing these problems is a central contribution of
this paper. We show that both memory management overhead and
locality exploitation in thread-safe memory allocators can be im-
proved, compared to what is currently offered by state-of-the-art
multiprocessor allocators. These design improvements and the as-
sociated performance benefits are also a key contribution of this
paper.

We present Streamflow, a thread-safe allocator designed for
both scalability and locality. Streamflow’s design is a direct re-
sult of eliminating synchronization operations in the common case,
while at the same time avoiding the memory blowup when strictly
thread-local heaps are used in codes with producer-consumer
allocation-freeing patterns. Local operations in Streamflow are
synchronization-free. Not only do these operations proceed without
thread contention due to locking shared data, but they also proceed
without the latency imposed by uncontested locks and atomic in-
structions.The synchronization-free design of local heaps enables
Streamflow to exploit established sequential allocation optimiza-
tions which are critical for locality, such as eliminating object
headers for small objects and using bump-pointer allocation in
page blocks comprising thread-local heaps.

Streamflow also includes an innovative remote object deallo-
cation mechanism. Remote deallocations – namely deallocations
of objects from threads different than the ones that initially al-
located them – are decoupled from local allocations and deallo-
cations by forwarding remotely freed objects to per-thread, non-
blocking, lock-free lists. Streamflow’s remote deallocation mecha-
nism enables lazy object reclamation from the owning thread. As
a result, most allocation and deallocation operations proceed with-
out the cost of atomic instructions, and the infrequent operations
that do require atomic instructions are non-blocking, lock-free and
provably fast under various producer-consumer object allocation-
freeing patterns.

Streamflow’s design favors locality at multiple levels. Beyond
reducing memory management overhead and latency, decoupling
local and remote operations promotes temporal locality by allowing
threads to favor locally recycled objects in their private heaps. The
use of thread-local heaps reduces allocator-induced false sharing.
Removing object headers improves spatial locality within cache
lines and page blocks. The integration with a lower level custom
page manager which utilizes superpages [19, 20] avoids allocator-
induced cache conflicts via contiguous allocation of page blocks in
physical memory, and reduces the activity of the OS page manager,
the number of page faults and the rate of TLB misses. Combining
these techniques produces a memory allocator that consistently
outperforms other multithreaded allocators in experiments with up
to 8 threads on a 4-processor system with Hyperthreaded Xeon
processors. Streamflow, by design, also adapts well to sequential
codes and performs competitively with optimized sequential and
application-specific allocators.

This paper makes the following contributions:

• We present a new thread-safe dynamic memory manager which
bridges the design space between allocators focused on locality
and allocators focused on scalability. To our knowledge, this
is the first time a memory allocator efficiently unifies locality
considerations with multiprocessor scalability.

• We present a new method for eliminating (in the common case)
and minimizing (in the uncommon case) synchronization over-
head in multiprocessor memory allocators. Our method decou-
ples remote and local free lists and uses a new non-blocking re-
mote object deallocation mechanism. This technique preserves
the desirable properties of a multiprocessor memory allocator,

namely blowup avoidance and false sharing avoidance, without
sacrificing the locality and low latency benefits of bump-pointer
allocation.

• We present memory allocation and deallocation schemes that
take into account cache-conscious layout of heaps, page- and
TLB-locality. To our knowledge, Streamflow is the first mul-
tiprocessor allocator designed with multilevel and multigrain
locality considerations.

• We demonstrate the performance advantages of our design
using realistic sequential and multithreaded applications as
well as synthesized benchmarks. Streamflow outperforms four
widely used, state-of-the-art multiprocessor allocators in alloca-
tion-intensive parallel applications. It also performs compara-
bly to optimized sequential allocators in allocation-intensive
sequential applications. Streamflow exhibits solid performance
improvements both in codes with mostly local object allocation-
freeing patterns and codes with producer-consumer object
allocation-freeing patterns. We have experimented with an SMP
with four two-way SMT processors1. Such SMPs are popular
as commercial server platforms, affordable high-performance
computing platforms for scientific problems, and building
blocks for large-scale supercomputers. Since Streamflow elim-
inates (in the common case) or significantly reduces (in the
uncommon case) synchronization, the key scalability-limiting
factor of multithreaded memory managers, we expect it to be
scalable and efficient on larger shared-memory multiprocessors
as well.

The rest of this paper is organized as follows. Section 2 dis-
cusses related work. Section 3 presents the major design princi-
ples, mechanisms and policies of Streamflow. Section 4 presents
our experimental evaluation of Streamflow alongside other multi-
processor allocators and some optimized sequential allocators. In
Section 5 we discuss some implications of the design of Stream-
flow and potential future improvements. Section 6 summarizes the
paper.

2. Related Work
Streamflow includes elements adopted from efficient sequential
memory allocators proposed in the past. Streamflow’s segregated
heap storage and BIBOP (big bag of pages)-style allocation de-
rives from an allocation scheme originally proposed by Guy Steele
in [24] and from the concept of independently managed mem-
ory zones which dates back to 1967 [21]. Segregated heap storage
has since been used in numerous allocators, including the standard
GNU C allocator in Linux [16], an older GNU allocator [11], Vmal-
loc [26], and more recent allocators such as Reaps [4] and Vam [7].
Modern allocators tend to adopt segregated heaps because they en-
able very fast allocation. Deallocation in segregated heap allocators
is more intricate, because in order to comply with the semantics of
free(), the allocator needs to be able to discover internally the
size of each deallocated object, using the object pointer as its only
input. Deallocation is simple if each object has a header pointing
to the base of the heap segment from where the object was allo-
cated. This technique is used, for example, in the GNU C allocator
and in Reaps [4, 16]. However, object headers introduce fragmenta-
tion, pollute caches, and eventually penalize codes with many small
object allocations. Therefore, locality-conscious allocators such as
PHKmalloc [12] and Vam [7] eliminate object headers entirely for
small objects and use tables of free lists to manage released space
in segregated heaps. Elimination of headers is common practice in
custom memory allocators [4], as well as semi-custom allocators

1 This is the largest shared-memory system we have direct access to.

with alternate semantics forfree(), such as region-based alloca-
tors [8].

Streamflow uses segregated object allocation in thread-private
heaps, as in several other thread-safe allocators including Hoard
[3], Maged Michael’s lock-free memory allocator [18], Tcmalloc
from Google’s performance tools [10], LKmalloc [15], ptmalloc
[9], and Vee and Hsu’s allocator [25]. In particular, Streamflow
uses strictly thread-local object allocation, both thread-local and
remote deallocation and mechanisms for recycling free page blocks
to avoid false sharing and memory blowup [3, 18].

Streamflow differs from earlier multithreaded memory alloca-
tors in several critical aspects: First, its design decouples local
from remote object deallocation to allow local allocation and deal-
location without any atomic instructions. Atomic instructions are
used only sparingly for remote object deallocation and for recy-
cling page blocks. Second, Streamflow eliminates object headers
for small objects, thereby reducing cache pollution and improv-
ing spatial locality. Tcmalloc is the only thread-safe allocator we
are aware of that uses the same technique, although Tcmalloc uses
locks whenever memory has to be allocated from or returned to a
global free memory objects pool. Third, Streamflow uses further
optimizations for temporal locality, cache-conscious page block
layout and better TLB performance. Fourth, unlike many other high
performance allocators, Streamflow allows returning memory to
the OS when the footprint of the application shrinks.

To our knowledge, Streamflow is the first user-level memory
allocator to control the layout of page blocks in physical memory,
using superpages as the means to achieve contiguous allocation
of each page block in physical memory. It should be noted that
superpages are a generic optimization tool and their scope extends
beyond just memory allocators [6, 19]. However, since superpages
(the size of which is set by the operating system) may subsume
multiple page blocks (the size of which is set by the memory
allocator) a multiprocessor memory allocator using superpages to
achieve cache-conscious of page blocks has certain design choices
as to how it manages free memory inside each superpage and how
it divides superpages between page blocks from different threads.
Streamflow’s design includes some educated choices for effective
management and utilization of superpages.

Several of the design goals of Streamflow, in particular its local-
ity optimizations, can be achieved with allocators that utilize feed-
back from program profiles. For example, earlier work has shown
that object lifetime predictors and reference traces can be used to
customize small object allocation and object segregation [2, 22, 23].
Streamflow assumes no knowledge of object allocation and access
profiles, although its design does not prevent the addition of profile-
guided optimization.

3. Design of Streamflow
Streamflow primarily optimizes dynamic allocation of small ob-
jects, which is a common bottleneck in many sequential and mul-
tithreaded applications, including desktop, server and scientific ap-
plications. Streamflow optimizes dynamic allocation for low la-
tency and scalability, as well as for temporal locality, spatial lo-
cality and cache-conscious layout of data. These optimizations are
accomplished via the use of a decoupled local heap architecture, the
elimination of object headers, the careful layout of heaps in con-
tiguously allocated physical memory and the exploitation of large
pages (superpages). At the same time, Streamflow provides mech-
anisms that facilitate both memory transfer between local heaps
and returning memory to the system. As a result, it is not sensitive
to pathologic memory usage patterns, such as producer-consumer
ones, that could lead to high memory overhead and pressure.

Streamflow consists of two modules. Its front-end is a multi-
threaded memory allocator, which minimizes the overhead of mem-

ory requests by eliminating inter-thread synchronization and all as-
sociated atomic operations during common-case memory request
patterns. Even in the infrequent cases when synchronization be-
tween threads is necessary, it is performed with a single, non-
blocking atomic operation2. The front end also includes optimiza-
tions for spatial locality, temporal locality, and the avoidance of
false-sharing.

The back-end of Streamflow is a locality-conscious page man-
ager. This module manages contiguous page blocks, each of which
is used by the front-end for the allocation of objects that belong
to a given size class. The page manager allocates pages blocks
within superpages to achieve contiguous layout of each page block
in physical memory, thus reducing self-interference (within page
blocks) and cross-interference (between page blocks) in the cache.
The use of superpages can also improve the TLB performance and
reduce page faults in applications with large memory footprints.
Moreover, the Streamflow back-end facilitates the interchange of
page blocks between threads, should the memory demand of each
thread change during execution.

We describe the front-end multithreaded memory allocator in
Section 3.1 and the back-end page manager in Section 3.2. The
source code of Streamflow can be downloaded fromhttp://www.
cs.wm.edu/streamflow and can be used as a reference through-
out this section.

3.1 Multithreaded Memory Allocator

3.1.1 Small Object Management

Objects in Streamflow are classified as small if their size does not
exceed 2 KB (half a page in our experimental platform). The man-
agement of objects larger than 2 KB is described in section 3.1.2. In
the following paragraphs we describe Streamflow’s heap architec-
ture, the techniques used to eliminate object headers, small object
allocation and deallocation procedures and specialized support for
recycling memory upon thread termination.

Local heaps: Each thread in Streamflow allocates memory from
a local heap. The heap data structure, shown in Figure 1(a), is
strictly private; only the owner thread can modify it. As a result,
the vast majority of simultaneous memory management operations
issued by multiple threads can be served simultaneously and inde-
pendently, without synchronization. Synchronization is necessary
only when the local heap does not have enough free memory avail-
able to fulfill a request, or during deallocations, when an object is
freed by a thread other than the owner of the heap it was allocated
from.

Local heaps facilitate the reduction of allocator-induced false-
sharing between threads, since memory allocation requests by dif-
ferent threads are not interleaved in the same memory segment.
This technique cannot, however, totally eliminate false-sharing in
the presence of object migrations between threads [3].

Each thread-local heap consists ofpage blocks, shown in Fig-
ure 1(b). Page blocks are contiguous virtual memory areas. Each
page block is used for the allocation of objects with sizes that fall
into a specific range, which we call anobject class. In Streamflow,
each object class differs from the previous one by 4 bytes. This de-
sign provides for fine-grain object segregation and tends to improve
spatial locality in codes that make heavy use of very small objects
[7]. One or more page blocks, organized as a doubly linked list, can

2 We usecmp&swap(ptr, old val, new val), which atomically checks
that the value in memory addressptr is old val and changes it to
new val. If the value is not equal toold val the operation fails. The op-
eration may be replayed more than once if it fails. All modern processors
offercmp&swap for 32-bit and 64-bit operands, either as an instruction or as
a high level primitive built from simpler instructions, such as load linked-
store conditional.

.

.

.

1-4

5-8
9-12
13-16

2045-2048

Ob
jec

t si
ze

cla
sse

s

ma
llo

c/f
ree

Active Head
Active Tail

. . .

.

.

.

Th
rea

d 1

Th
rea

d n

Page blk 1 Page blk 2 Page blk k

(a)

Freed Unallocated

Object

Next

Prev

Re
mo

tel
y

Fre
ed

ID

(b)

Figure 1. Streamflow front-end design. Figure (a) is an overview of a heap, and Figure (b) is the detail for a particular page block within
that heap.

serve the same object class. A simple page block rotation strategy
guarantees that if there is enough free memory for the allocation
of a specific object class, a page block with available memory will
be found at the head of the list. More specifically, when a page
block becomes full, it is transferred to the end of the list. Similarly,
when an object is freed by the owner of the heap, the page block
it belongs to is placed at the head of the list, if it is not already
there. The block rotation is a fast operation involving exactly seven
pointer updates and no atomic instructions.

Page blocks are always page aligned. Their sizes vary, depend-
ing on the object class they serve. As a rule of thumb, each page
block in Streamflow is large enough to accommodate 1024 objects,
however minimum/maximum page block size limitations also ap-
ply. There is clearly a trade-off between the number of objects
in each page block and the average amount of unused memory a
page block may contain. The minimum page block size (16 KB
in Streamflow) allows more than 1024 very small objects to be
packed inside a single page block, given that the size of the re-
sulting page blocks is also small and the additional memory con-
sumption is not a concern. This amortizes costly heap expansion
operations among more object allocations. On the other hand, the
maximum page block size (256 KB in our implementation) limits
the memory requirements for page blocks which serve relatively
large object classes. Without a limit, page blocks for large objects
could otherwise grow up to 2 MB. This limit reduces internal allo-
cator fragmentation, which is the amount of memory reserved from
the system, yet never used inside each page block. The resulting
page block size is always rounded to the nearest power of two.

The beginning of each page block is occupied by the page
block header. The header consists of all the data structures and
bookkeeping information necessary for the management of the
page block. It contains: i) Pointers for linking the page block to the
doubly-linked list of page blocks for each object class, ii) Pointers

to free memory inside the page block (freed andunallocated),
iii) An identifier of the owner-thread of the page block (id), iv) The
head of a LIFO list used for object deallocations to the page block
by threads other than the owner-thread (remotely freed), and v)
bookkeeping information, such as the number of free objects in the
page block and the size of each object. All the fields in the header,
with the exception ofremotely freed, are accessed only by the
page block owner-thread, thus accesses and modifications of these
fields require no synchronization.

Headerless objects: When an object is freed, a memory allocator
needs to discover whether the object is large or small as well as its
size and—if the object is small—the exact page block it originated
from. A common technique is to attach a header to each object and
encode the necessary information in the header. Some architectures
impose an 8-bytes alignment requirement for certain data types, or
accesses to these data types suffer significant performance penal-
ties. This limits the minimum memory required for headers to 8
bytes and the minimum object granularity supported by the alloca-
tor to 16 bytes (including the header). As a result, the use of headers
introduces two serious side-effects: a) Significant space overhead,
which can reach up to 300% (12 bytes of overhead for every 4-bytes
object), and b) less objects can be packed in a single cache line or
a single page, thus hurting spatial locality.

Streamflow eliminates headers from small objects using the BI-
BOP technique [24]. We introduce a global table with one byte
for each virtual memory page in the system. Accesses to the table
can simply be indexed by the page starting address. A single bit of
each table cell characterizes objects allocated in the specific page as
small or large. If the object is small, the remaining 7 bits are used to
encode the disposition—in pages—of the header of the parent page
block. This encoding is sufficient for realistic page block sizes (up
to 512 KB, considering a page size of 4 KB). As soon as the header
of the parent page block is available, the memory manager has all

the necessary information to proceed with the deallocation. In a 32-
bit address space 1 MB is enough for the BIBOP table (768 KB in
Linux, since 25% of the virtual address space is reserved for kernel
memory). In 64-bit address spaces, multilevel trees or tries can be
used instead [10], to encode information only for the segments of
the address space that are actually used by the application. We are
currently investigating these options in an ongoing effort to port
Streamflow to a 64-bit system. The BIBOP technique allows the
elimination of headers for small objects without introducing artifi-
cial segmentation of the virtual address space. The elimination of
headers allows Streamflow to better exploit spatial locality oppor-
tunities. It also facilitates the support of arbitrarily small objects.
In the current implementation the minimum object granularity is 4
bytes.

Object allocation: When a memory request is received, Stream-
flow directs it to the appropriate object size class in the local heap
of the thread that initiated the request. In the common case, the
first page block in the list of that size class will have available ob-
jects. There are two categories of available objects. Those that have
already gone through one or more allocation/deallocation cycles
populate thefreed LIFO list and are preferred for consequent al-
locations. This design decision, combined with the LIFO organiza-
tion of the list, favors temporal locality, since recently deallocated
objects are reused as soon as possible. If thefreed list is empty,
Streamflow allocates one of the objects of the page block that have
never been allocated before. The beginning of the memory area that
accommodates such objects is pointed to byunallocated, which
is a bump-pointer that is forwarded each time by one object.

Object deallocation: Object deallocations are usually initiated by
the same thread that allocated the object. If this is the case, the
object is simply inserted—without any synchronization—into the
freed LIFO of the parent page block that it originated from. If after
the deallocation the page block becomes empty, it is dealt with by
the page block caching policy which is described later on.

Remote object deallocations are deallocations of an object from
a thread other than the one that allocated it. Remote dealloca-
tions need to be treated differently, since only the owner-thread
of each page block can modify thefreed LIFO. In this case, the
object is inserted to theremotely freed LIFO list of the par-
ent page block. The insertion to the list is performed via a 64-
bit atomiccmp&swap operation which simultaneously updates the
remotely freed LIFO head and checks the owner identifier (id)
of the parent page block to ensure that the page block is actually
owned by a thread3. Objects inserted into theremotely freed
LIFO will be eventually transferred to thefreed LIFO by the
owner-thread of the page block. The decoupling of local and re-
mote operations is a key design point which drastically improves
the latency and scalability of Streamflow by eliminating atomic in-
structions from the critical path of the most frequent operations.
Furthermore, Streamflow uses the minimum number of atomic in-
structions for thread-safe remote object deallocations.

When a memory request can not be served by the page block at
the head of the appropriate object size class because the page block
is full, the owner-thread checks theremotely freed LIFO for ob-
jects freed earlier to the page block by remote threads. If such ob-
jects exist, they are all removed with a single atomiccmp&swap op-
eration and transferred to thefreed list. The memory request then
proceeds exactly as the common case memory request described
earlier. The lazy reclamation policy of remotely freed objects, com-
bined with the page blocks rotation strategy, guarantees that re-
motely freed memory objects will eventually be reused. However,

3 Given thatid andremotely freed need to be updated by a single 64-
bit atomic operation, they are always placed into 64 consecutive bits in the
page block header.

their reuse will be delayed until it is absolutely necessary: when
the parent page block runs out of free memory. This strategy min-
imizes the number of atomic operations required for accessing the
remotely freed list. If, however, the page block at the head of
the object size class is full and itsremotely freed list does not
contain any objects, the page block is rotated to the end of the list
and a new page block is fetched from the cache or requested from
the page manager.

Thread termination: Whenever a thread terminates, Streamflow
ensures that the free memory of partially free or locally cached
page blocks in its heap will be made available to the other threads.
Empty and partially full page blocks are handled by the caching
policy described below. If one of the page blocks appears to be full,
its remotely freed list is checked for remotely freed objects. If
the list is not empty, the objects are removed—with a single, atomic
cmp&swap operation—and transferred to thefreed list. Following,
the page block is managed by the caching policy as a completely
or partially free block. If this is not the case, the thread declares the
page block as “orphaned,” by setting theid of its owner toNULL.
Any orphaned page block can be “adopted” and attached to the
heap of the first thread that deallocates an object originating from
it observes that the page block is orphaned.

The id is set toNULL with an atomic 64-bitcmp&swap op-
eration, which simultaneously verifies that theremotely freed
list remains empty. Should the instruction fail, one or more ob-
jects have been freed into theremotely freed LIFO after the last
check, so the page block is no longer full. The atomic operation
eliminates the possibility of declaring a page block as orphaned af-
ter all its objects have been returned to theremotely freed list.
The free memory of such a page block would never be reused,
since no thread would ever have the opportunity to observe it as
orphaned.

Page block caching: Page block caching is the boundary that
separates the multithreaded memory allocator front-end and the
page manager back-end. When the allocator needs a new page
block, it first checks a thread-local cache, then the global caches,
and if no cached page blocks of the correct size are found, it
passes a request on to the page manager. The local caches are
synchronization-free LIFO lists, and the global cache is a lock-free
LIFO list. The caching layer is the last level at which Streamflow
applies lock-free, non-blocking synchronization. Its purpose is to
relieve strain on the page manager.

Page blocks in local caches are organized according to their
size. Due to the minimum size, maximum size, and power of two
size limitations for page blocks, multiple object classes use page
blocks of the same size. Orphaned page blocks whose original
owner thread has terminated are placed on a global list, which must
preserve the page block’s object class, since there are still some live
objects allocated from this page block. Completely free page blocks
can be placed on a global free cache upon thread termination,
or when a thread releases a page block and the local cache is
overpopulated. In order to maintain low virtual memory usage, our
implementation constrains the population of the local and global
caches to one and zero page blocks respectively. Orphaned page
blocks can always be stored in the global list of orphaned blocks,
independent of the list’s population.

Discussion: From the discussion so far it is clear that Streamflow
performs the vast majority of memory allocation/deallocation op-
erations without introducing synchronization. Synchronization be-
tween threads is only required in the infrequent cases of: i) remote
object deallocations, ii) batch reclamation of remotely freed ob-
jects, iii) declaration of a page block as orphaned, iv) adoption of
an orphaned page block, and v) page block returns to or requests
from the page manager. Even in these cases, with the exception of

(v), the synchronization is performed using a single non-blocking
atomic operation (cmp&swap).

3.1.2 Large Object Management

The management of large objects is significantly simpler than that
of small objects. Large object requests are forwarded directly to the
operating system. After memory is allocated from the system, the
BIBOP table is updated to indicate that the corresponding virtual
pages accommodate a large object. Finally, the object is prefixed
with a header that contains the object size and the object is returned
to the application.

Similarly, if the BIBOP table lookup during a deallocation iden-
tifies an object as large, its header is recovered from the 8 bytes
right before the object’s base address. As soon as the object size is
determined, the memory occupied by the object is returned to the
operating system.

3.2 Page Manager

The page manager implements page block allocations and dealloca-
tions as needed by the multithreaded memory allocator in the front-
end of Streamflow. Its functionality is threefold: i) It allocates and
deallocates physical memory from/to the operating system, using
superpages as the unit of allocation. ii) It allocates page blocks and
manages space within superpages to achieve contiguous allocation
of each page block in physical memory. iii) It optimizes the place-
ment of multiple page blocks within superpages to avoid cache con-
flicts within and between page blocks residing in the same super-
page.

Most modern processors provide support for multiple page
sizes. For example, Intel’s Itanium 2 provides eleven page sizes
between 4 KB and 4 GB, Alpha processors provide four page sizes
between 8 KB and 4MB, while the IBM Power4/Power5, Intel
Xeon and UltraSPARC processors provide two page sizes, a small
page size of 4 or 8 KB and a large page size of 4 MB. We use the
term superpages to refer to pages of size larger than the smallest
page size on a given architecture.

Superpages enable the coverage of large regions of the vir-
tual address space with a small number of pages and TLB en-
tries. Therefore, they can improve performance by reducing paging
and TLB misses. The use of superpages can be particularly benefi-
cial on simultaneous multithreading (SMT) processors, where more
than one threads share a common TLB and the typically few TLB
entries become a contested resource. More importantly, superpages
enable contiguous allocation of large regions of the virtual address
space in physical memory. Contiguous allocation of large blocks of
virtual memory often improves cache performance on processors
with large, physically indexed L2 caches, by eliminating or reduc-
ing interference in the cache within and between page blocks.

Streamflow’s page manager is implemented on top of Linux
2.6, which provides support for superpages via a virtual filesys-
tem. Streamflow allocates superpages by creating files in the vir-
tual filesystem, and mapping these files in whole or in part to vir-
tual memory. An allocated superpage is uniquely identified by the
virtual file which backs the page and its disposition within this file.

The page manager associates a “header” data structure with
each superpage. The collection of superpage headers holds all nec-
essary information for the management of different superpages, as
well as for management of space inside each superpage. Super-
page headers reside in page blocks which are dynamically allocated
from the operating system. The management of page blocks that
store superpage headers is almost identical to the management of
page blocks used for small objects (described in section 3.1.1). The
main difference is that, since a page block with superpage headers
is global and accesses to it are protected by a global page man-
ager lock, functionality related to remotely freed objects, orphaned

page blocks and page block adoption is not necessary. Moreover,
page blocks with superpage headers do not need to be freed, since
the space they occupy is negligible. As a result, the data structures
used for the management of page blocks with superpage headers do
not need to be replicated with each page block.

Each superpage header includes the disposition of the superpage
in the virtual file which backs the superpage. The page manager
returns superpages to the operating system when all page blocks
within a superpage are freed. Whenever a superpage is returned
to the operating system (viamunmap()), its header is recycled to
the freed LIFO list of superpage headers, however the disposi-
tion of the superpage is preserved in the header. As a result, the
page manager can easily identify the dispositions of unmapped su-
perpages inside a file, just by reusing recycled headers. The super-
page headers also includeprev andnext pointers for linking su-
perpages in lists, a pointer to the base virtual address of the super-
page (sp base), the size (as a power of 2) of the largest contiguous
free memory block inside the superpage (largest free order),
as well as some bitmaps necessary for managing space inside the
superpage.

Allocated superpages are organized in a hash table, indexed
with the size (as a power of 2) of the requested page block. Using
this hash table, the page manager can easily search for “best-fit”
superpages, namely superpages where the largest contiguous free
block is as close as possible to the size of the requested block.

Streamflow’s page manager allocates memory within each su-
perpage using a buddy allocator [13, 14]. The buddy allocator tends
to reduce memory fragmentation inside each superpage, being at
the same time faster than first-, next-, and best-fit allocators.

4. Evaluation
4.1 Experimental Setting

We evaluated Streamflow on a 4-processor Dell PowerEdge 6650
server, with Hyperthreaded Intel Xeon processors clocked at 2.0
GHz. Hyperthreaded Intel processors can execute up to 2 threads
simultaneously. Each processor has a 4-way associative 8 KB L1
data cache, a 12 KB instruction trace cache, a 512 KB 8-way
associative L2 cache and an external 1 MB L3 cache. The system
has 2 GB of RAM and runs Suse Linux 9.1 with the 2.6.13.4 kernel
and glibc 2-3.3.

To compare the performance of Streamflow against other mul-
tithreaded memory allocators, we evaluated the performance of
Hoard (version 3.3.0) [3], Tcmalloc from Google’s performance
tools (version 0.4) [10], our 32-bit implementation of Maged
Michael’s lock-free allocator[18] and the thread-safe allocator of
glibc in Linux, which is based on Doug Lea’s memory allocator
[16] with extensions for thread safety implemented by Wolfram
Gloger [9]. Hoard, Tcmalloc and glibc use local heaps with mul-
tiple object size classes. Hoard, Tcmalloc and Michael’s allocator
use a minimum object granularity of 8 bytes. The glibc allocator
uses a minimum object granularity of 16 bytes. Tcmalloc is the
only multithreaded allocator besides Streamflow that does not use
object headers for small objects. We also compared the perfor-
mance of Streamflow for a sequential application with that of glibc
and Vam [7]. Interestingly enough, the glibc allocator uses a more
efficient non-thread-safe implementation ofmalloc() andfree()
if it detects that the code is not multithreaded. Streamflow, on the
other hand, adapts to sequential codes as a consequence of its de-
sign, which completely offloads synchronization from the critical
path of sequential allocation. Vam is an optimized, strictly sequen-
tial memory allocator that targets the improvement of application
locality at both the cache- and the page-level. Vam uses fine-grain
object size classes, headerless objects and reap style allocation.

Benchmark Description Input #Objects #Objects Avg. object size Remote Frees
(≥ 2KB) (< 2KB) (< 2KB) (%)

197.parser SPECINT2000 English parser (sequential) reference 79760 787M 14b N/A
Recycle Synthetic benchmark, with variable 107 objs./thread 8 107/thread 8b 0.0

object recycling frequency 8b objects,rate=1000
Larson Multithreaded server simulator 5-seconds run 0 2.72M 7b 100
Consume Producer-consumer benchmark 6000 objs/block 8 240M 4b 100

5000 iterations
Knary Hood implementation of a parallel tree building (11,5,0,0) 16 61M 40b 0.00056

benchmark
Barnes Hood implementation of 131072 bodies 17 2.33M 30b 0.79

the Barnes-Hut algorithm d=0.025, 10 its.
MPCDM Multithreaded mesh generation application 10M triangles 338 30M 35b 1.4

Table 1. Benchmarks used to evaluate Streamflow.

Table 1 summarizes the benchmarks we used to evaluate
Streamflow. The table includes the total number of small objects
(smaller than 2KB) allocated in each benchmark, the number of
large objects, the average size of small objects, and the percent-
age of remotely freed objects in the multithreaded benchmarks.
It is evident that the vast majority of objects are deallocated by
the same thread that allocated them, even in codes in which ob-
jects are accessed by multiple threads. The only exceptions are the
Consumeand Larson benchmarks which are explicitly designed
to stress the allocators under extreme remote memory dealloca-
tion and reclamation conditions. This property puts Streamflow at
an advantage against other allocators, thanks to its design that re-
moves the synchronization overhead from almost all allocations
and deallocations.

The results of our experiments are summarized in Figures 2 and
3. We report execution times for197.parser, Recycle, Consume,
Knary, Barnesand MPCDM. Larson runs for a fixed time inter-
val, so we report its throughput, measured in memory management
operations per microsecond. For the sequential197.parserwe re-
port the execution time of both the optimized non-thread-safe, and
the thread-safe glibc allocator implementation. For197.parser, we
also report execution times for the custom, hard-coded allocator
of the benchmark and Vam. Note that we bypass the custom al-
locator of the benchmark when we measure the performance of
Streamflow and the other general-purpose allocators. This means
that all allocations and deallocations are directed to themalloc()
and free() calls of the general-purpose allocators rather to the
xalloc() andxfree() calls of the custom allocator of the bench-
mark. For all benchmarks we also report the performance of the
four thread-safe allocators (Streamflow, Michael’s, Hoard and Tc-
malloc). Specifically for Streamflow, we provide three data points:
one for a base implementation which performs decoupling of lo-
cal allocation from remote deallocation but no further locality op-
timizations (labeled “Streamflow headers” in the charts); a second
from an improved implementation which eliminates object headers,
in addition to decoupling, to improve spatial locality and cache us-
age (labeled “Streamflow wo headers” in the charts); and a third
from a complete implementation which includes the superpage
manager and page block layout optimizations (labeled “Streamflow
superpages” in the charts).

4.2 Results and Analysis

4.2.1 Sequential Benchmarks

197.parser: This benchmark is an English language parser bench-
mark from SPECINT2000 which includes a custom memory allo-
cator. This custom allocator works well for objects allocated and
deallocated in a stack-like fashion.197.parserspends more than
40% of its execution time in memory allocation and stresses the
efficiency of object placement in memory as well as the ability of

thread-safe allocators to provide fast sequential allocation. Most
thread-safe allocators suffer in this aspect because they impose
synchronization overhead, due to unnecessary execution of atomic
instructions, even though there is no contention between threads in
a sequential program.197.parseris also representative of many ap-
plications that use custom allocators for higher performance [4, 7].

Parser

0

100

200

300

400

500

600

700

Ex
ec

uti
on

 Ti
me

 (s
ec

.)

Custom sequential
Vam
Glibc
Streamflow headers
Streamflow wo headers
Streamflow superpages
Tcmalloc
Michael
Glibc (MT)

Sequential
allocators

Other
multithreaded

Streamflow
multithreaded

Figure 2. Execution time (lower is better) attained by different
allocators for197.parser.

The performance of Streamflow with all locality optimiza-
tions is within 8% of the performance of the custom allocator in
197.parserand within 5% of the performance of Vam. Both the
custom allocator and Vam apply bump-pointer memory allocation.
Moreover, the custom allocator changes the semantics offree()
to provide the memory object size to the deallocation function.
Streamflow performs 7% faster than the optimized, sequential glibc
allocator.

Streamflow outperforms the thread-safe glibc allocator by 36%
and Michael’s allocator by 40%, due to the fact that the latter two
suffer the unnecessarily high—although contention free—overhead
of atomic instructions.197.parsercrashes when executed with
Hoard, and as a result a comparison with Hoard is not possible.

The elimination of object headers results in a 15% performance
improvement over the base implementation of Streamflow. Head-
erless objects contribute to better spatial locality at both the cache-
and page-level. Minor page faults, for example, drop from 3.8M to
2.6M. Streamflow without headers is 8.5% faster than Tcmalloc,
which also uses headerless objects. The cost for a common-case,
uncontested memory allocation is 200 cycles for Streamflow, com-
pared with 214 cycles for Tcmalloc.

The use of superpages yields an additional 5% execution time
improvement over the base Streamflow implementation. It also
almost completely eliminates minor page faults (just 713, down

from 2.6M) and reduces TLB misses by 2%. The larger page size
allows the coverage of the address space with significantly fewer
pages and, thus, reduces the pressure to the OS page manager and
the TLB.

4.2.2 Multithreaded Benchmarks

Recycle: This is a custom synthetic microbenchmark that stresses
the ability of multithreaded allocators to efficiently perform simul-
taneous memory management operations by multiple threads, for
objects that are created and destroyed locally by each thread. Each
thread allocates a total of107 objects, the size of which is selected
randomly from a given range. The benchmark can simulate differ-
ent memory reuse patterns. Each thread deallocates all the objects it
has allocated after everyrateallocations,ratebeing a user-provided
parameter.Recycleis not expected to scale with more processors (in
terms of execution time reduction), since its workload is also scaled
with the number of threads.

Streamflow outperforms glibc by 41%, Hoard by 59%, Michael’s
lock-free allocator by 48% and Tcmalloc by 14% in the sequen-
tial execution ofRecycle. In multithreaded executions Stream-
flow performs significantly better than allocators that employ syn-
chronization, such as glibc (8%–39%, avg. 25%), Hoard (11%–
54%, avg. 29%) and Michael’s allocator (10%–43%, avg. 22%).
Its performance is similar to Tcmalloc, which uses thread-local,
synchronization-free memory caches.

Allocators that put synchronization on the critical path of every
operation—even Michael’s allocator, which uses lock-free, non-
blocking synchronization—suffer from synchronization latency
even during thread-local management operations, although these
operations could be performed independently by each thread.
Streamflow performs thread-local memory allocation and deal-
location without atomic instructions.Recycleis only sensitive to
allocation latency and scalability. Since allocated objects are not
accessed in the code, and the memory footprint of the benchmark
is rather small, it is insensitive to locality optimizations. As a result,
the performance of the three versions of Streamflow is practically
indistinguishable.

Larson: This is a benchmark which simulates a multithreaded
server [15]. Objects allocated from a given thread are released by
another thread. The thread that performs the deallocation is usually
spawned after the termination of the thread that performed the al-
location. We experimentally found that this is the case in 96.8%
of all deallocations.Larson, thus, stresses the page block adop-
tion functionality of Streamflow. The allocating thread is still alive
in 3.2% of the deallocations, which activates the remote memory
object deallocation and reclamation modules of Streamflow. The
code runs for a fixed time interval and reports the attained through-
put in terms of memory management operations. The number of
threads spawned is proportional to the speed of memory allocation
and deallocation4. Larson is sensitive to multithreaded allocation
latency and scalability, as well as to the performance of the mem-
ory recycling mechanisms of the allocator upon thread termination.

Streamflow, with all locality optimizations enabled, outper-
forms Hoard by 56% on one thread and by more than 5.5 times
on 8 threads (2.5 times on avgerage). The improvements over glibc
range from 27% to 7.73 times (4.53 times on avg.). Streamflow
achieves 1.9 to 2.6 times higher throughput than Tcmalloc (67%
on avg.). Tcmalloc outperforms Streamflow only in one case, when
Larson is executed sequentially. Finally, Streamflow proves 78%
to 5.6 times (3.5 times on avg.) more efficient than Michael’s lock-
free allocator. Note that Streamflow scales almost linearly with

4 We setLarsonexecution time to a relatively small value in order to limit
the number of spawned threads below the threshold which triggers the fork-
bomb protection mechanism in the operating system.

the number of threads inLarson, a particularly desirable property
for real-world multithreaded server applications. The main reason
for Streamflow performance is the efficient page block adoption
strategy upon thread termination. A page block is adopted—with
a non-blocking atomic operation—by the first thread that deallo-
cates an object originating from it. Further deallocations to the page
block from that thread are treated as local ones. Thus, they do not
suffer even the minimal overhead of lock-free enqueueing to the
remotely freed queue of the parent page block.

Objects inLarsonare merely allocated and deallocated, being
accessed only once, immediately after their allocation. However,
the elimination of object headers enhances the spatial locality,
especially at the page-level. Minor page faults are reduced (for the
8 threads execution) from 51K to 3.2K, resulting in a throughput
improvement of 15%.

Consume: This is a synthetic microbenchmark from the Hoard
distribution. It simulates produced-consumer applications, in which
memory objects are allocated from one thread and are used and
deallocated by other threads. The producers and consumers live
simultaneously in the system. A single producer thread allocatesn
blocks of memory, each of which is then deallocated by one of the
n different consumer threads. Memory allocations for a block can
be performed simultaneously with deallocation of memory objects
from other blocks. The number of threads, the size of the blocks and
the number of allocation/deallocation rounds are specified by the
user.Consumestresses the efficiency of remotely freeing memory
through non-blocking atomic operations and the efficiency of lazy
memory reclamation in Streamflow. The single producer thread is
the main performance bottleneck of the application. As a result, the
execution time ofConsumeis expected to increase almost linearly
with the number of consumer threads. Moreover, since memory
objects are simply allocated and deallocated, locality optimizations
cannot be expected to have any effect.

Streamflow performs 25% to 1.3 times (avg. 77%) better than
glibc and 60% to 8.7 times (avg. 5.1 times) better than Hoard. It
also outperforms Michael’s lock-free allocator by 74% to 2.7 times
(avg. 1.8 times) and Tcmalloc by 4% to 3.7 times (avg. 2 times).

Multithreaded allocators based on locks, such as glibc and
Hoard must acquire and release at least one lock per deallocation
operation. Tcmalloc and Michael’s allocator minimize the effects
of producer-consumer memory usage patterns by using thread-local
caches and atomic, lock-free operations respectively. In the case of
Streamflow, each remote memory object deallocation is performed
at the cost of a single, non-blocking, atomic operation. Moreover,
the lazy memory reclamation strategy amortizes the cost of re-
claiming the freed memory to that of a single atomic operation for
all the objects in theremotely freed queue of the page block.

Knary: Hood benchmark which builds trees of arbitrary depth
and fan-out degree and associates a user-defined amount of work
per tree node [1].Knary is sensitive to allocation latency and scal-
ability, but not to locality, because the work performed per gener-
ated tree node is typically small. It stresses the ability of allocators
to serve simultaneous, mostly thread-local memory allocation and
deallocation requests by multiple threads.

Streamflow outperforms glibc by 70% to 1.5 times (avg. 88%).
It also provides significant performance improvements over Hoard,
Tcmalloc and Michael’s allocator (64%, 73% and 76% on average
respectively). Tcmalloc performs similarly with Streamflow only
whenKnary is executed sequentially.

The performance improvements can be attributed directly to
the design of Streamflow, which minimizes—and in most cases
eliminates— synchronization between threads performing simul-
taneous memory management operations.

Recycle

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8
Threads

Ex
ec

uti
on

 Ti
me

 (s
ec

.)

Streamflow headers
Streamflow wo headers
Streamflow superpages
Hoard
Tcmalloc
Michael
Glibc

Larson

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8
Threads

Th
rou

gh
pu

t (M
op

s /
 se

c)

Streamflow headers
Streamflow wo headers
Streamflow superpages
Hoard
Tcmalloc
Michael
Glibc

Consume

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7 8
Threads

Ex
ec

uti
on

 Ti
me

 (s
ec

.)

Streamflow headers
Streamflow wo headers
Streamflow superpages
Hoard
Tcmalloc
Michael
Glibc

Knary

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8
Threads

Ex
ec

uti
on

 Ti
me

 (s
ec

.)

Streamflow headers
Streamflow wo headers
Streamflow superpages
Hoard
Tcmalloc
Michael
Glibc

Barnes

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8
Threads

Ex
ec

uti
on

 Ti
me

 (s
ec

.)

Streamflow headers
Streamflow wo headers
Streamflow superpages
Hoard
Tcmalloc
Michael
Glibc

MPCDM

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5 6 7 8
Threads

Ex
ec

uti
on

 Ti
me

 (s
ec

.)

Streamflow headers
Streamflow wo headers
Streamflow superpages
Hoard
Tcmalloc
Michael
Glibc

Figure 3. Execution time (lower is better) or throughput (higher is better) attained by different allocators.

Barnes: Hood implementation of the N-body Barnes-Hut force
calculation algorithm [1].Barneshas only limited sensitivity to al-
location latency, particularly during the first iteration (time step) of
the code, in which the main application data structures are created
and initialized. The benchmark provides limited opportunities for
exploiting spatial and temporal locality.

Streamflow improves the execution time ofBarnes4.9% on
average over glibc, 3.6% over Tcmalloc and 4.3% over Hoard.
Barnes, however, is the only application in which Michael’s lock-
free allocator outperforms Streamflow by 2.6% to 4.6% (3.6% on
avg.).

The low intensity of memory management operations limits the
performance improvements that can be attained by using different
memory allocators. It should be noted, though, that the use of
superpages by Streamflow, yields a 2% performance improvement,
and a 13% reduction of minor page faults (from 9.1K to 7.9K).

MPCDM: This is a guaranteed-quality multithreaded mesh gen-
erator based on the Delaunay method [5]. For realistic problem
sizes, it allocates hundreds of millions of small objects (35 bytes
on average) which represent triangles and points in a mesh. The al-
gorithm deletes triangles that do not satisfy quality criteria set by
the user, as well as some of their neighbors. The resulting empty
area is then re-triangulated. After the re-triangulation it consists of
at least as many triangles as those deleted. As a result the memory
footprint of the application increases monotonically. The applica-
tion offers opportunities for temporal and spatial locality optimiza-
tions, stresses allocator memory reuse, and is sensitive to memory
operation latency and allocator scalability.MPCDM’s scalability is
limited by the frequent synchronization between its threads. It can

serve as a case study of the extent of benefits that can be attained
by efficient memory allocators, in the presence of other bottlenecks,
unrelated to memory management.

The fully optimized Streamflow implementation outperforms
glibc by 18% to 45% (32% on avg.). The improvements against
Hoard and Michael’s lock-free allocator range between 12% and
50% (22% and 42% on average respectively). Streamflow also per-
forms up to 88% better than Tcmalloc (36% on average). It is clear
that Streamflow can benefit complex scientific applications with in-
tense memory management requirements, such asMPCDM. Espe-
cially in the presence of frequent, application-induced synchroniza-
tion operations, Streamflow’s mostly synchronization-free design
practically eliminates additional, allocator induced contention be-
tween threads.

The elimination of headers allows more small objects to be
placed inside a single memory page. It thus favors spatial locality at
the page-level, reducing minor page faults by 49% (from 247K to
127K) in the 8-threads execution. This is reflected in a 4% perfor-
mance improvement over the base Streamflow implementation. The
use of superpages has similar effects. Minor page faults are limited
to just 888 and performance improves by 6% compared with the
base implementation.

4.2.3 Memory overhead

An important metric for the quality a multithreaded memory alloca-
tor is the memory overhead it introduces, quantified by the amount
of virtual memory reserved by the allocator for a given stream of
memory requests by the application. Table 2 shows the maximum
virtual memory footprint of the seven benchmarks when executed
with all allocators. The memory usage of each application was mea-

S
tr

ea
m

flo
w

w
/o

he
ad

er
s

S
tr

ea
m

flo
w

w
/s

up
er

pa
ge

s

H
oa

rd

T
cm

al
lo

c

M
ic

ha
el

G
lib

c

197.parser 17 19 – 18 27 16
Recycle 20 23 19 19 19 28
Larson 1487 1598 289 685 235 196
(stacks) 1473 1581 273 671 218 174
Consume 23 28 21 22 23 25
Knary 28 31 25 26 27 32
Barnes 45 47 46 41 43 46
MPCDM 530 538 1032 530 630 610

Table 2. Maximum virtual memory footprint of the benchmarks
(in MB) when executed with different multithreaded allocators.
Multithreaded benchmarks are executed with 8 threads. In the case
of Larsonwe also report the memory required just for thread stacks
in each case.197.parsercrashes when executed with Hoard, so no
footprint value is reported.

sured by querying the/proc filesystem5 for each process’ total vir-
tual memory consumption every tenth of a second for the lifetime
of the application. The value reported is the maximum observed for
each application / memory allocator pair.

With the exception ofLarson, Streamflow achieves virtual
memory footprints smaller than glibc and comparable to the other
allocators.Larson continuously generates threads that perform a
constant number of allocation and deallocation operations, spawn
new threads, and then terminate without ever being joined. Since
Larsonruns for a fixed time period, the number of threads spawned
by the application is proportional to the achieved rate of alloca-
tion and deallocation operations. Tracing system calls performed
by the application revealed that before each thread generation, 513
memory pages (2052 KB) are allocated for the thread’s stack. The
system calls trace also revealed that—as expected—since threads
are never joined, their stacks are never freed and reused. As a re-
sult, the virtual memory footprint of the application is dominated by
thread stacks. In fact, the virtual memory footprint grows monoton-
ically during the execution life of the application, with a rate that
is linearly related to the throughput of memory management oper-
ations achieved by each multithreaded memory manager. Table 2
reports—in the case of Larson—the total maximum virtual mem-
ory footprint of the application, as well as the maximum virtual
memory footprint of thread stacks. The latter is calculated by mul-
tiplying the total number of threads generated by the application by
2052 KB (the stack size).

It is worth noting that Streamflow performs well even with
Consume, which is specifically designed to stress multithreaded
allocators that use thread-local heaps. Allocators which use strictly
thread-local heaps are sensitive to memory blowup under producer-
consumer memory usage patterns.

5. Discussion and Future Directions
Streamflow uses superpages as a tool to avoid cache conflicts
through the allocation of page blocks directly in physical mem-
ory. The use of superpages also provides the necessary infrastruc-
ture to investigate cache-color aware placement of page blocks
and demonstrate the potential of multilevel locality optimizations
within a scalable memory allocator. However, imposing the use of
superpages in all programs has certain disadvantages. Some of the

5/proc is a virtual filesystem available on most UNIX-like operating sys-
tems that exposes information from the OS kernel to user-level at runtime.

most important ones are severe fragmentation for small programs
and unjustified memory pressure, which may occur in a multipro-
grammed system in which some of the programs make extensive
use of superpages but utilize little space within each page. One way
to address these problems is to leverage operating system support
for dynamic superpage management [19].

Although Streamflow provides support for relinquishing page
blocks back to the operating system, it does not do so adaptively,
as a reaction to memory pressure [7]. Extending Streamflow with
mechanisms and policies to detect memory pressure and proac-
tively release memory to prevent thrashing is left as future work.

Streamflow was designed under the assumption that dynamic
feedback such as actual object sizes and lifetimes is not available
to the allocator [11, 22]. Such profiles enable customizations, such
as reap-style object deallocation of short-lived objects [11], or
object segregation based on access frequency and length of object
lifetimes [22]. In general, profiling information has not been used
so far in multiprocessor memory allocators and it is a path we
would like to explore in the near future. Profiling may prove useful
for customizing Streamflow’s allocation and deallocation policies
for exploiting more aggressively specific types of locality, such as
locality in streams of accesses to objects from different classes.

As multicore and simultaneous multithreading processors be-
come commonplace, it is important to consider the implications of
these processors on multithreaded memory allocation. Some of the
related considerations were discussed in [17]. The main challenge
for a locality-conscious allocator for chip multiprocessors is mak-
ing good use of a large shared on-chip cache. The fact that threads
can share data through a cache requires the allocator to customize
its page block management policies so that page blocks belonging
to different threads that run on the same processor are allocated
contiguously and conflict-free, if possible. Streamflow’s design en-
ables this optimization, pending the addition of feedback from the
operating system so that the allocator becomes aware of the place-
ment of threads on execution cores at runtime.

6. Conclusions
Multiprocessor memory allocators have so far capitalized on scal-
ability. Optimized, sequential allocators, on the other hand, place
emphasis on locality. In this paper we have presented Streamflow,
a high-performance, low-overhead thread-safe memory allocator
also designed to favor locality at several levels of the memory hier-
archy.

Streamflow’s design decouples local and remote operations in
order to eliminate synchronization for most memory allocation op-
erations, while still avoiding memory blowup which strictly local-
heaps suffer from. In order to further reduce latency, all synchro-
nization operations are non-blocking and lock-free. This scalable
and locality-conscious design enables Streamflow to perform com-
parably to optimized sequential allocators, yet be usually signif-
icantly faster than other multiprocessor allocators. These proper-
ties are consolidated in a unified segregated heap design. Stream-
flow also improves cache-, TLB-, and page-level locality via care-
ful layout of heaps in memory, careful reuse of freed objects and
the exploitation of superpages. Put together, these properties make
Streamflow an attractive unified framework for sequential and par-
allel memory allocation and a useful tool for taming the ever-
increasing memory latencies in codes that rely heavily on dynamic
memory allocation.

The design space for locality-conscious multiprocessor memory
allocators is vast. Streamflow represents a realistic point in this
design space and a step in the direction of composing adaptive
memory allocators with sufficient self-customization capabilities
for multiple design goals, such as locality and parallelism.

Acknowledgments
This work is supported by the National Science Foundation (Grants
CCR-0346867 and ACI-0312980) the U.S. Department of Energy
(Grant DE-FG02-05ER2568), and an equipment grant from the
College of William and Mary.

References
[1] N. Arora, R. Blumofe, and C. Greg-Plaxton. Thread Scheduling

for Multiprogrammed Multiprocessors. InProc. of the 10th ACM
Symposium on Parallel Algorithms and Architectures, pages 119–
129, Puerto Vallarta, Mexico, June 1998.

[2] D. Barrett and B. Zorn. Using Lifetime Predictors to Improve
Memory Allocation Performance. InProc. of the 1993 ACM
SIGPLAN Conference on Programming Languages Design and
Implementation, pages 187–196, June 1993.

[3] E. Berger, K. Mckinley, R. Blumofe, and P. Wilson. Hoard: A Scalable
Memory Allocator for Multithreaded Applications. InProc. of the 9th
International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 117–128, Cambridge, MA,
November 2000.

[4] E. Berger, B. Zorn, and K. McKinley. Reconsidering Custom Mem-
ory Allocation. InProc. of the 17th ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applpica-
tions, pages 1–12, Seattle, WA, November 2002.

[5] Filip Blagojevic. Optimizing Irregular Adaptive Application on
Multi-Threaded Processors: The Case of Medium-Grain Parallel
Delaunay Mesh Generation. Master’s thesis, The College of William
and Mary, Williamsburg, VA, U.S.A., December 2005.

[6] C. Cascaval, E. Duesterwald, P. Sweeney, and R. Wisniewski.
Multiple Page Size Modeling and Optimization. InProc. of the 14th
International Conference on Parallel Architectures and Compilation
Techniques, pages 339–349, Saint Louis, MO, September 2005.

[7] Y. Feng and E. Berger. A Locality-Improving Dynamic Memory
Allocator. In Proceedings of the Third Annual ACM SIGPLAN
Workshop on Memory Systems Performance, Chicago, IL, June 2005.

[8] D. Gay and A. Aiken. Memory Management with Explicit Regions.
In Proc. of the 1998 ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 313–323, Montreal,
Canada, June 1998.

[9] Wolfram Gloger. Dynamic Memory Allocator Implementa-
tions in Linux System Libraries. http://www.dent.med.uni-
muenchen.de/ wmglo/malloc-slides.html.

[10] Google. Google Performance Tools.
http://goog-perftools.sourceforge.net/.

[11] D. Grunwald, B. Zorn, and R. Henderson. Improving the Cache
Locality of Memory Allocation. InProc. of the ACM SIGPLAN 1993
Conference on Programming Language Design and Implementation,
pages 177–186, Albuquerque, NM, June 1993.

[12] P. Kamp. Malloc(3) Revisted. http://phk.freebsd.dk/pubs/malloc.pdf.

[13] K. C. Knowlton. A Fast Storage Allocator.Communications of the
ACM, 8(10):623–625, 1965.

[14] D. E. Knuth. Dynamic Storage Allocation. In The Art of Computer
Programming, volume 1. Addison-Wesley, 1968.

[15] P. Larson and M. Krishnan. Memory Allocation for Long-Running
Server Applications. InProceedings of the First International
Symposium on Memory Management, pages 176–185, Vancouver,
BC, October 1998.

[16] D. Lea. A Memory Allocator.
http://gee.cs.oswego.edu/dl/html/malloc.html.

[17] L. McDowell, S. Eggers, and S. Gribble. Improving Server Software
Support for Simultaneous Multithreaded Processors. InProc. of
the 2003 ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, pages 37–48, San Diego, CA, June 2003.

[18] M. Michael. Scalable Lock-free Dynamic Memory Allocation. In
Proceedings of the ACM SIGPLAN 2004 Conference on Programming
Language Design and Implementation, pages 35–46, Washington,
DC, June 2004.

[19] J. Navarro, S. Iyer, and A. Cox. Practical, Transparent Operating
System Support for Superpages. InProc. of the Fifth Symposium
on Operating Systems Design and Implementation, pages 89–104,
Boston, MA, December 2002.

[20] T. Romer, W. Ohlrich, A. Karlin, and B. Bershad. Reducing TLB and
Memory Overhead using Online Superpage Promotion. InProc. of
the 22nd International Symposium on Computer Architecture, pages
176–187, Santa Margherita Ligure, Italy, June 1995.

[21] D. Ross. The AED Free Storage Package.Communications of the
ACM, 10(8):481–492, 1967.

[22] M. Seidl and B. Zorn. Segregating Heap Objects by Reference
Behavior and Lifetime. InProc. of the 8th International Conference
on Architectural Support for Programming Languages and Operating
Systems, pages 12–23, San Jose, CA, October 1998.

[23] Y. Shuf, M. Gupta, R. Bordawekar, and J. Pal Singh. Exploiting
Prolific Types for Memory Management and Optimizations. InProc.
of the 29th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Lanugages, pages 295–306, Portland, OR, January
2002.

[24] G. Steele. Data Representation in PDP-10 MACLISP. Technical
Report AI Lab Memo 421, MIT, 1977.

[25] V. Vee and W. Hsu. A Scalable and Efficient Storage Allocator
on Shared Memory Multiprocessors. InProceedings of the 1999
International Symposium on Parallel Architectures, Algorithms and
Networks, pages 230–235, Perth, Australia, June 1999.

[26] K. Vo. Vmalloc: A General and Efficient Memory Allocator.Software
Practice and Experience, 26(3):357–374, 1996.

[27] P. Wilson, M. Johnstone, M. Neely, and D. Boles. Dynamic
Storage Allocation: A Survey and Critical Review. InProc. of
the International Workshop on Memory Management, LNCS Vol. 986,
pages 1–116, Kinross, UK, September 1995.

