
Available online at www.sciencedirect.com
Parallel Computing 33 (2007) 700–719

www.elsevier.com/locate/parco
Runtime scheduling of dynamic parallelism on
accelerator-based multi-core systems

Filip Blagojevic a,*, Dimitrios S. Nikolopoulos a, Alexandros Stamatakis b,
Christos D. Antonopoulos c, Matthew Curtis-Maury a

a Department of Computer Science and Center for High-End Computing Systems, Virginia Tech, 2202 Kraft Drive,

Blacksburg, VA 24061, USA
b School of Computer and Communication Sciences, École Polytechnique Fédérale de Lausanne, Station 14, CH-1015 Lausanne, Switzerland

c Department of Computer and Communication Engineering, University of Thessaly, 382 21 Volos, Greece

Received 27 March 2007; received in revised form 8 September 2007; accepted 27 September 2007
Available online 1 October 2007
Abstract

We explore runtime mechanisms and policies for scheduling dynamic multi-grain parallelism on heterogeneous multi-
core processors. Heterogeneous multi-core processors integrate conventional cores that run legacy codes with specialized
cores that serve as computational accelerators. The term multi-grain parallelism refers to the exposure of multiple dimen-
sions of parallelism from within the runtime system, so as to best exploit a parallel architecture with heterogeneous com-
putational capabilities between its cores and execution units. We investigate user-level schedulers that dynamically
‘‘rightsize’’ the dimensions and degrees of parallelism on the cell broadband engine. The schedulers address the problem
of mapping application-specific concurrency to an architecture with multiple hardware layers of parallelism, without
requiring programmer intervention or sophisticated compiler support. We evaluate recently introduced schedulers for
event-driven execution and utilization-driven dynamic multi-grain parallelization on Cell. We also present a new schedul-
ing scheme for dynamic multi-grain parallelism, S-MGPS, which uses sampling of dominant execution phases to converge
to the optimal scheduling algorithm. We evaluate S-MGPS on an IBM Cell BladeCenter with two realistic bioinformatics
applications that infer large phylogenies. S-MGPS performs within 2–10% of the optimal scheduling algorithm in these
applications, while exhibiting low overhead and little sensitivity to application-dependent parameters.
� 2007 Elsevier B.V. All rights reserved.

Keywords: Heterogeneous multi-core processors; Accelerator-based parallel architectures; Runtime systems for parallel programming;
Cell broadband engine
0167-8191/$ - see front matter � 2007 Elsevier B.V. All rights reserved.

doi:10.1016/j.parco.2007.09.004

* Corresponding author.
E-mail addresses: filip@cs.vt.edu (F. Blagojevic), dsn@cs.vt.edu (D.S. Nikolopoulos), Alexandros.Stamatakis@epfl.ch (A.

Stamatakis), cda@inf.uth.gr (C.D. Antonopoulos), mfcurt@cs.vt.edu (M. Curtis-Maury).

mailto:filip@cs.vt.edu
mailto:dsn@cs.vt.edu
mailto:Alexandros.Stamatakis@epfl.ch
mailto:cda@inf.uth.gr
mailto:mfcurt@cs.vt.edu


F. Blagojevic et al. / Parallel Computing 33 (2007) 700–719 701
1. Introduction

Computer systems crossed an inflection point recently, after the introduction and widespread marketing of
multi-core processors by all major vendors. This shift was justified by the diminishing returns of sequential
processors with hardware that exploits instruction-level parallelism, as well as other technological factors,
such as power and thermal considerations. Concurrently with the transition to multi-core processors, the
high-performance computing community is beginning to embrace computational accelerators—such as GPG-
PUs and FPGAs—to address perennial performance bottlenecks. The evolution of multi-core processors,
alongside the introduction of accelerator-based parallel architectures, both single-processor and multi-proces-
sor, stimulate research efforts on developing new parallel programming models and supporting environments.

Arguably, one of the most difficult problems that users face while migrating to a new parallel architecture is
the mapping of algorithms to processors. Accelerator-based parallel architectures add complexity to this prob-
lem in two ways. First, with heterogeneous execution cores packaged on the same die or node, the user needs
to be concerned with the mapping of each component of an application to the type of core/processor that best
matches the computational demand of the specific component. Second, with multiple cores available and with
embedded SIMD or multi-threading capabilities in each core, the user needs to be concerned with extracting
multiple dimensions of parallelism from the application and optimally mapping each dimension of parallelism
to the hardware, to maximize performance. The Sony/Toshiba/IBM Cell Broadband Engine is a representa-
tive example of a state-of-the-art heterogeneous multi-core processor with an accelerator-based design. The
Cell die includes an SMT PowerPC processor (known as the PPE) and eight accelerator cores (known as
the SPEs). The SPEs have pipelined SIMD execution units. Cell serves as a motivating and timely platform
for investigating the problem of mapping algorithmic parallelism to modern multi-core architectures. The pro-
cessor can exploit task and data parallelism, both across and within each core. Unfortunately, the programmer
must be aware of core heterogeneity and carefully balance execution between PPE and SPEs. Furthermore, the
programmer faces a seemingly vast number of options for parallelizing code, even on a single Cell BE. Func-
tional and data decompositions of the program can be implemented on both the PPE and SPEs. Functional
decompositions can be achieved by off-loading functions from the PPE to SPEs at runtime. Data decompo-
sitions can be implemented by using SIMDization on the vector units of SPEs, or loop-level parallelization
across SPEs, or a combination of loop-level parallelization and SIMDization. Data decomposition and SIMD
execution can also be implemented on the PPE. Functional and data decompositions can be combined using
static or dynamic scheduling algorithms, and they should be orchestrated so that all SPEs and the PPE are
harmoniously utilized and the application exploits the memory bandwidth available on the Cell die. In this
work, we assume that applications describe all available algorithmic parallelism to the runtime system explic-
itly, while the runtime system dynamically selects the degree of granularity and the dimensions of parallelism
to expose to the hardware at runtime, using dynamic scheduling mechanisms and policies. In other words, the
runtime system is responsible for partitioning algorithmic parallelism in layers that best match the diverse
capabilities of the processor cores, while at the same time rightsizing the granularity of parallelism in each
layer.

We investigate both previously proposed and new dynamic scheduling algorithms and the associated run-
time mechanisms for effective multi-grain parallelization on Cell. In earlier work [6], we introduced an event-
driven scheduler, EDTLP, which oversubscribes the PPE SMT core of Cell and exposes dynamic parallelism
across SPEs. We also proposed MGPS [6], a scheduling module which controls multi-grain parallelism on the
fly to monotonically increase SPE utilization. MGPS monitors the number of active SPEs used by off-loaded
tasks over discrete intervals of execution and makes a prediction on the best combination of dimensions and
granularity of parallelism to expose to the hardware.

We introduce a new runtime scheduler, S-MGPS, which performs sampling and timing of the dominant
phases in the application in order to determine the most efficient mapping of different levels of parallelism
to the architecture. There are several essential differences between S-MGPS and MGPS [6]. MGPS is a utili-
zation-driven scheduler, which seeks the highest possible SPE utilization by exploiting additional layers of par-
allelism when some SPEs appear underutilized. MGPS attempts to increase utilization by creating more SPE
tasks from innermost layers of parallelism, more specifically, as many tasks as the number of idle SPEs
recorded during intervals of execution. S-MGPS is a scheduler which seeks the optimal application-system



702 F. Blagojevic et al. / Parallel Computing 33 (2007) 700–719
configuration, in terms of layers of parallelism exposed to the hardware and degree of granularity per layer of
parallelism, based on the runtime task throughput of the application and regardless of the system utilization.
S-MGPS takes into account the cumulative effects of contention and other system bottlenecks on software
parallelism and can converge to the best multi-grain parallel execution algorithm. MGPS on the other hand
only uses information on SPE utilization and may often converge to a suboptimal multi-grain parallel execu-
tion algorithm. A further contribution of S-MGPS is that the scheduler is immune to the initial configuration
of parallelism in the application and uses a sampling method which is independent of application-specific
parameters, or input. On the contrary, the performance of MGPS is sensitive to both the initial structure
of parallelism in the application and input.

We evaluate S-MGPS, MGPS and EDTLP with RAxML [24] and PBPI [14,16], two state-of-the-art par-
allel codes that infer large phylogenies. RAxML uses the Maximum Likelihood (ML) criterion and has been
employed to infer phylogenetic trees on the two largest data sets analyzed under Maximum Likelihood meth-
ods to date. PBPI is a parallel implementation of Bayesian phylogenetic inference method for DNA sequence
data. PBPI uses a Markov Chain Monte Carlo method to construct phylogenetic trees from the starting DNA
alignment.

For the purposes of this study, both RAxML and PBPI have been vectorized and optimized extensively to
use the SIMD units on the Cell SPEs. Furthermore, both codes have been tuned to overlap completely com-
munication with computation and data has been aligned in both codes to maximize locality and bandwidth
utilization. These optimizations are described elsewhere [7] and their elaboration is beyond the scope of this
paper. Although the two codes implement similar functionality, they differ in their structure and paralleliza-
tion strategies and raise different challenges for user-level schedulers. We show that S-MGPS performs within
2% off the optimal scheduling algorithm in PBPI and within 2–10% off the optimal scheduling algorithm in
RAxML. We also show that S-MGPS adapts well to variation of the input size and granularity of parallelism,
whereas the performance of MGPS is sensitive to both these factors.

The rest of this paper is organized as follows: Section 2 reviews related work on Cell. Section 3 summarizes
our experimental testbed, including the applications and hardware used in this study. Section 4 presents and
evaluates EDTLP. Section 5 presents and evaluates MGPS. Section 6 introduces and evaluates S-MGPS. Sec-
tion 7 concludes the paper.

2. Related work

The Cell BE has recently attracted considerable attention as a high-end computing platform. Recent work
on Cell includes modeling, performance analysis, programming and compilation environments, and applica-
tion studies.

Kistler et al. [19] analyze the performance of Cell’s on-chip interconnection network. They present exper-
iments that estimate the DMA latencies and bandwidth of Cell, using microbenchmarks. They also investigate
the system behavior under different patterns of communication between local storage and main memory. Wil-
liams et al. [26] present an analytical framework to predict performance on Cell. In order to test their model,
they use several computational kernels, including dense matrix multiplication, sparse matrix vector multipli-
cation, stencil computations, and 1D/2D FFTs. In addition, they propose microarchitectural modifications
that can increase the performance of Cell when operating on double-precision floating point elements. Chen
et al. [8] present a detailed analytical model of DMA accesses on the Cell and use the model to optimize the
buffer size for DMAs. Our work differs in that it considers scheduling applications on the Cell by taking into
account all the implications of the hardware/software interface.

Eichenberger et al. [10] present several compiler techniques targeting automatic generation of highly opti-
mized code for Cell. These techniques attempt to exploit two levels of parallelism, thread-level and SIMD-
level, on the SPEs. The techniques include compiler assisted memory alignment, branch prediction, SIMD
parallelization, OpenMP thread-level parallelization, and compiler-controlled software caching. The study
of Eichenberger et al. does not present details on how multiple dimensions of parallelism are exploited and
scheduled simultaneously by the compiler. Our contribution addresses these issues. Previous compiler tech-
niques [10] are also complementary to the work presented in this paper. They focus primarily on extracting
high performance out of each individual SPE, whereas our work focuses on scheduling and orchestrating



F. Blagojevic et al. / Parallel Computing 33 (2007) 700–719 703
computation across SPEs. Zhao and Kennedy [27] present a dependence-driven compilation framework for
simultaneous automatic loop-level parallelization and SIMDization on Cell. The framework of Zhao and
Kennedy does not consider task-level functional parallelism and its co-scheduling with data parallelism,
two central issues explored in this paper.

Fatahalian et al. [12] recently introduced Sequoia, a programming language designed specifically for
machines with deep memory hierarchies and tested on the Cell BE. Sequoia provides abstractions of different
memory levels to the application, allowing the application to be portable across different platforms, while still
maintaining high performance. Sequoia localizes computation to a particular memory module and provides
language mechanisms for vertical communication across different memory levels. Our implementations of
applications on the Cell BE use the same techniques to localize computation and overlap communication with
computation, albeit without high-level language constructs such as those provided by Sequoia. Sequoia does
not address programming issues related to multi-grain parallelization, which is the target of our work.

Bellens et al. [4] proposed CellSuperScalar (CellSs), a high-level directive-based programming model that
explicitly specifies SPE tasks and dependencies among tasks on the Cell BE. CellSs supports the scheduling
of SPE tasks, similarly to EDTLP and MGPS/S-MGPS, however it delegates the control of the scheduler
to the user, who needs to manually specify dependences and priorities between tasks. EDTLP and MGPS/
S-MGPS automate the scheduling process using system-level criteria, such as utilization and timing analysis
of program phases.

Hjelte [18] presents an implementation of a smooth particle hydrodynamics simulation on Cell. This sim-
ulation requires good interactive performance, since it lies on the critical path of real-time applications such as
interactive simulation of human organ tissue, body fluids, and vehicular traffic. Benthin et al. [5] present a Cell
implementation of ray-tracing algorithms, also targeting high interactive performance. Petrini et al. [21]
recently reported experiences from porting and optimizing Sweep3D on Cell, in which they consider multi-
level data parallelization on the SPEs. In other work Petrini et al. presented a study of Cell implementations
of graph explorations algorithms [22]. Bader et al. [2] examine the implementation of list ranking algorithms
on Cell. Our work uses realistic bioinformatics codes to explore multi-grain parallelization and user-level
schedulers.

Our contribution is related to earlier work on exploiting task and data parallelism simultaneously in
parallel programming languages and architectures. Subhlok and Vondran [25] present a model for esti-
mating the optimal number of homogeneous processors to assign to each parallel task in a chain of
tasks that form a pipeline. MGPS and S-MGPS seek an optimal assignment of accelerators to simulta-
neously active tasks originating from host cores to accelerator cores, as well as the optimal number of
tasks to activate in the host cores, in order to achieve a balance between supply from hosts and demand
from accelerators.

Sharapov et al. [23] use a combination of queuing theory and cycle-accurate simulation of processors and
interconnection networks, to predict the performance of hybrid parallel codes written in MPI/OpenMP on
ccNUMA architectures. MGPS and S-MGPS use sampling and feedback-guided optimization at runtime
for a similar purpose, to predict the performance of a code with multiple layers of algorithmic parallelism
on an architecture with multiple layers of hardware parallelism.

Research on optimizing compilers for novel microprocessors, such as tiled and streaming processors, has
also contributed methods for multi-grain parallelization of scientific and media computations. Gordon
et al. [17] present a compilation framework for exploiting three layers of parallelism (data, task and pipelined)
on streaming processors running DSP applications. The framework uses a combination of fusion and fission
transformations on data-parallel computations, to rightsize the degree of task and data parallelism in a pro-
gram running on a homogeneous multi-core processor. The schedulers presented in this paper use runtime
information to rightsize parallelism as the program executes, on a heterogeneous multi-core processor.

3. Experimental testbed

This section provides details on our experimental testbed, including the two applications that we used to
study user-level schedulers on the Cell BE (RAxML and PBPI) and the hardware platform on which we con-
ducted this study.



704 F. Blagojevic et al. / Parallel Computing 33 (2007) 700–719
3.1. RAxML

RAxML-VI-HPC (v2.1.3) (Randomized Accelerated Maximum Likelihood version VI for High Perfor-
mance Computing) [24] is a program for large-scale ML-based (Maximum Likelihood [13]) inference of phy-
logenetic (evolutionary) trees using multiple alignments of DNA or AA (amino acid) sequences. The program
is freely available as open source code at icwww.epfl.ch//stamatak (software frame).

Phylogenetic trees are used to represent the evolutionary history of a set of n organisms. An alignment with
the DNA or AA sequences representing those n organisms (also called taxa) can be used as input for the com-
putation of phylogenetic trees. In a phylogeny the organisms of the input data set are located at the tips (leaves)
of the tree whereas the inner nodes represent extinct common ancestors. The branches of the tree represent the
time which was required for the mutation of one species into another, new one. The inference of phylogenies
with computational methods has many important applications in medical and biological research (see [3] for a
summary). The current version of RAxML incorporates a rapid hill climbing search algorithm. A recent per-
formance study [24] on real world datasets with P1000 sequences reveals that it is able to find better trees in less
time and with lower memory consumption than other current ML programs (IQPNNI, PHYML, GARLI).
Moreover, RAxML-VI-HPC has been parallelized with MPI (Message Passing Interface), to enable embarrass-
ingly parallel non-parametric bootstrapping and multiple inferences on distinct starting trees in order to search
for the best-known ML tree. Like every ML-based program, RAxML exhibits a source of fine-grained loop-
level parallelism in the likelihood functions which consume over 90% of the overall computation time. This
source of parallelism scales well on large, memory intensive, multi-gene alignments due to increased cache effi-
ciency. The MPI version of RAxML is the basis of our Cell version of the code [7]. In RAxML multiple infer-

ences on the original alignment are required in order to determine the best-known (best-scoring) ML tree (we
use the term best-known because the problem is NP-hard). Furthermore, bootstrap analyses are required to
assign confidence values ranging between 0.0 and 1.0 to the internal branches of the best-known ML tree. This
allows determining how well-supported certain parts of the tree are and is important for the biological conclu-
sions drawn from it. Each individual tree search, be it bootstrap or inference, is completely independent from
the others and consequently the application can exploit a simple master-worker MPI scheme. Each search can
further exploit data parallelism via thread-level parallelization of loops and/or SIMDization.

3.2. PBPI

PBPI is a parallel Bayesian phylogenetic inference implementation, which constructs phylogenetic trees
from DNA or AA sequences using the Markov chain Monte Carlo sampling method. The method exploits
multi-grain parallelism, which is available in Bayesian phylogenetic inference, to achieve scalability on
large-scale distributed memory systems, such as the IBM BlueGene/L [15]. The algorithm of PBPI can be sum-
marized as follows:

(1) Partition the Markov chains into chain groups, and split the data set into segments along the sequences.
(2) Organize the virtual processors that execute the code into a two-dimensional grid; map each chain group

to a row on the grid and map each segment to a column on the grid.
(3) During each generation, compute the partial likelihood across all columns and use all-to-all communi-

cation to collect the complete likelihood values to all virtual processors on the same row.
(4) When there are multiple chains, randomly choose two chains for swapping using point-to-point

communication.

From a computational perspective, PBPI differs substantially from RAxML. While RAxML is embarrass-
ingly parallel, PBPI uses a predetermined virtual processor topology and a corresponding data decomposition
method. While the degree of task parallelism in RAxML may vary considerably at runtime, PBPI exposes
from the beginning of execution, a high-degree of two-dimensional data parallelism to the runtime system.
On the other hand, while the degree of task parallelism can be controlled dynamically in RAxML without per-
formance penalty, in PBPI changing the degree of outermost data parallelism requires data redistribution and
incurs a high performance penalty.



F. Blagojevic et al. / Parallel Computing 33 (2007) 700–719 705
3.3. Hardware platform

The Cell BE is a heterogeneous multi-core processor which integrates a simultaneous multithreading Pow-
erPC core (the Power Processing Element or PPE), and eight specialized accelerator cores (the Synergistic Pro-
cessing Elements or SPEs) [11]. These elements are connected in a ring topology on an on-chip network called
the Element Interconnect Bus (EIB). The organization of Cell is illustrated in Fig. 1.

The PPE is a 64-bit SMT processor running the PowerPC ISA, with vector/SIMD multimedia extensions
[1]. The PPE has two levels of on-chip cache. The L1-I and L1-D caches of the PPE have a capacity of 32 KB.
The L2 cache of the PPE has a capacity of 512 KB.

Each SPE is a 128-bit vector processor with two major components: a Synergistic Processor Unit (SPU) and a
Memory Flow Controller (MFC). All instructions are executed on the SPU. The SPU includes 128 registers, each
128 bits wide, and 256 KB of software-controlled local storage. The SPU can fetch instructions and data only
from its local storage and can write data only to its local storage. The SPU implements a Cell-specific set of SIMD
intrinsics. All single precision floating point operations on the SPU are fully pipelined and the SPU can issue one
single-precision floating point operation per cycle. Double precision floating point operations are partially pipe-
lined and two double-precision floating point operations can be issued every six cycles. Double-precision FP per-
formance is therefore significantly lower than single-precision FP performance. With all eight SPUs active and
fully pipelined double precision FP operation, the Cell BE is capable of a peak performance of 21.03 Gflops. In
single-precision FP operation, the Cell BE is capable of a peak performance of 230.4 Gflops [9].

The SPE can access RAM through direct memory access (DMA) requests. DMA transfers are handled by
the MFC. All programs running on an SPE use the MFC to move data and instructions between local storage
and main memory. Data transferred between local storage and main memory must be 128-bit aligned. The size
of each DMA transfer can be at most 16 KB. DMA-lists can be used for transferring more than 16 KB of
data. A list can have up to 2048 DMA requests, each for up to 16 KB. The MFC supports only DMA transfer
sizes that are 1, 2, 4, 8 or multiples of 16 bytes long.

The EIB is an on-chip coherent bus that handles communication between the PPE, SPE, main memory, and
I/O devices. Physically, the EIB is a 4-ring structure, which can transmit 96 bytes per cycle, for a maximum
theoretical memory bandwidth of 204.8 GB/s. The EIB can support more than 100 outstanding DMA requests.

In this work we are using a Cell blade (IBM BladeCenter QS20) with two Cell BEs running at 3.2 GHz, and
1 GB of XDR RAM (512 MB per processor). The PPEs run Linux Fedora Core 5. We use the Toolchain 4.0.2
compilers and Lam/MPI 7.1.3.

3.4. RAxML and PBPI on the Cell BE

We extensively optimized both RAxML and PBPI on the Cell BE, beginning with detailed profiling of both
codes. The main guidelines for optimization were:
PowerPC

PPE

I/O
Controller

Controller
Memory

Element Interconnect BUS (EIB)

SPE

LS

SPE SPE SPE

SPE SPE SPE SPE

LS LS LS

LS LS LS LS

Fig. 1. Organization of Cell.



706 F. Blagojevic et al. / Parallel Computing 33 (2007) 700–719
• Offloading of major computational kernels of the codes on SPEs.
• Vectorization, to exploit the SIMD units on SPEs.
• Double buffering, to achieve effective overlap of communication and computation.
• Alignment and localization of data with the corresponding code on the local storage of SPEs, to maximize

locality.
• Optimization and vectorization of branches to avoid a branch bottleneck on SPEs.
• Loop-level optimizations such as unrolling and scheduling.
• Use of optimized numerical implementations of linear algebra kernels, more specifically replacing the

expensive double precision implementations of certain library functions with numerical implementations
that leverage single precision arithmetic [20].

The actual process of porting and optimizing RAxML on Cell is described in more detail in [7]. For PBPI
we followed an identical optimization process. The SPE-specific optimizations resulted in SPE code that ran
more than five times faster than the SPE code that was extracted directly from the enclosing PPE code.

4. Scheduling multi-grain parallelism on Cell

We explore the possibilities for exploiting multi-grain parallelism on Cell. The Cell PPE can execute two
threads or processes simultaneously, from which code can be off-loaded and executed on SPEs. To increase
the sources of parallelism for SPEs, the user may consider two approaches:

• The user may oversubscribe the PPE with more processes or threads, than the number of processes/threads
that the PPE can execute simultaneously. In other words, the programmer attempts to find more parallel-
ism to off-load to accelerators by attempting a more fine-grain task decomposition of the code. In this case,
the runtime system needs to schedule the host processes/threads so as to minimize the time needed to off-
load code to all available accelerators. We present an event-driven task-level scheduler which achieves this
goal in Section 4.1.

• The user can introduce a new dimension of parallelism to the application by distributing loops from within
the off-loaded functions across multiple SPEs. In other words, the user can exploit data parallelism both
within and across accelerators. Each SPE can work on a part of a distributed loop, which can be further
accelerated with SIMDization. We present case studies that motivate the dynamic extraction of multi-grain
parallelism via loop distribution in Section 4.2.

4.1. Event-driven task scheduling

EDTLP is a runtime scheduling module which can be embedded transparently in MPI codes. The EDTLP
scheduler operates under the assumption that the code to off-load to accelerators is specified by the user at the
level of functions. In the case of Cell, this means that the user has either constructed SPE threads in a separate
code module, or annotated the host PPE code with directives to extract SPE threads via a compiler [4]. The
EDTLP scheduler avoids underutilization of SPEs by oversubscribing the PPE and preventing a single MPI
process from monopolizing the PPE.

Informally, the EDTLP scheduler off-loads tasks from MPI processes. A task ready for off-loading serves as
an event trigger for the scheduler. Upon the event occurrence, the scheduler immediately attempts to serve the
MPI process that carries the task to off-load and sends the task to an available SPE, if any. While off-loading a
task, the scheduler suspends the MPI process that spawned the task and switches to another MPI process,
anticipating that more tasks will be available for off-loading from ready-to-run MPI processes. Switching
upon off-loading prevents MPI processes from blocking the PPE while waiting for their tasks to return.
The scheduler attempts to sustain a high supply of tasks for off-loading to SPEs by serving MPI processes
round-robin.

The downside of a scheduler based on oversubscribing a processor is context-switching overhead. Cell in
particular also suffers from the problem of interference between processes or threads sharing the SMT PPE



F. Blagojevic et al. / Parallel Computing 33 (2007) 700–719 707
core. The granularity of the off-loaded code determines if the overhead introduced by oversubscribing the PPE
can be tolerated. The code off-loaded to an SPE should be coarse enough to marginalize the overhead of con-
text switching performed on the PPE. The EDTLP scheduler addresses this issue by performing granularity
control of the off-loaded tasks and preventing off-loading of code that does not meet a minimum granularity
threshold.

Fig. 2 illustrates an example of the difference between scheduling MPI processes with the EDTLP scheduler
and the native Linux scheduler. In this example, each MPI process has one task to off-load to SPEs. For illus-
trative purposes only, we assume that there are only four SPEs on the chip. In Fig. 2a, once a task is sent to an
SPE, the scheduler forces a context switch on the PPE. Since the PPE is a two-way SMT, two MPI processes
can simultaneously off-load tasks to two SPEs. The EDTLP scheduler enables the use of four SPEs via func-
tion off-loading. On the contrary, if the scheduler waits for the completion of a task before providing an
opportunity to another MPI process to off-load (Fig. 2b), the application can only utilize two SPEs. Realistic
application tasks often have significantly shorter lengths than the time quanta used by the Linux scheduler.
For example, in RAxML, task lengths measure in the order of tens of microseconds, while Linux time quanta
measure to tens of milliseconds.

Table 1a compares the performance of the EDTLP scheduler to that of the native Linux scheduler, using
RAxML and running a workload comprising 42 organisms. In this experiment, the number of performed
bootstraps is not constant and it is equal to the number of MPI processes. The EDTLP scheduler outperforms
the Linux scheduler by up to a factor of 2.7. In the experiment with PBPI, we execute the code with one Mar-
kov chain for 20,000 generations and we change the number of MPI processes used across runs. The workload
for PBPI includes 107 organisms. Since the amount of work is constant, execution time should drop as the
number of processes increases. EDTLP outperforms the Linux scheduler policy in PBPI by up to a factor
of 2.7.

4.2. Dynamic loop scheduling

When the degree of task-level parallelism is less than the number of available SPEs, the runtime system may
activate a second dimension of data parallelism, by distributing loops encapsulated in tasks between SPEs. We
implemented a micro-tasking library for dynamically parallelizing loops on Cell. The micro-tasking library
enables loop distribution across a variable number of SPEs and provides the required data consistency and
synchronization mechanisms.

The parallelization scheme of the microtasking library is outlined in Fig. 3. The program is executed on the
PPE until the execution reaches the parallel loop to be off-loaded. At that point the PPE sends a signal to a
single SPE which is designated as the master. The signal is processed by the master and further broadcasted to
all workers involved in parallelization. Upon a signal reception, each SPE worker fetches the data necessary
for loop execution. We ensure that SPEs work on different parts of the loop and do not overlap by assigning a
unique identifier to each SPE thread involved in parallelization of the loop. Global data, changed by any of
the SPEs during loop execution, is committed to main memory at the end of each iteration. After processing
Fig. 2. Scheduler behavior for two off-loaded tasks, representative of RAxML. Case (a) illustrates the behavior of the EDTLP scheduler.
Case (b) illustrates the behavior of the Linux scheduler with the same workload. The numbers correspond to MPI processes. The shaded
slots indicate context switching. The example assumes a Cell-like system with four SPEs.



Table 1
Performance comparison for (a) RAxML and (b) PBPI with two schedulers

EDTLP (s) Linux (s)

(a)

1 worker, 1 bootstrap 19.7 19.7
2 workers, 2 bootstraps 22.2 30
3 workers, 3 bootstraps 26 40.7
4 workers, 4 bootstraps 28.1 43.3
5 workers, 5 bootstraps 33 60.7
6 workers, 6 bootstraps 34 61.8
7 workers, 7 bootstraps 38.8 81.2
8 workers, 8 bootstraps 39.8 81.7

(b)

1 worker, 20,000 gen. 265 263.5
2 workers, 20,000 gen. 136.1 145
3 workers, 20,000 gen. 102.3 187.2
4 workers, 20,000 gen. 72.5 134.9
5 workers, 20,000 gen. 74.5 186.3
6 workers, 20,000 gen. 56.2 146.3
7 workers, 20,000 gen. 60.1 157.8
8 workers, 20,000 gen. 57.6 158.3

The second column shows execution time with the EDTLP scheduler. The third column shows execution time with the native Linux kernel
scheduler. The workload for RAxML contains 42 organisms. The workload for PBPI contains 107 organisms.

Fig. 3. Parallelizing a loop across SPEs using a work-sharing model with an SPE designated as the master.

708 F. Blagojevic et al. / Parallel Computing 33 (2007) 700–719
the assigned parts of the loop, the SPE workers send a notification back to the master. If the loop includes a
reduction, the master also collects partial results from the SPEs and accumulates them locally. All communi-
cation between SPEs is performed on chip in order to avoid the long latency of communicating through shared
memory.

Note that in our loop parallelization scheme on Cell, all work performed by the master SPE can also be
performed by the PPE. In this case, the PPE would broadcast a signal to all SPE threads involved in loop par-
allelization and the partial results calculated by SPEs would be accumulated back at the PPE. Such collective
operations increase the frequency of SPE-PPE communication, especially when the distributed loop is a nested
loop. In the case of RAxML, in order to reduce SPE-PPE communication and avoid unnecessary invocation



F. Blagojevic et al. / Parallel Computing 33 (2007) 700–719 709
of the MPI process that spawned the parallelized loop, we opted to use an SPE to distribute loops to other
SPEs and collect the results from other SPEs. In PBPI, we let the PPE execute the master thread during loop
parallelization, since loops are coarse enough to overshadow the loop execution overhead. Optimizing and
selecting between these loop execution schemes is a subject of ongoing research.

SPE threads participating in loop parallelization are created once upon off-loading the code for the first
parallel loop to SPEs. The threads remain active and pinned to the same SPEs during the entire program exe-
cution, unless the scheduler decides to change the parallelization strategy and redistribute the SPEs between
one or more concurrently executing parallel loops. Pinned SPE threads can run multiple off-loaded loop
bodies, as long as the code of these loop bodies fits on the local storage of the SPEs. If the loop parallelization
strategy is changed on the fly by the runtime system, a new code module with loop bodies that implement the
new parallelization strategy is loaded on the local storage of the SPEs.

Table 2 illustrates the performance of the basic loop-level parallelization scheme of our runtime system in
RAxML. Table 2a illustrates the execution time of RAxML using one MPI process and performing one boot-
strap, on a data set which comprises 42 organisms. This experiment isolates the impact of our loop-level par-
allelization mechanisms on Cell. The number of iterations in parallelized loops depends on the size of the input
alignment in RAxML. For the given data set, each parallel loop executes 228 iterations.

The results shown in Table 2a suggest that when using loop-level parallelism RAxML sees a reasonable yet
limited performance improvement. The highest speedup (1.72) is achieved with seven SPEs. The reasons for
the modest speedup are the sub-optimal coverage of loop-level parallelism—more specifically, less than
90% of the original sequential code is covered by parallelized loops—, the fine granularity of the loops,
and the fact that most loops have reductions, which create bottlenecks on the Cell DMA engine. The perfor-
mance degradation that occurs when 5 or 6 SPEs are used, happens because of specific memory alignment
constraints that have to be met on the SPEs. It is due to alignment constraints that in certain occasions it
is not possible to evenly distribute the data used in the loop body and therefore the workload of iterations
between SPEs. More specifically, the use of character arrays for the main data set in RAxML forces array
transfers in multiples of 16 array elements. Consequently, loop distribution across processors is done with
a minimum chunk size of 16 iterations.

Loop-level parallelization in RAxML can achieve higher speedup in a single bootstrap with larger input
data sets. Alignments that have a larger number of nucleotides per organism have more loop iterations to dis-
tribute across SPEs. To illustrate the behavior of loop-level parallelization with coarser loops, we repeated the
Table 2
Execution time of RAxML when loop-level parallelism (LLP) is exploited in one bootstrap, via work distribution between SPEs

(a)

1 worker, 1 boot., no LLP 19.7 s
1 worker, 1 boot., 2 SPEs used for LLP 14 s
1 worker, 1 boot., 3 SPEs used for LLP 13.36 s
1 worker, 1 boot., 4 SPEs used for LLP 12.8 s
1 worker, 1 boot., 5 SPEs used for LLP 13.8 s
1 worker, 1 boot., 6 SPEs used for LLP 12.47 s
1 worker, 1 boot., 7 SPEs used for LLP 11.4 s
1 worker, 1 boot., 8 SPEs used for LLP 11.44 s

(b)

1 worker, 1 boot., no LLP 47.9 s
1 worker, 1 boot., 2 SPEs used for LLP 29.5 s
1 worker, 1 boot., 3 SPEs used for LLP 23.3 s
1 worker, 1 boot., 4 SPEs used for LLP 20.5 s
1 worker, 1 boot., 5 SPEs used for LLP 18.7 s
1 worker, 1 boot., 6 SPEs used for LLP 18.1 s
1 worker, 1 boot., 7 SPEs used for LLP 17.1 s
1 worker, 1 boot., 8 SPEs used for LLP 16.8 s

The input file is 42_SC: (a) DNA sequences are represented with 10,000 nucleotides and (b) DNA sequences are represented with 20,000
nucleotides.



710 F. Blagojevic et al. / Parallel Computing 33 (2007) 700–719
previous experiment using a data set where the DNA sequences are represented with 20,000 nucleotides. The
results are shown in Table 2b. The loop-level parallelization scheme scales gracefully to eight SPEs in this
experiment.

PBPI exhibits clearly better scalability than RAxML with LLP, since the granularity of loops is coarser in
PBPI than RAxML. Table 3 illustrates the execution times when PBPI is executed with a variable number of
SPEs used for LLP. Again, we control the granularity of the off-loaded code by using different data sets: Table
3a shows execution times for a data set that contains 107 organisms, each represented by a DNA sequence of
3,000 nucleotides. Table 3b shows execution times for a data set that contains 107 organisms, each represented
by a DNA sequence of 10,000 nucleotides. We run PBPI with one Markov chain for 20,000 generations. For
the two data sets, PBPI achieves a maximum speedup of 4.6 and 6.1, respectively, after loop-level
parallelization.

5. MGPS: dynamic scheduling of task- and loop-level parallelism

Merging task-level and loop-level parallelism on Cell can improve the utilization of accelerators. A non-
trivial problem with such a hybrid parallelization scheme is the assignment of accelerators to tasks. The opti-
mal assignment is largely application-specific, task-specific and input-specific. We support this argument using
RAxML as an example. The discussion in this section is limited to RAxML, where the degree of outermost
parallelism can be changed arbitrarily by varying the number of MPI processes executing bootstraps, with a
small impact on performance. PBPI uses a data decomposition approach which depends on the number of
processors, therefore dynamically varying the number of MPI processes executing the code at runtime can
not be accomplished without data redistribution or excessive context switching and process control overhead.

5.1. Application-specific hybrid parallelization on Cell

We present a set of experiments with RAxML performing a number of bootstraps ranging between 1 and
128. In these experiments we use three versions of RAxML. Two of the three versions use hybrid paralleliza-
tion models combining task- and loop-level parallelism. The third version exploits only task-level parallelism
and uses the EDTLP scheduler. More specifically, in the first version, each off-loaded task is parallelized
across two SPEs, and four MPI processes are multiplexed on the PPE, executing four concurrent bootstraps.
Table 3
Execution time of PBPI when loop-level parallelism (LLP) is exploited via work distribution between SPEs

(a)

1 worker, 1000 gen., no LLP 27.2 s
1 worker, 1000 gen., 2 SPEs used for LLP 14.9 s
1 worker, 1000 gen., 3 SPEs used for LLP 11.3 s
1 worker, 1000 gen., 4 SPEs used for LLP 8.4 s
1 worker, 1000 gen., 5 SPEs used for LLP 7.3 s
1 worker, 1000 gen., 6 SPEs used for LLP 6.8 s
1 worker, 1000 gen., 7 SPEs used for LLP 6.2 s
1 worker, 1000 gen., 8 SPEs used for LLP 5.9 s

(b)

1 worker, 20,000 gen., no LLP 262 s
1 worker, 20,000 gen., 2 SPEs used 131.3 s
1 worker, 20,000 gen., 3 SPEs used 92.3 s
1 worker, 20,000 gen., 4 SPEs used 70.1 s
1 worker, 20,000 gen., 5 SPEs used 58.1 s
1 worker, 20,000 gen., 6 SPEs used 49 s
1 worker, 20,000 gen., 7 SPEs used 43 s
1 worker, 20,000 gen., 8 SPEs used 39.7 s

The input file is 107_SC: (a) DNA sequences are represented with 1000 nucleotides and (b) DNA sequences are represented with 10,000
nucleotides.



F. Blagojevic et al. / Parallel Computing 33 (2007) 700–719 711
In the second version, each off-loaded task is parallelized across four SPEs and two MPI processes are mul-
tiplexed on the PPE, executing two concurrent bootstraps. In the third version, the code concurrently executes
eight MPI processes, the off-loaded tasks are not parallelized and the tasks are scheduled with the EDTLP
scheduler.

Fig. 4 illustrates the results of this experiment, with a data set representing 42 organisms. The x-axis shows
the number of bootstraps, while the y-axis shows execution time in seconds.

As expected, the hybrid model outperforms EDTLP when up to four bootstraps are executed, since only a
combination of EDTLP and LLP can off-load code to more than four SPEs simultaneously. With 5–8 boot-
straps, the hybrid models execute bootstraps in batches of 2 and 4, respectively, while the EDTLP model exe-
cutes all bootstraps in parallel. EDTLP activates 5–8 SPEs solely for task-level parallelism, leaving room for
loop-level parallelism on at most 3 SPEs. This proves to be unnecessary, since the parallel execution time is
determined by the length of the non-parallelized off-loaded tasks that remain on at least one SPE. In the range
between 9 and 12 bootstraps, combining EDTLP and LLP selectively, so that the first eight bootstraps execute
with EDTLP and the last four bootstraps execute with the hybrid scheme is the best option. For the input data
set with 42 organisms, performance of EDTLP and hybrid EDTLP-LLP schemes is almost identical when the
number of bootstraps is between 13 and 16. When the number of bootstraps is higher than 16, EDTLP clearly
outperforms any hybrid scheme (Fig. 4b).

The reader may notice that the problem of hybrid parallelization is trivialized when the problem size is
scaled beyond a certain point, which is 28 bootstraps in the case of RAxML (see Section 5.2). A production
run of RAxML for real-world phylogenetic analysis would require up to 1000 bootstraps, thus rendering
hybrid parallelization seemingly unnecessary. However, if a production RAxML run with 1000 bootstraps
were to be executed across multiple Cell BEs, and assuming equal division of bootstraps between the proces-
sors, the cut-off point for EDTLP outperforming the hybrid EDTLP-LLP scheme would be set at 36 Cell pro-
cessors. Beyond this scale, performance per processor would be maximized only if LLP were employed in
conjunction with EDTLP on each Cell. Although this observation is empirical and somewhat simplifying,
it is further supported by the argument that scaling across multiple processors will in all likelihood increase
communication overhead and therefore favor a parallelization scheme with less MPI processes. The hybrid
scheme reduces the volume of MPI processes compared to the pure EDTLP scheme, when the granularity
of work per Cell becomes fine.

5.2. MGPS

The purpose of MGPS is to dynamically adapt the parallel execution by either exposing only one layer of
task parallelism to the SPEs via event-driven scheduling, or expanding to a second layer of data parallelism
and merging it with task parallelism when SPEs are underutilized at runtime.
0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of bootstraps

Ex
ec

ut
io

n 
tim

e 
(s

)

EDTLP+LLP with 4 SPEs per parallel loop
EDTLP+LLP with 2 SPEs per parallel loop
EDTLP

0
100
200
300
400
500
600
700
800
900

1000

0 20 40 60 80 100 120 140
Number of bootstraps

Ex
ec

ut
io

n 
tim

e 
(s

)

EDTLP+LLP 4 SPEs per parallel loop
EDTLP+LLP 2 SPEs per parallel loop
EDTLP

Fig. 4. Comparison of task-level and hybrid parallelization schemes in RAxML, on the Cell BE. The input file is 42_SC. The number of
ML trees created is (a) 1–16 and (b) 1–128.



712 F. Blagojevic et al. / Parallel Computing 33 (2007) 700–719
MGPS extends the EDTLP scheduler with an adaptive processor-saving policy. The scheduler runs locally
in each process and it is driven by two events:

• arrivals, which correspond to off-loading functions from PPE processes to SPE threads;
• departures, which correspond to completion of SPE functions.

MGPS is invoked upon arrivals and departures of tasks. Initially, upon arrivals, the scheduler conserva-
tively assigns one SPE to each off-loaded task. Upon a departure, the scheduler monitors the degree of
task-level parallelism exposed by each MPI process, i.e. how many discrete tasks were off-loaded to SPEs while
the departing task was executing. This number reflects the history of SPE utilization from task-level parallel-
ism and is used to switch from the EDTLP scheduling policy to a hybrid EDTLP-LLP scheduling policy. The
scheduler monitors the number of SPEs that execute tasks over epochs of 100 off-loads. If the observed SPE
utilization is over 50% the scheduler maintains the most recently selected scheduling policy (EDTLP or
EDTLP-LLP). If the observed SPE utilization falls under 50% and the scheduler uses EDTLP, it switches
to EDTLP-LLP by loading parallelized versions of the loops in the local storages of SPEs and performing
loop distribution. To switch between different parallel execution models at runtime, the runtime system uses
code versioning. It maintains three versions of the code of each task. One version is used for execution on the
PPE. A second version is used for execution on an SPE from start to finish, using SIMDization to exploit the
vector execution units of the SPE. The third version is used for distribution of the loop enclosed by the task
between more than one SPEs. The use of code versioning increases code management overhead, as SPEs may
need to load different versions of the code of each off-loaded task at runtime. On the other hand, code ver-
sioning obviates the need for conditionals that would be used in a monolithic version of the code. These con-
ditionals are expensive on SPEs, which lack branch prediction capabilities. Our experimental analysis indicates
that overlaying code versions on the SPEs via code transfers ends up being slightly more efficient that using
monolithic code with conditionals. This happens because of the overhead and frequency of the conditionals in
the monolithic version of the SPE code, but also because the code overlays leave more space available in the
local storage of SPEs for data caching and buffering to overlap computation and communication [7].

We compare MGPS to EDTLP and two static hybrid (EDTLP-LLP) schedulers, using two SPEs per loop
and four SPEs per loop, respectively. Fig. 5 shows the execution times of MGPS, EDTLP-LLP and EDTLP
with various RAxML workloads. The x-axis shows the number of bootstraps, while the y-axis shows execu-
tion time. We observe benefits from using MGPS for up to 28 bootstraps. Beyond 28 bootstraps, MGPS con-
verges to EDTLP and both are increasingly faster than static EDTLP-LLP execution, as the number of
bootstraps increases.

A clear disadvantage of MGPS is that the time needed for any adaptation decision depends of the total
number of off-loading requests, which in turn is inherently application-dependent and input-dependent. If
the off-loading requests from different processes are spaced apart, there may be extended idle periods on SPEs,
before adaptation takes place. A second disadvantage of MGPS is that its dynamic scheduling policy depends
0

20

40

60

80

100

120

Number of bootstraps

E
xe

cu
ti

o
n

 t
im

e 
(s

)

MGPS
EDTLP+LLP with 4 SPEs per parallel loop
EDTLP+LLP with 2 SPEs per parallel loop
EDTLP

0

100

200

300

400

500

600

700

800

900

1000

0 20 40 60 80 100 120 140
Number of bootstraps

E
xe

cu
ti

o
n

 t
im

e 
(s

)

MGPS
EDTLP+LL with 4 SPEs per parallel loop
EDTLP+LLP with 2 SPEs per parallel loop
EDTLP

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Fig. 5. Comparison between MGPS, EDTLP and static EDTLP-LLP. The input file is 42_SC. The number of ML trees created is (a) 1–16
and (b) 1–128. The lines of MGPS and EDTLP overlap completely in (b).



F. Blagojevic et al. / Parallel Computing 33 (2007) 700–719 713
on the initial configuration used to execute the application. In RAxML, MGPS converges to the best execu-
tion strategy only if the application begins by oversubscribing the PPE and exposing the maximum degree of
task-level parallelism to the runtime system. This strategy is unlikely to converge to the best scheduling policy
in other applications, where task-level parallelism is limited and data parallelism is more dominant. In this
case, MGPS would have to commence its optimization process from a different program configuration favor-
ing data-level rather than task-level parallelism. PBPI is an application where MGPS does not converge to the
optimal solution. We address the aforementioned shortcomings via a sampling-based MGPS algorithm (S-
MGPS), which we introduce in the next section.

6. S-MGPS

We begin this section by presenting a motivating example to show why controlling concurrency on the Cell
is useful, even if SPEs are seemingly fully utilized. This example motivates the introduction of a sampling-
based algorithm that explores the space of program and system configurations that utilize all SPEs, under dif-
ferent distributions of SPEs between concurrently executing tasks and parallel loops. We present S-MGPS and
evaluate S-MGPS using RAxML and PBPI.

6.1. Motivating example

Increasing the degree of task parallelism on Cell comes at a cost, namely increasing contention between
MPI processes that time-share the PPE. Pairs of processes that execute in parallel on the PPE suffer from con-
tention for shared resources, a well-known problem of simultaneous multithreaded processors. Furthermore,
with more processes, context switching overhead and lack of co-scheduling of SPE threads and PPE threads
from which the SPE threads originate, may harm performance. On the other hand, while loop-level parallel-
ization can ameliorate PPE contention, its performance benefit depends on the granularity and locality prop-
erties of parallel loops. Fig. 6 shows the efficiency of loop-level parallelism in RAxML when the input data set
is relatively small. The input data set in this example (25_SC) has 25 organisms, each of them represented by a
DNA sequence of 500 nucleotides. In this experiment, RAxML is executed multiple times with a single worker
process and a variable number of SPEs used for LLP. The best execution time is achieved with five SPEs. The
behavior illustrated in Fig. 6 is caused by several factors, including the granularity of loops relative to the
overhead of PPE-SPE communication and load imbalance (discussed in Section 4.2).

By using two dimensions of parallelism to execute an application, the runtime system can control both PPE
contention and loop-level parallelization overhead. Fig. 7 illustrates an example in which multi-grain parallel
executions outperform one-dimensional parallel executions in RAxML, for any number of bootstraps. In this
example, RAxML is executed with three static parallelization schemes, using eight MPI processes and one SPE
per process, four MPI processes and two SPEs per process, or two MPI processes and four SPEs per process,
respectively. The input data set is 25_SC. RAxML performs the best in this data set with a multi-level
0
5

10
15
20
25
30
35
40
45
50

1 2 3 4 5 6 7 8
Number of SPEs

Ex
eu

tin
 ti

m
e 

(s
)

Fig. 6. Execution time of RAxML with a variable number of SPE threads. The input dataset is 25_SC.



0

50

100

150

200

250

300

350

400

0 20 40 60 80 100 120 140
Number of bootstraps

Ex
ec

ut
io

n 
tim

e 
(s

)

8 worker processes, 1 SPE per off-loaded task
4 worker processes, 2SPEs per off-loaded task
2 worker processes, 4 SPEs per off-loaded task

Fig. 7. Execution times of RAxML, with various static multi-grain scheduling strategies. The input dataset is 25_SC.

714 F. Blagojevic et al. / Parallel Computing 33 (2007) 700–719
parallelization model when four MPI processes are simultaneously executed on the PPE and each of them uses
two SPEs for loop-level parallelization.

6.2. A sampling-based scheduler for multi-grain parallelism

The S-MGPS scheduler automatically determines the best parallelization scheme for a specific workload, by
using a sampling period. During the sampling period, S-MGPS performs a search of program configurations
along the available dimensions of parallelism. The search starts with a single MPI process and during the first
step S-MGPS determines the optimal number of SPEs that should be used by a single MPI process. The search
is implemented by sampling execution phases of the MPI process with different degrees of loop-level parallel-
ism. The execution phases are delimited by SPE tasks and global synchronization operations. Phases represent
code that is executed repeatedly in an application and dominates execution time. Although we identify phases
manually in our execution environment, the selection process for phases is trivial and can be automated in a
compiler. Furthermore, parallel applications almost always exhibit a very strong runtime periodicity in their
execution patterns, which makes the process of isolating the dominant execution phases straightforward.
Automation of the phase identification process by a compiler is left as future work.

Once the first sampling step of S-MGPS is completed, the search continues by sampling execution intervals
with every feasible combination of task-level and loop-level parallelism. In the second phase of the search, the
degree of loop-level parallelism never exceeds the optimal value determined by the first sampling step. For
each execution interval, the scheduler uses execution time of phases as a criterion for selecting the optimal
dimension(s) and granularity of parallelism per dimension. S-MGPS uses a performance-driven mechanism
to rightsize parallelism on Cell, as opposed to the utilization-driven mechanism used in MGPS. Fig. 8 illus-
trates the steps of the sampling phase when 2 MPI processes are executed on the PPE. This process can be
performed for any number of MPI processes that can be executed on a single Cell node. For each MPI pro-
cess, the runtime system uses a variable number of SPEs, ranging from 1 up to the optimal number of SPEs
determined by the first phase of sampling.

The purpose of the sampling period is to determine the configuration of parallelism that maximizes effi-
ciency. We define a throughput metric W as:
W ¼ C
T

ð1Þ
where C is the number of completed tasks and T is execution time. Note that a task is defined as a function off-
loaded on SPEs, therefore C captures application- and input-dependent behavior. S-MGPS computes C by
counting the number of task off-loads. This metric works reasonably well, assuming that tasks of the same
type (i.e. the same function off-loaded multiple times on an SPE) have approximately the same execution time.
This is indeed the case in the applications that we studied. The metric can be easily extended so that each task
is weighted with its execution time relative to the execution time of other tasks, to account for unbalanced task



EIB

SPE2 SPE3 SPE4

SPE5

SPE1

SPE6 SPE7 SPE8

PPE

Process1

Process2

EIB

SPE2 SPE3 SPE4

SPE5

SPE1

SPE6 SPE7 SPE8

PPE

Process1

Process2

EIB

SPE2 SPE3 SPE4

SPE5

SPE1

SPE6 SPE7 SPE8

PPE

Process1

Process2

EIB

SPE2 SPE3 SPE4

SPE5

SPE1

SPE6 SPE7 SPE8

PPE

Process1

Process2

Fig. 8. The sampling phase of S-MGPS. Samples are taken from four execution intervals, during which the code performs identical
operations. For each sample, each MPI process uses a variable number of SPEs to parallelize its enclosed loops.

F. Blagojevic et al. / Parallel Computing 33 (2007) 700–719 715
execution times. We do not explore this option further in this paper. S-MGPS calculates efficiency for every
sampled configuration and selects the configuration with the maximum efficiency for the rest of the execution.
In Table 4 we represent partial results of the sampling phase in RAxML for different input datasets. In this
example, the degree of task-level parallelism sampled is 8, 4 and 2, while the degree of loop-level parallelism
sampled is 1, 2 and 4. In the case of RAxML we set a single sampling phase to be time necessary for all active
worker processes to finish a single bootstrap. Therefore, in the case of RAxML in Table 4, the number of
bootstraps and the execution time differ across sampling phases: when the number of active workers is 8,
the sampling phase will contain eight bootstraps, when the number of active workers is 4 the sampling phase
will contain four bootstraps, etc. Nevertheless, the throughput (W) remains invariant across different sampling
phases and always represents the efficiency of a certain configuration, i.e. amount of work done per second.
Results presented in Table 4 and Figs. 7 and 4b confirm that S-MGPS converges to the optimal configuration
for the input files 25_SC and 42_SC.

Since the scheduler performs an exhaustive search, for the 25_SC input, the total number of tested config-
urations during the sampling period on Cell is 17, for up to eight MPI processes and 1–5 SPEs used per MPI
process for loop-level parallelization. The upper bound of five SPEs per loop is determined by the first phase
of the sampling period (Fig. 6). Assuming that performance is optimized if the maximum number of SPEs of
Table 4
Efficiency of different program configurations with two data sets in RAxML

Dataset deg(TLP) · deg(LLP) No. bootstraps per sampling phase No. off-loaded tasks Phase duration time (s) W

42_SC 8 · 1 8 2,526,126 41.73 60,535

42_SC 4 · 2 4 1,263,444 21.05 60,021
42_SC 2 · 4 2 624,308 14.42 43,294
25_SC 8 · 1 8 1,261,232 16.53 76,299
25_SC 4 · 2 4 612,155 8.01 76,423

25_SC 2 · 4 2 302,394 5.6 53,998

The best configuration for 42_SC input is deg(TLP) = 8, deg(LLP) = 1. The best configuration for 25_SC is deg(TLP) = 4, deg(LLP) = 2.
deg() corresponds the degree of a given dimension of parallelism (LLP or TLP).



716 F. Blagojevic et al. / Parallel Computing 33 (2007) 700–719
the processor are involved in parallelization, the feasible configurations to sample are constrained by
deg(TLP) · deg(LLP) = 8, for a single Cell with eight SPEs. Under this constraint, the number of samples
needed by S-MGPS on Cell drops to 3. Unfortunately, when considering only configurations that use all SPEs,
the scheduler may omit a configuration that does not use all SPEs but still performs better than the best
scheme that uses all processor cores. In principle, this situation may occur in certain non-scalable codes.
To address such cases, we recommend the use of exhaustive search in S-MGPS, given that the total number
of feasible configurations of SPEs on a Cell is manageable and small compared to the number of tasks and the
number of instances of each task executed in real applications. This assumption may need to be revisited in the
future for large-scale systems with many cores and exhaustive search may need to be replaced by heuristics
such as hill climbing or simulated annealing. In Table 5 we compare the performance of S-MGPS to the static
scheduling policies with both one-dimensional (TLP) and multi-grain (TLP-LLP) parallelism on Cell, using
RAxML. For a small number of bootstraps, S-MGPS underperforms the best static scheduling scheme by
10%. The reason is that S-MGPS expends a significant percentage of execution time in the sampling period,
while executing the program in mostly suboptimal configurations. As the number of bootstraps increases, S-
MGPS comes closer to the performance of the best static scheduling scheme (within 3–5%).

To map PBPI to Cell, we used a hybrid parallelization approach where a fixed number of MPI processes is
multiplexed on the PPE and multiple SPEs are used for loop-level parallelization. The performance of the par-
allelized off-loaded code in PBPI is influenced by the same factors as in RAxML: granularity of the off-loaded
code, PPE-SPE communication, and load imbalance. In Fig. 9 we present the performance of PBPI when a
variable number of SPEs is used to execute the parallelized off-loaded code. The input file we used in this
experiment is 107_SC, including 107 organisms, each represented by a DNA sequence of 1000 nucleotides.
We run PBPI with one Markov chain for 200,000 generations. Fig. 9 contains four executions of PBPI with
1, 2, 4 and 8 MPI processes with 1–16, 1–8, 1–4 and 1–2 SPEs used per MPI process, respectively. In all exper-
iments we use a single BladeCenter with two Cell BE processors (total of 16 SPEs). In the experiments with 1
and 2 MPI processes, the off-loaded code scales successfully only up to a certain number of SPEs, which is
always smaller than the number of total available SPEs. Furthermore, the best performance in these two cases
is reached when the number of SPEs used for parallelization is smaller than the total number of available
SPEs. The optimal number of SPEs in general depends on the input data set and on the outermost parallel-
ization and data decomposition scheme of PBPI. The best performance for the specific dataset is reached by
Table 5
RAxML – Comparison between S-MGPS and static scheduling schemes, illustrating the convergence overhead of S-MGPS

deg(TLP) = 8, deg(LLP) = 1 deg(TLP) = 4, deg(LLP) = 2 deg(TLP) = 1, deg(LLP) = 4 S-MGPS

32 boots 60 s 57 s 80 s 63 s
64 boots 117 s 112 s 161 s 118 s
128 boots 231 s 221 s 323 s 227 s

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of SPEs

Ex
ec

ut
io

n 
tim

e 
(s

)

1 MPI process
2 MPI processes
4 MPI processes
8 MPI processes

Fig. 9. PBPI executed with different levels of TLP and LLP parallelism: deg(TLP) = 1–4, deg(LLP) = 1–16.



Table 6
PBPI – comparison between S-MGPS and static scheduling schemes: (a) deg(TLP) = 1, deg(LLP) = 1–16; (b) deg(TLP) = 2,
deg(LLP) = 1–8; (c) deg(TLP) = 4, deg(LLP) = 1–4; (d) deg(TLP) = 8, deg(LLP) = 1–2

deg(LLP)

(a)

deg(TLP) = 1 1 2 3 4 5 6 7 8
Time 502 267.8 222.8 175.8 142.1 118.6 108.1 134.3
deg(TLP) = 1 9 10 11 12 13 14 15 16
Time (s) 122 111.9 138.3 109.2 122.3 133.2 115.3 116.5
S-MGPS Time (s) 110.3

(b)

deg(TLP) = 2 1 2 3 4 5 6 7 8
Time (s) 275.9 180.8 139.4 113.5 91.3 97.3 102.55 115
S-MGPS Time (s) 93

deg(LLP)

(c)

deg(TLP) = 4 1 2 3 4

Time (s) 180.6 118.67 94.63 83.61

S-MGPS time (s) 85.9
deg(LLP)

(d)

deg(TLP) = 8 1 2

Time (s) 355.5 265

S-MGPS time (s) 267

F. Blagojevic et al. / Parallel Computing 33 (2007) 700–719 717
using four MPI processes, spread across 2 Cell BEs, with each process using four SPEs on one Cell BE. This
optimal operating point shifts with different data set sizes.

The fixed virtual processor topology and data decomposition method used in PBPI prevents dynamic
scheduling of MPI processes at runtime without excessive overhead. We have experimented with the option
of dynamically changing the number of active MPI processes via a gang scheduling scheme, which keeps
the total number of active MPI processes constant, but co-schedules MPI processes in gangs of size 1, 2, 4,
or 8 on the PPE and uses 8, 4, 2, or 1 SPE(s) per MPI process respectively, for the execution of parallel loops.
This scheme also suffered from system overhead, due to process control and context switching on the SPEs.
Pending better solutions for adaptively controlling the number of processes in MPI, we evaluated S-MGPS in
several scenarios where the number of MPI processes remains fixed. Using S-MGPS we were able to determine
the optimal degree of loop-level parallelism, for any given degree of task-level parallelism (i.e. initial number
of MPI processes) in PBPI. Being able to pinpoint the optimal SPE configuration for LLP is still important
since different loop parallelization strategies can result in a significant difference in execution time. For exam-
ple, the naı̈ve parallelization strategy, where all available SPEs are used for parallelization of off-loaded loops,
can result in up to 21% performance degradation (see Fig. 9).

Table 6 shows a comparison of execution times when S-MGPS is used and when different static parallel-
ization schemes are used. S-MGPS performs within 2% of the optimal static parallelization scheme. S-MGPS
also performs up to 20% better than the naı̈ve parallelization scheme where all available SPEs are used for
LLP (see Table 6b).

7. Conclusions

We investigated the problem of scheduling dynamic multi-dimensional parallelism on heterogeneous multi-
core processors. We used the Cell BE as a case study and as a timely and relevant high-performance comput-
ing platform. Our main contribution is a feedback-guided dynamic scheduler, S-MGPS, which rightsizes
multi-dimensional parallelism automatically and improves upon earlier proposals for event-driven scheduling
of task-level parallelism (EDTLP) and utilization-driven scheduling of multi-grain parallelism (MGPS) on the
Cell BE.



718 F. Blagojevic et al. / Parallel Computing 33 (2007) 700–719
S-MGPS searches for optimal configurations of multi-grain parallelism in a space of configurations which is
unexplored by both EDTLP and MGPS. The scheduler uses sampling of dominant execution phases to con-
verge to the optimal configuration and our results show that S-MGPS performs within 2–10% off the optimal
multi-grain parallelization scheme, without a-priori knowledge of application properties. We have demon-
strated the motivation and effectiveness of using S-MGPS with two complete and realistic applications from
the area of computational phylogenetics, RAxML and PBPI.

Our results corroborate the need for dynamic and adaptive user-level schedulers for parallel programming
on heterogeneous multi-core processors and provide motivation for further research in the area. Potential ave-
nues that we plan to explore in the future are the extension of the three schedulers (S-MGPS, MGPS, EDTLP)
to incorporate inter-node communication, extension of the dynamic scheduling heuristics to account for load
imbalance and task heterogeneity, and further experimentation with regular and irregular applications. We
also intend to integrate S-MGPS with adaptive and threaded MPI frameworks, to minimize the overheads
of adaptation of the number of MPI processes at runtime and allow S-MGPS to explore the full search space
of program configurations. This effort will also involve an exploration of heuristics to prune the search space,
for platforms with a large number of feasible configurations (e.g. Cell multiprocessors with many Cell BEs or
large-scale Cell BE clusters).

Acknowledgements

This research is supported by the National Science Foundation (Grant CCR-0346867), the US Department
of Energy (Grant DE-FG02-06ER25751), the Swiss Confederation Funding, the Barcelona Supercomputing
Center, and the College of Engineering at Virginia Tech. We thank Georgia Institute of Technology, its Sony-
Toshiba-IBM Center of Competence, and the National Science Foundation, for the use of Cell broadband
engine resources that have contributed to this research. We thank Xizhou Feng and Kirk Cameron for pro-
viding us with the MPI version of PBPI. We are also grateful to the anonymous reviewers for their construc-
tive feedback on earlier versions of this paper.

References

[1] PowerPC Microprocessor Family: Vector/SIMD Multimedia Extension Technology Programming Environments Manual. http://
www-306.ibm.com/chips/techlib.

[2] D. Bader, V. Agarwal, K. Madduri, On the design and analysis of irregular algorithms on the cell processor: a case study on list
ranking, in: Proceedings of the 21st International Parallel and Distributed Processing Symposium, Long Beach, CA, March 2007.

[3] D.A. Bader, B.M.E. Moret, L. Vawter, Industrial applications of high-performance computing for phylogeny reconstruction, in:
Proceedings of SPIE ITCom, vol. 4528, 2001, pp. 159–168.

[4] P. Bellens, J. Perez, R. Badia, J. Labarta, CellSs: a programming model for the Cell BE architecture, in: Proceedings of
Supercomputing 2006, Tampa, FL, November 2006.

[5] Carsten Benthin, Ingo Wald, Michael Scherbaum, Heiko Friedrich, Ray tracing on the CELL Processor, in: Proceedings of the 2006
IEEE Symposium on Interactive Ray Tracing, 2006.

[6] Filip Blagojevic, Dimitrios S. Nikolopoulos, Alexandros Stamatakis, Christos D. Antonopoulos, Dynamic multigrain parallelization
on the cell broadband engine, in: Proceedings of the 12th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, San Jose, CA, March 2007, pp. 90–100.

[7] Filip Blagojevic, Alexandros Stamatakis, Christos D. Antonopoulos, Dimitrios S. Nikolopoulos, RAxML-Cell: parallel phyolgenetic
tree construction on the Cell broadband engine, in: Proceedings of the 21st IEEE/ACM International Parallel and Distributed
Processing Symposium, Long Beach, CA, March 2007.

[8] T. Chen, Z. Sura, K. O’Brien, K. O’Brien, Optimizing the use of static buffers for DMA on a Cell chip, in: Proceedings of the 19th
International Workshop on Languages and Compilers for Parallel Computing, New Orleans, LA, November 2006.

[9] Thomas Chen, Ram Raghavan, Jason Dale, Eiji Iwata, Cell Broadband Engine architecture and its first implementation, IBM
developer Works (November) (2005).

[10] A.E. Eichenberger et al., Optimizing compiler for a Cell processor, Parallel Architectures and Compilation Techniques (2005),
September.

[11] B. Flachs et al., The microarchitecture of the streaming processor for a CELL Processor, in: Proceedings of the IEEE International
Solid-State Circuits Symposium, February 2005, pp. 184–185.

[12] K. Fatahalian et al., Sequoia: programming the memory hierarchy, in: Proceedings of Supercomputing 2006, Tampa, FL, November
2006.

[13] J. Felsenstein, Evolutionary trees from DNA sequences: a maximum likelihood approach, Journal of Molecular Evolution 17 (1981)
368–376.

http://www-306.ibm.com/chips/techlib
http://www-306.ibm.com/chips/techlib


F. Blagojevic et al. / Parallel Computing 33 (2007) 700–719 719
[14] X. Feng, K. Cameron, D. Buell, PBPI: a high performance implementation of Bayesian phylogenetic inference, in: Proceedings of
Supercomputing 2006, Tampa, FL, November 2006.

[15] X. Feng, K. Cameron, B. Smith, C. Sosa, Building the tree of life on terascale systems, in: Proceedings of the 21st International
Parallel and Distributed Processing Symposium, Long Beach, CA, March 2007.

[16] Xizhou Feng, Duncan A. Buell, John R. Rose, Peter J. Waddell, Parallel algorithms for Bayesian phylogenetic inference, Journal of
Parallel Distributed Computing 63 (7–8) (2003) 707–718.

[17] M. Gordon, W. Thies, S. Amarasinghe, Exploiting coarse-grained task, data and pipelined parallelism in stream programs, in:
Proceedings of the 12th International Conference on Architectural Support for Programming Languages and Operating Systems, San
Jose, CA, October 2006, pp. 151–162.

[18] Nils Hjelte, Smoothed particle hydrodynamics on the Cell Broadband Engine, Master’s thesis, Umeå University, Department of
Computer Science, June 2006.

[19] Mike Kistler, Michael Perrone, Fabrizio Petrini, Cell multiprocessor interconnection network: built for speed, IEEE Micro, 26(3),
May–June 2006. Available from http://hpc.pnl.gov/people/fabrizio/papers/ieeemicro-cell.pdf.

[20] Julie Langou, Julien Langou, Piotr Luszczek, Jakub Kurzak, Alfredo Buttari, Jack Dongarra, Exploiting the performance of 32 bit
floating point arithmetic in obtaining 64 bit accuracy (revisiting iterative refinement for linear systems), in: Proceedings of
Supercomputing 2006, Tampa, FL, November 2006.

[21] F. Petrini, G. Fossum, A. Varbanescu, M. Perrone, M. Kistler, J. Fernandez Periador, Multi-core surprises: lessons learned from
optimized Sweep3D on the Cell Broadband Engine, in: Proceedings of the 21st International Parallel and Distributed Processing
Symposium, Long Beach, CA, March 2007.

[22] Fabrizio Petrini, Daniel Scarpazza, Oreste Villa, Juan Fernandez, Challenges in mapping graph exploration algorithms on advanced
multi-core processors, in: Proceedings of the 21st International Parallel and Distributed Processing Symposium, Long Beach, CA,
March 2007.

[23] I. Sharapov, R. Kroeger, G. Delamater, R. Cheveresan, M. Ramsay, A case study in top-down performance estimation for a large-
scale parallel application, in: Proceedings of the 11th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, New York, NY, March 2006, pp. 81–89.

[24] Alexandros Stamatakis, RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed
models, Bioinformatics (2006) btl446.

[25] J. Subhlok, G. Vondran, Optimal use of mixed task and data parallelism for pipelined computations, Journal of Parallel and
Distributed Computing 60 (3) (2000) 297–319.

[26] Samuel Williams, John Shalf, Leonid Oliker, Shoaib Kamil, Parry Husbands, Katherine Yelick, The potential of the Cell processor
for scientific computing, in: ACM International Conference on Computing Frontiers, May 3–6, 2006.

[27] Y. Zhao, K. Kennedy, Dependence-driven code generation for a Cell processor, in: Proceedings of the 19th International Workshop
on Languages and Compilers for Parallel Computing, New Orleans, LA, November 2006.

http://hpc.pnl.gov/people/fabrizio/papers/ieeemicro-cell.pdf

	Runtime scheduling of dynamic parallelism on accelerator-based multi-core systems
	Introduction
	Related work
	Experimental testbed
	RAxML
	PBPI
	Hardware platform
	RAxML and PBPI on the Cell BE

	Scheduling multi-grain parallelism on Cell
	Event-driven task scheduling
	Dynamic loop scheduling

	MGPS: dynamic scheduling of task- and loop-level parallelism
	Application-specific hybrid parallelization on Cell
	MGPS

	S-MGPS
	Motivating example
	A sampling-based scheduler for multi-grain parallelism

	Conclusions
	Acknowledgements
	References


