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Abstract In this paper we present an integrated
environment for the efficient support of dynamic
parallelism with OpenMP on top of Linux-based
SMPs. This environment consists of an OpenMP-
compliant Fortran77 compiler, a run-time threads
library and a modified Linux kernel.

The functionality provided by our run-time
threads library is used by the NanosCompiler, which
converts OpenMP Fortran77 programs to equiva-
lent Fortran77 programs with calls to the library.
The NanosCompiler generated applications use a
shared arena as a communication path with the OS
kernel. This kind of communication facilitates the
support of dynamic parallelism, resulting to perfor-
mance scalability under multiprogramming.

In order to evaluate the efficiency of our ap-
proach, we have used a subset of an OpenMP im-
plementation of the NAS benchmarks. We com-
pared the performance of our environment with that
of OmniMP. OmniMP is a free source-to-source
compiler, that converts OpenMP programs written
in C or Fortran77 to equivalent C programs us-
ing POSIX threads. Our environment achieves up
to 6.3 times higher throughput under the presence
of multiprogramming. Moreover, it performs better
even on dedicated machines.
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1 Introduction

The OpenMP Application Programming Inter-
face [9] is gaining consistently growing accep-

tance as the programming model of choice for
shared-memory multiprocessors. OpenMP de-
fines a portable programming interface based
on directives, i.e. annotations that enclose
loops and sections of code. The annotated
code is executed by multiple threads, with a
fork/join execution model. OpenMP offers
the advantage of simplicity, since the shared-
memory API can be used to construct a par-
allel program as a natural extension of its se-
quential counterpart, thus enabling incremen-
tal code development. Furthermore, OpenMP
hides the architectural details and relieves
the programmer from the duty of data dis-
tribution among processors. Several recent
studies have demonstrated good scalability of
OpenMP codes on small and medium-scale
shared-memory multiprocessors [4]. Many
multiprocessor vendors including Intel, Com-
paq, Sun, IBM, HP and SGI [9] are currently
participating in the design and evolution of
OpenMP, while most of them already support
OpenMP on their hardware platforms, using
customized compilers and run-time systems.

One of the strong advantages of OpenMP is
that, since it is based on a multithreaded exe-
cution model, it enables dynamic parallelism,
that is, OpenMP programs can be executed
on a dynamically varying number of proces-
sors without modifying the source code. This
can be accomplished if the run-time system at
the backend of the OpenMP compiler supports
a two-level scheduling model, in which the op-



erating system controls the number of physical
processors allocated to each OpenMP program,
while the run-time system adjusts the num-
ber of threads to the number of processors and
resumes threads that were preempted by the
operating system while executing on the criti-
cal path of the program. Support for dynamic
parallelism is critical on multiprogrammed pro-
duction SMP servers, in which the processors
are space- and time-shared among multiple se-
quential and parallel programs. The OpenMP
standard already makes provision for the use of
dynamic parallelism, using intrinsic functions1.
However, vendor implementations of OpenMP
have not paid sufficient attention to this fea-
ture. Dynamic OpenMP parallelism is either
left unsupported, or supported via immature
implementations.

This paper presents the implementation of
an integrated kernel- and user-level infrastruc-
ture, targeted to the support of dynamic par-
allelism with OpenMP primitives, on top of
Linux-based SMPs. Small scale SMPs based on
Intel x86 microprocessors are widely acknowl-
edged as a cost effective compute server solu-
tion. Nowadays, there is also a trend towards
using this class of SMPs, combined with a high
performance interconnection network such as
Myrinet, Gigabit Ethernet etc., as building
blocks for large-scale systems.

To the best of our knowledge, this is the first
implementation on top of Linux that supports
dynamic parallelism. Previous efforts (Omn-
iMP [11], OdinMP [3], Portland Group [1])
are based on LinuxThreads [5], which is an
implementation of the POSIX 1003.1c threads
standard for Linux. However, LinuxThreads
rely on heavy-weight kernel-level threads to
implement parallel sections. Hence, they fail
to exploit fine-grained parallelism opportuni-
ties. Furthermore, LinuxThreads are neither
dynamic, nor aware of multiprogramming. The
run-time library creates and uses as many
kernel-threads as the application requests, not
taking into account the variations of system

1Dynamic parallelism in OpenMP can be activated,
using the OMP SET DYNAMIC() call.

workload and exploitable parallelism during
the execution life of the application.

We present the user- and kernel-level imple-
mentation details of OpenMP-based dynamic
parallelism in Linux, in Section 2. Next, in
Section 3, we describe how our OpenMP com-
piler generates multithreaded code that uses
our kernel services for dynamic parallelism.
Section 4 provides some experimental evidence
on the efficiency of our infrastructure, while the
basic conclusions are outlined in Section 5.

2 User- and kernel-level im-
plementation

The OpenMP support we provide, fully com-
plies with the latest version of the OpenMP
standard, with the exception of support for or-
phan directives.

Our approach differentiates from previous
efforts in many aspects. The execution envi-
ronment integrates a light-weight multithread-
ing run-time system with kernel support, in
order to achieve both a top-level performance
in dedicated environments, as well as perfor-
mance scalability under the presence of multi-
programming.

The nanothreads run-time library [7] imple-
ments parallel regions in terms of nanothreads
and work descriptors. Nanothreads are very
light, non-preemptive user-level threads. The
execution model is dependence-driven. Each
control or data dependence between two code
snapshots is represented by a dependence be-
tween the corresponding threads. When a
thread finishes its assigned work, it decrements
the dependencies of all the threads that are
dependent on it. If the decrement results
to threads having no more dependencies left,
those threads can be scheduled to the ready
queue. In order to enhance locality, there is one
local ready queue per processor. There is also
a global ready queue from which all proces-
sors can take work. Every processor finishing
the execution of a thread searches hierarchi-
cally its local queue and then the global queue
for new threads. All queues are implemented



using lock-free mechanisms.
The use of user-level threads allows us to

exploit multilevel parallelism. However, single-
level parallelism can be expressed using work
descriptors [6]. A work descriptor is a struc-
ture containing a pointer to the function to be
executed and its arguments. For each paral-
lel region, a master processor creates a work
descriptor and distributes it to the slave pro-
cessors by putting it in a memory region local
to each processor. Each slave processor exam-
ines its local region for work descriptors and
executes them. The use of work descriptors re-
lieves us from the overhead of thread creation
and manipulation. The overhead is minimized
to that of a function call. This makes work de-
scriptors appropriate for fine-grain parallelism.

The kernel-threads are provided by the mod-
ified Linux kernel and used by the library
as execution vehicles (EVs) for the user-level
threads. They are created at the beginning of
the execution of each application using a very
fast batch cloning mechanism that we have im-
plemented [8]. Their quantity is equal to the
maximum amount of parallelism expected to
be exposed by the application at any given
time, but not greater than the available phys-
ical processors in the system.

The native OS scheduler of Linux has been
augmented by a nanothreads scheduler control-
ling the applications conforming to our model.
The latter works in parallel and cooperatively
with the former. The main goals of the nan-
othreads scheduler are the preservation of EV-
processor affinity as well as the fair CPU-time
distribution among the nanothreading appli-
cations. For the purposes of this work, the
kernel-level scheduling policy used is Step Slid-
ing Window DSS [10], a mixed time- and space-
sharing policy. It must be pointed out that we
have paid extreme attention in order to ensure
the fairness of CPU-time allocation between
nanothreading and non-nanothreading appli-
cations. More specifically, kernel-threads that
belong to nanothreading applications compete
for CPU-time with the other kernel-threads in
the context of the OS scheduler. In the case
that the thread selected by the OS scheduler

is a nanothreading one and only in this case
the physical processor will be assigned to the
thread suggested by the nanothreads kernel-
level scheduler.

The core of dynamic parallelism support
and multiprogramming scalability is a shared
arena, which serves as a communication path
between the OS kernel and the application.
This communication path is implemented us-
ing one memory page per application, which
is shared with the kernel. The application
informs the kernel on its instantaneous pro-
cessor needs and the state (idler or worker)
of its currently running kernel-threads. The
kernel communicates to the application the
amount of processors currently granted to it
and the existence of maliciously preempted
kernel-threads, i.e. kernel-threads preempted
by the OS while executing work on the criti-
cal path. The application is also informed on
the exact state (Running, Voluntarily Freed,
Preempted, Blocked) of all the kernel-threads
it owns. Using this communication mecha-
nism, the kernel-level nanothreads scheduler
can grant CPU-time to the applications ac-
cording to their actual needs. The applications
can, on their turn, dynamically determine the
amount of processors they are granted and cre-
ate parallelism accordingly, thus avoiding un-
necessary overhead.

The applications are also armed with mech-
anisms that assist them to make progress on
their critical path. When a kernel-thread finds
itself idling, it checks the shared arena for pre-
empted kernel-threads belonging to the same
application. If such a thread is found, the idler
hands its processor off -via a system call- to the
preempted thread. If this is not the case, the
idler attempts to give its processor to a freed or
blocked kernel-thread of the same application.
If the idling period lasts for long, the applica-
tion may just return the processor to the nan-
othreads scheduler, greedily hoping that there
are other nanothreading applications able to
effectively use it.

The mechanisms we provide are effective
only during the time periods a nanothreading
application is alive in the system. When these



OpenMP Fortran Code

!$omp parallel do default(shared) private(i,j,k,rho_inv,aux)
!$omp& SCHEDULE(STATIC)
       do k = 0, grid_points(3)−1
          do j = 0, grid_points(2)−1
             do i = 0, grid_points(1)−1
                rho_inv = 1.0d0/u(1,i,j,k)
                rho_i(i,j,k) = rho_inv
                us(i,j,k) = u(2,i,j,k) * rho_inv
                vs(i,j,k) = u(3,i,j,k) * rho_inv
                ws(i,j,k) = u(4,i,j,k) * rho_inv
                square(i,j,k)  = 0.5d0 * rho_inv *
                                       (u(2,i,j,k)*u(2,i,j,k) + 
                                        u(3,i,j,k)*u(3,i,j,k) +
                                        u(4,i,j,k)*u(4,i,j,k))
                qs(i,j,k) = square(i,j,k) * rho_inv
                aux = c1c2*rho_inv*(u(5,i,j,k) − square(i,j,k))
                speed(i,j,k) = dsqrt(aux)
             end do
          end do
       end do

NanosCompiler Code

SUBROUTINE p_compute_rhs(nth_nprocs,nth_firstcpu)
nth_total_cpus = nthf_cpus_actual()
nth_selfv = nthf_self()
nth_cpuv = nthf_cpu(nth_selfv)
CALL nthf_wdcreate(nth_wdesc,compute_rhs,nth_selfv,02,
                                    nth_nprocs,nth_cpuv)
CALL nthf_depadd(nth_selfv,nth_nprocs + 1)
DO nth_p = nth_cpuv,nth_nprocs − 1 + nth_cpuv
  CALL nthf_wdsupply(mod(nth_p,nth_total_cpus),nth_wdesc)
END DO
CALL nthf_endsupply(nth_selfv)
END

SUBROUTINE compute_rhs(nth_me,nth_nprocs,nth_firstcpu)
    (Each processor computes its chunk of work based on its 
     virtual ID and the total number of processors which are
     going to execute in parallel this section of code)
END

Figure 1: A Fortran code fragment translated from OpenMP to multithreaded code by the NanosCompiler.

mechanisms are deactivated our kernel practi-
cally corresponds to an unmodified Linux ker-
nel, relieving the system from any overhead -
even minimal- our modifications could possibly
introduce.

3 OpenMP to Nanothreads
Code Transformation

The applications executed on our environment
are compiled using the OpenMP NanosCom-
piler [2]. The NanosCompiler is a paralleliz-
ing compiler that captures the parallelism ex-
pressed by the user through OpenMP direc-
tives and the parallelism automatically discov-
ered through a detailed analysis of data and
control dependencies. In our case, we have
only used the front-end which converts pro-
grams written in Fortran77 that use OpenMP
directives to equivalent programs that use calls
to the nanothreads run-time library. In this
section, we describe how these transformations
are applied. Figure 1 shows a fragment of
code from the SP application and the corre-
sponding NanosCompiler generated code. Be-
fore reaching the parallel region the applica-
tion requests as many processors as the user-
specified maximum amount of efficiently ex-
ploitable parallelism. The compiler generates a
new function which is executed by the master

thread of the parallel section and corresponds
to the parallel do OpenMP directive encoun-
tered in the original Fortran program. An-
other function that corresponds to the body
of the parallel section is also generated. This
function is provided to the consumer virtual
processors via a work descriptor. The mas-
ter thread reads from the shared arena the
number of granted to the application phys-
ical processors (nthf cpus actual()). This
number may be different from the requested
processors. It then creates the appropriate
work descriptor (nthf wdcreate()), which is
provided (nthf wdsupply()) to all granted
virtual processors -corresponding with a one
by one relation to the granted physical pro-
cessors. The appropriate dependencies have
previously been added to the master thread
(nthf depadd()). Finally, the master thread
calls nthf endsupply() to execute its chunk of
work and then block. When all consumers fin-
ish the execution, the dependencies of the mas-
ter thread are satisfied. As a result the master
gets resumed and continues its execution. In
the case of multilevel parallelism, threads are
used (via calls to analogous library functions)
instead of work descriptors for all but the in-
nermost level.

The scenario of a malicious preemption by
the OS of a consumer virtual processor is au-
tomatically dealt with by the run-time library.



Each virtual processor that finishes its assigned
chunk of work checks the shared arena for pre-
empted virtual processors of the same applica-
tion and reacts to the preemption by handing
off its physical processor to the preempted vir-
tual one. The preempted virtual processor may
be resumed even earlier, in the case of a phys-
ical processor yield by another nanothreading
application that considers itself unable to ef-
fectively use all the processors granted to it by
the OS.

4 Performance Evaluation

We have compared the programs produced by
the NanosCompiler with those of the OmniMP
OpenMP compiler, version 1.0. OmniMP is
a freely available front-end that translates C
and Fortran77 programs that use OpenMP di-
rectives to C code. The intermediate code in-
cludes calls to POSIX 1003.1c threads func-
tions, which are implemented, in our case, by
the LinuxThreads library.

After producing the intermediate code the
NanosCompiler uses the Fortran77 and the
OmniMP compiler the C front-end to the GCC
(GNU Compiler Collection) compiler, which
creates the final executables. We have used a
high level (-O4) of general, as well as processor
specific (-march=i686) optimizations.

To evaluate the efficiency of our approach,
we have executed a subset of an OpenMP
implementation of the NAS class W bench-
marks [4] using the two aforementioned en-
vironments. The subset constitutes of three
computational kernels -a conjugate gradient
(CG), a 3-dimensional FFT (FT) and a multi-
grid benchmark (MG)- and two applications-
solvers of three uncoupled systems of equa-
tions: scalar pentadiagonal (SP) and block
tridiagonal (BT). The benchmarks are writ-
ten in Fortran77 and are parallelized using
OpenMP directives.

The machine used during the evaluation is
a Compaq Proliant 5500 with four Pentium-
Pro processors, each one clocked at 200 MHz
and equipped with 512 Kbytes level two cache,

and 512 Mbytes of physical memory. The op-
erating system is Linux 2.2.13 with the kernel
modifications described earlier.

The workloads executed during the evalua-
tion are homogeneous, i.e. they constitute of
concurrently running identical copies of the
same benchmark. Each benchmark requests
four processors and the quantity of concur-
rently active benchmarks is equal to the degree
of multiprogramming we want to achieve. We
have experimented with multiprogramming de-
grees from 1 to 16 in powers of two. Each work-
load has been executed three times and the re-
sults reported are the average of the three ex-
ecutions. We measure the average turnaround
time of the benchmarks, which is a metric char-
acterizing the achieved throughput. It should
be mentioned that the variation between the
turnaround times of applications participating
in each workload was low -in any case lower
than the one achieved by OmniMP- which in-
dicates the performance stability of our envi-
ronment. The results are depicted in Figure 2.
We mention in passing that comparable results
heve been also attained using Portland Group
pgf77 compiler instead of OmniMP and GCC.
The results are not reported here due to license
limitations.

The nanothreading compilation and execu-
tion environment outperforms the OmniMP
environment in both the uniprogrammed and
multiprogrammed versions. We believe that
the efficiency of the nanothreading versions of
benchmarks under uniprogramming is due to
the fact that the light-weight threads and work
descriptors we use are much more appropriate
for loop-level parallelism than heavy kernel-
threads. Attention is also paid in order to en-
sure the proper alignment of data in the thread
stacks. Furthermore, the architecture of our
run-time library allow the application to im-
plicitly achieve high levels of data locality.

The correctness of our approach is clearly
demonstrated by the multiprogramming re-
sults. The average turnaround time of nanoth-
reading applications is from 2.3 to 6.3 times
less than that of the corresponding OmniMP
applications, when the multiprogramming de-



Figure 2: Normalized turnaround times of the evaluation workloads. For multiprogramming degree 16 the
actual turnaround times are given in seconds.

gree ranges from 2 to 16. It is worth observing
that the performance gap increases with the
raise of multiprogramming degree.

Under multiprogramming, the nanothreads
kernel-level scheduler limits the number of run-
ning kernel-level threads of each application,
thus minimizing unnecessary context switches
and synchronization overhead. In the same
time, the run-time library, being aware of the
actual number of running kernel-level threads,
creates only the efficiently exploitable amount
of parallelism thus further reducing overhead.
Additionally, the handoff mechanisms provided
by the kernel allow the applications to es-
cape the consequences of malicious preemp-
tions. The careful, lock-free implementation of
the run-time library contributes to the same di-
rection. Finally, both the kernel-level schedul-
ing policy used, which tries to preserve affinity
between processors and kernel-threads, as well
as the hierarchical queue design of the run-time
library result to enhanced data locality.

We must note that the OmniMP version of

the BT benchmark has exhibited unexpected
behavior. When executed on one processor the
OmniMP BT executable is as fast as an exe-
cutable created by the native GCC compiler,
disregarding OpenMP directives. However, the
execution of the OmniMP version on two pro-
cessors results to a slowdown of two. If more
processors are offered to the application the
execution time degrades normally. The same
problem used to occur in a previous version
of our run-time library. The reason, in our
case, has proven to be the incorrect alignment
of data in the stacks of threads.

5 Conclusions

Previous implementations of OpenMP for
Linux have ignored the need for dynamic paral-
lelism support due to lack of appropriate kernel
and run-time library extensions. We have pre-
sented an integrated compilation and execution
environment for the support of dynamic paral-



lelism in OpenMP applications running on top
of Linux-based SMP systems. We have shown
that an efficient bi-directional communication
path between the applications and the OS ker-
nel is of vital importance for dynamic paral-
lelism support and multiprogramming scalabil-
ity. Of the same importance has proven to be
a mechanism assisting the applications make
progress on their critical path in the presence
of undesirable preemptions. We also consider
user-level threads to be more appropriate than
kernel-level threads -such as the ones provided
by LinuxThreads- for efficient exploitation of
parallelism.

We have evaluated the performance of our
environment using a subset of an OpenMP im-
plementation of the NAS benchmarks. Our
environment has proven to be up to 6.3
times more efficient than OmniMP in terms of
throughput on a multiprogrammed machine.
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E. Ayguadé. A Library Implementation of
the Nano-Threads Programming Model.
In Proc. of the Second International Euro-
Par Conference, Vol. 2, August 1996.

[8] D. Nikolopoulos, C. Antonopoulos,
I. Venetis, et al. Achieving Multiprogram-
ming Scalability of Parallel Programs on
Intel SMP Platforms: Nanothreading in
the Linux Kernel. In Proc. of the Paral-
lel Computing’99 (ParCo’99) Conference,
August 1999.

[9] OpenMP A.R.B. OpenMP FORTRAN
API, Version 1.1. Technical report,
http://www.openmp.org, November 1999.

[10] E. Polychronopoulos et al. An Efficient
Kernel-Level Scheduling Methodology for
Multiprogrammed Multiprocessors. In
Proc. of the 12th ISCA Conference on
Parallel and Distributed Computing Sys-
tems, August 1999.

[11] M. Sato, S. Satoh, K. Kusano, and
Y. Tanaka. Design of OpenMP Com-
piler for an SMP Cluster. In Proc. of
the 1st European Workshop on OpenMP
(EWOMP’99), September 1999.


