Achieving Multiprogramming Scalability of Parallel Programs on
Intel SMP Platforms: Nanothreading in the Linux Kernel

Dimitrios S. Nikolopoulos, Christos D. Antonopoulos,
Ioannis E. Venetis, Panagiotis E. Hadjidoukas,
Eleftherios D. Polychronopoulos, Theodore S. Papatheodorou
High Performance Information Systems Laboratory
Department of Computer Engineering and Informatics
University of Patras, Rion 26500, Greece
http://www.hpclab. ceid.upatras. gr

This paper presents the design and implementation of a nanothreading interface in
the kernel of the Linux operating system for Intel Architecture-based symmetric
multiprocessors. The objective of the nanothreading interface is to achieve robust
performance of multithreaded programs and increased throughput in multipro-
grammed shared memory multiprocessors, where multiple parallel and sequential
programs with diverge characteristics and resource requirements execute simulta-
neously. The interface lets a multithreading runtime system and the kernel ex-
change critical scheduling information through loads and stores in shared memory,
in order to enable parallel programs to adapt to dynamically changing resources
and minimize their idle time. The same interface enhances the capability of the
kernel scheduler to allocate resources evenly between competing programs. We
discuss the main design and implementation issues concerning the nanothreading
interface and provide experimental evidence which substantiates the efficiency of
our implementation.

1 Introduction

Small-scale symmetric multiprocessors (SMPs) based on commodity Intel mi-
croprocessors are widely adopted as high performance and cost-effective com-
pute servers. Proprietary and freeware operating systems for TA-based servers
are SMP-compliant and provide operating system support for multithreading,
typically implemented on top of kernel-level execution vehicles (EVs)® that
share the same address space. At the same time, SMP-compliant operating
systems support transparent multiprogramming, through time and space shar-
ing of the system processors and memory.

The integration of multithreading with multiprogramming has been a hot
spot in high performance computing research during the last decade®. Since
modern SMPs are heavily multiprogrammed, the need for achieving scalability
of parallel programs under multiprogramming is intensified’. The burden of

@We use the more general term ezecution vehicle instead of the term kernel thread, to cope
with the inconsistencies in threads terminology between different operating systems.
bIn this paper the term scalability is used in a broad sense, to characterize the ability of a

effectively integrating multithreaded programs in multiprogrammed environ-
ments is shared between the operating system and the runtime system layers.
Unfortunately, most multithreading runtime systems are oblivious of multi-
programming and most SMP-compliant operating systems are oblivious of the
fine-grain interactions between threads in multithreaded programs. This lack
of coordination between runtime systems and operating systems has proven to
be severely harmful for the performance of both individual applications and
systems as a whole.

This work addresses the problem of integrating parallel programs in mul-
tiprogrammed environments, via the use of a lightweight shared memory inter-
face, called the nanothreading interface”, which lies between a multithreading
runtime system and the operating system kernel. The nanothreading inter-
face implements a communication infrastructure that enables a multithreaded
program to automatically and transparently adapt to changes of the system
resources allocated to it from the operating system at runtime. Adaptability
is attained by matching the granularity of user-level threads to the number of
processors available to the program at runtime and resuming maliciously pre-
empted threads that execute on the critical path of the parallel computation.
The same interface, used in the opposite direction, assists the kernel scheduler
to apply sophisticated resource distribution strategies, by taking into account
the actual resource requirements and the exploitable parallelism of each paral-
lel program. The kernel gracefully grants parallel programs the authorization
to use their EVs in the most effective way, while it maintains the responsibility
of distributing system resources evenly. Put simply, the kernel acts like an
advisory rather than as an explicit coordinator of the concurrency of parallel
programs. The nanothreading interface architecture is adaptable and extensi-
ble, as it is not based on operating system or architecture-specific mechanisms.
It thus promises to be a viable alternative for the effective integration of mul-
tiprocessing and multiprogramming in contemporary operating systems.

We present the main design and practical issues regarding the implemen-
tation of the nanothreading interface in the Linux operating system. These
include the shared memory interface, mechanisms for processor allocation and
affinity scheduling of nanothreaded jobs, mechanisms for fast resuming of mali-
ciously preempted threads and the integration of the nanothreading jobs sched-
uler with the native time-sharing kernel scheduler. Our working prototype runs
in Linux version 2.0.36 and is integrated with a user-level threads library that
uses compiler knowledge to match the number of running user-level threads
to the number of EVs granted to the program by the kernel . We provide

parallel program to sustain robust and predictable performance when the load of the system
due to multiprogramming is increased.

results from experiments with multiprogrammed workloads consisting of par-
allel jobs. The results show that the nanothreading Linux kernel achieves solid
throughput improvements of up to 41% compared to the native Linux kernel.

The rest of this paper is organized as follows: Section 2 overviews the
design and implementation of the nanothreading kernel interface. Section 3
provides experimental results and Section 4 discusses related and ongoing work.

2 Nanothreading Kernel Interface Design and Implementation

Three design principles guide the implementation of the nanothreading ker-
nel interface. The first principle is that parallel programs should communicate
with the kernel through loads and stores in shared memory in an asynchronous
manner, since shared memory is the most efficient communication medium on
a SMP. The second principle is that each parallel program should be armed
with mechanisms that assist the program to effectively utilize the available
processors and execute through the critical path, in the presence of preemp-
tions of EVs from the operating system and blocking system calls. The third
design principle is that the scheduler of the adaptive nanothreading programs
should be seamlessly integrated with the native time-sharing scheduler of the
operating system.

The nanothreading shared memory interface is organized around a shared
arena®”. Each multithreaded program reserves a portion of memory in its
address space, which is shared between the program and the kernel. Care is
taken so that the shared arena is situated in a single memory page. The pages
containing shared arenas are pinned to physical memory in order to avoid
paging out critical scheduling information at runtime. The shared arena is
logically divided into a read-only and a read-write region. In the read-write
region, each multithreaded program stores requests for processors, which are
guided from the degree of parallelism that the program can effectively exploit
and may vary during execution. In the same region, the program designates
its EVs as workers, or idlers, depending on whether the EVs have user-level
threads to execute in their run queues or not.

The processor requirements of a parallel program can be different from
the number of processors allocated from the operating system to the program
at runtime. The instantaneous number of physical processors allocated to
each program is kept up-to-date from the kernel, which stores the associated
information in the read-only region of the shared arena. A nanothreading
program retrieves snapshots of this field by polling the shared arena whenever
it initiates a parallel execution phase. In this way, the program is able to
arrange its parallelism by creating as many user-level threads as the actual

instantaneous number of physical processors allocated to it from the operating
system. The read-only region is also used by the kernel in order to communicate
the number of undesirably preempted EVs to the program.

A virtual memory page in the Intel x86 architecture can be either read-only
or read-write. In order to achieve both goals of using one memory page per
application for the shared arena and protecting read-only information from
accidental overwriting, the kernel keeps a private copy of the shared arena
page and trusts only the data residing on it. The read-write region of the
kernel copy is updated each time the application loses control of a processor.
The read-only region of the application copy is updated when the operating
system scheduler selects an EV belonging to that application to be given a
processor for the next time quantum. The application copy is updated with a
copy-on-write strategy to avoid some expensive TLB flushes.

The disposition of the shared arena page in the application’s virtual ad-
dress space is communicated to the kernel via a system call. This system call
informs the kernel that the application uses the nanothreading interface and
serves as a request to the kernel to create as many EVs as the application
expects to use during its execution lifetime. All EVs needed are created at
once, using a modified version of the native kernel code for cloning. This re-
duces the overhead of multiple system calls and results to significantly faster
EV creation. The return address in the kernel stack of each created EV is set
to point to the function the EV must upcall to when running for the first time
i.e. the threads runtime library scheduler loop. The newly created EVs are not
unblocked until the kernel decides to grant some processors to the application.

The assignment of runnable EVs to applications is a duty of the nanoth-
reads kernel-level scheduler, which is invoked in four cases: when a nanoth-
reading application leaves or enters the system, when an application changes
its processor requirements and upon expiration of the nanothreads scheduler
time quantum. The scheduling takes place in three phases. During the first
phase, the scheduler decides how many runnable EVs will be assigned to each
nanothreading application. A dynamic space sharing policy is used for this
purpose 8. Each program is granted processors according to the number of
processors it requests and the overall system load. The second phase results to
an indirect assignment of physical processors to the nanothreading applications
selected in the first phase. More specifically, the nanothreading applications
are granted the right to compete with other, non-nanothreading applications,
for some specific processors. This strategy is used to integrate the nanoth-
reading jobs scheduler with the native time-sharing scheduler of the operating
system. In other words, the nanothreading jobs scheduler is solely responsi-
ble for deciding how many and which specific processors should be allocated

to each parallel program. Granting actual CPU time to the programs and
managing priorities is a responsibility of the native time-sharing scheduler of
the operating system. The major objective of the nanothreading scheduler in
the second phase is to preserve the spatial and temporal locality of the pro-
cessor sets in which each parallel program executes, via a strong affinity link
maintained for each EV of a nanothreading program. In the final phase, a
specific EV of an application chosen in the first phase is selected to serve as an
EV during the next time quantum. A priority scheme is applied between the
threads of each nanothreading application. Given a physical processor, if an
EV was during the last time quantum executing on that physical processor, it
is automatically selected. Otherwise the EVs that have previously been pre-
empted while they were executing useful work, have the highest priority. The
EVs that were previously preempted while idling constitute the next priority
class. The two types of preempted EVs are distinguished with the worker/idler
field in the shared arena. The EVs with the lowest priority are the ones that
were previously voluntarily suspended at an idling point.

The nanothreading interface provides mechanisms to ensure that worker
EVs which were undesirably preempted by the operating system scheduler are
quickly resumed with application intervention. Each EV reaching an idling
point of execution checks the shared arena for preempted worker EVs of the
same application. If such EVs are found, the currently executing EV handoffs
its processor in favor of a preempted worker, via a system call. EVs that find
themselves idling for long also yield their processor in favor of an EV belonging
to another nanothreading application, with the prospect that this EV will
utilize the processor better. With this technique, nanothreading programs
cooperate with the kernel to increase system throughput.

A common problem of user-level thread libraries is that when a user-level
thread blocks in the kernel, e.g. while waiting for I/O, the corresponding EV
also blocks. However, the user-level library has no means to be informed and
activate another EV in order to keep using the processor efficiently. This can
result to low processor utilization. In our implementation, when the kernel
detects that an active EV of a nanothreading application is blocked, local
scheduling, i.e. a scheduling having effect only on the processor assigned to the
blocked EV, takes place. This leads to the selection and resumption of another
EV. When the blocked EV is unblocked, it is either immediately resumed, or
marked as a high priority preempted EV in the shared arena.

Several kernel services were added in the Linux kernel to support an ef-
ficient implementation of the nanothreading interface, including binding and
unbinding of EVs to or from physical processors and an implementation of
share groups for handling prematurely terminated EVs. The user-level side of

the nanothreading interface, was implemented in a research prototype of the
Nanothreads runtime library 3, customized for Linux. Details on the imple-
mentation can be found in an extended version of this paper?.

3 Performance Evaluation

We used a Quad Pentium Pro for the evaluation of the nanothreading Linux
kernel. Each processor was clocked at 200 MHz and equipped with 512 Kbytes
of L2 cache, while the total physical memory of the system was 512 Mbytes. We
used the Pentium Pro hardware counter to measure time in our experiments.

The overhead for cloning EVs in the nanothreading kernel is 26 us, which
is about 4 times faster than the native Linux cloning overhead. Blocking and
unblocking EVs from physical processors cost from 1.4 to 8 us, depending on
the previous state of the EVs. A full handoff from an idler EV to a worker
EV costs 54 pus. In general, the nanothreading kernel services pose minimal
system overhead, which is comparable to the overhead of well tuned user-level
lightweight thread libraries.

We evaluated the overall performance of the nanothreading kernel in terms
of the throughput achieved by the kernel scheduler for multiprogrammed work-
loads consisting of several multithreaded programs. We selected four applica-
tions from the SPLASH-2 suite®, LU, FFT, Raytrace and Volrend as bench-
marks. These applications either follow a task queue execution paradigm, or
constitute of parallel regions separated from each other with global barriers.
The changes needed in these applications in order to use the nanothreading
interface were minor. The workloads used consisted of 1, 2, 4 and 8 identical
copies of each application. All copies requested all processors of the system
to execute, therefore the degree of multiprogramming was always equal to
the number of copies of the program used in the workload. For each work-
load, we measured the throughput in terms of average turnaround time for
our nanothreading kernel and the native Linux kernel (version 2.0.36) with the
LinuxThreads POSIX 1003.1c-compliant threads package.

The results are depicted in Figure 1. Two observations are worth comment-
ing in the charts. First, we witness that the nanothreading kernel demonstrates
a solid improvement of throughput compared to the native Linux kernel. The
increase of system throughput ranges from 9% to 41% with an average of 18%
over all the experiments. Second, the throughput improvement achieved by
the nanothreading kernel tends to magnify as the degree of multiprogramming
and the load of the system increase. The improvements are mainly attributed
to the effectiveness of the handoff strategy and the strong affinity scheduling
mechanism which is employed in our nanothreading interface.

gowy - gowy o
: ;
5, 4-way o S 4-way
(=] o
=3 =3
S 2-way S 2-way
e e
S M fft, nanothreading kernel S W volrend, nanothreading kernel
@ 1-way I fft, Linux kernel @ 1-way + O volrend, Linux kernel
§ [lu, nanothreading kernel § O raytrace, nanothreading kernel
@ lu, Linux kernel M raytrace, Linux kernel
0 10 20 30 40 0 50 100 150 200
Average turnaround time (secs.) Average turnaround time (secs.)

Figure 1: Results from executions of multiprogrammed workloads of SPLASH-2 benchmarks
with the native and the nanothreading Linux SMP kernel.

4 Related and Ongoing Work

The idea of interfacing the user-level and kernel-level schedulers in order to
provide adaptability of parallel programs in multiprogrammed environments is
not new and has been used in the context of dynamic space-sharing processor
scheduling strategies 1*1°, Our approach differentiates from these works in
three critical aspects. Unlike previous implementations that relied on coarse-
grain mechanisms like signals and upcalls, we implement the communication
path between the runtime system and the kernel using just loads and stores in
shared memory. We rely on a completely asynchronous mechanism based on
polling to realize user-kernel communication. This mechanism minimizes the
communication overhead and provides adequate means to parallel programs
in order to readapt in the presence of frequent changes of system load and
fine-grain interactions between threads. Second, the nanothreading interface
is oriented towards providing efficient mechanisms to speedup the execution of
parallel programs in the presence of undesirable preemptions from the operat-
ing system. The nanothreading interface as such is not coupled with a specific
kernel scheduling policy. It rather enhances any scheduling policy with mech-
anisms for efficient multiprogrammed execution of parallel programs. Third,
the nanothreading interface is seamlessly integrated with a UNIX time-sharing
scheduler and enables efficient simultaneous execution of both nanothreading
and non-nanothreading jobs. Integration of sophisticated parallel job schedul-
ing strategies with time-sharing has not attracted considerable attention in
previous research works on multiprocessor scheduling.

Our current efforts focus on integrating the nanothreading interface with
the POSIX threads standard in order to extend its applicability to out-of-core
multithreaded programs, including networking applications and Java. We also

investigate the integration of the nanothreading interface with the OpenMP
standard for shared memory multiprocessing, as an infrastructure for imple-
menting dynamic parallelism.

A cknowledgments

We are grateful to Constantine Polychronopoulos, David Craig and our part-
ners in the NANOS project. This work is supported by the European Com-
mission, through the ESPRIT IV Project No. 21907 (NANOS).

References

1.

10.

T. Anderson et.al. Scheduler Activations: Effective Kernel Support for
the User-Level Management of Parallelism. ACM Trans. on Computer
Systems, 10(1), pp. 53-79, 1992.

. D. Craig. An Integrated Kernel-Level and User-Level Paradigm for Effi-

cient Multiprogramming. Master’s Thesis, CSRD Technical Report 1533,
University of Illinois at Urbana-Champaign, 1999.

X. Martorell et.al. A Library Implementation of the Nanothreads Pro-
gramming Model. Proc. of Euro-Par’96, pp. 644-649, 1996.

. C. McCann, R. Vaswani and J. Zahorjan. A Dynamic Processor Alloca-

tion Policy for Multiprogrammed Shared-Memory Multiprocessors. ACM
Trans. on Computer Systems, 11(2), pp. 146-178, 1993.

D. Nikolopoulos et.al. Achieving Multiprogramming Scalability of Par-
allel Programs on Intel SMP Platforms. Nanothreading in the
Linuz Kernel. Technical Report HPCLAB-021298, Available at
http://www.hpclab.ceid.upatras.gr, 1998.

C. Polychronopoulos. Multiprocessing vs. Multiprogramming. Proc. of
the 1989 Int. Conf. on Parallel Processing, pp. 11-223-11-230, 1989.

C. Polychronopoulos, N. Bitar and S. Kleiman. Nanothreads: A User-
Level Threads Architecture. CSRD Technical Report 1297, University of
Illinois at Urbana-Champaign, 1993.

E. Polychronopoulos et.al. An Efficient Kernel-Level Scheduling Method-
ology for Multiprogrammed Shared Memory Multiprocessors. Proc. of the
12th ISCA Int. Conf. on Parallel and Distr. Computing Systems, 1999.
S. Woo et.al. The SPLASH-2 Programs: Characterization and Method-
ological Considerations. Proc. of the 22nd Annual Int. Symposium on
Computer Architecture, pp. 24-36, 1995.

K. Yue and D. Lilja. An Effective Processor Allocation Strategy for Mul-
tiprogrammed Shared Memory Multiprocessors. IEEE Trans. on Parallel
and Distributed Systems, 8(12), pp. 1246-1258, 1997.

